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The holosymmetric group Q of an n-dimensional crystal lattice determined
by a given lattice basis Β is considered. This group is contained in the
n-dimensional orthogonal group 0(n) so its elements preserve the orthog-
onality of basis vectors and their lengths. These conditions yield the decom-
position of lattice basis into orthogonal sublattices and next the factoriza-
tion of the holosymmetric group, which can be written as a direct product of
complete monomial groups of k-dimensional (k < n) holosymmetric groups.
Simple, decomposable and primitive holosymmetric groups are discussed.
The results for n < 4 are presented.

PACS numbers: 61.50.Em, 02.20.+b

1. Introduction

Mathematical crystallography plays an important role in condensed matter
physics since it is .very useful to examine symmetries of a considered system. Al- 	 '
gebraic methods, carried over to physics by means of crystallography, allow us
to make easier solutions of many problems [1-7]. It is worth noting that results
obtained in an n-dimensional space, with n > 3, are also valid in physics [8, 9].
On the other hand, dealing with an n-dimensional crystal lattices one can bet-
ter formulate and understand concepts, definitions, theorems etc., well known in
the 3-dimensional crystallography [10-16]. In this paper the holosymmetric group
Q of a given n-dimensional crystal lattice 

Λn
 is presented as a direct product of

wreath products. We aasume that the lattice Λn is embedded in the n-dimensional
Euclidean space Εn over the field R of real numbers. In the vector space Rn the
scalar product is determined and the orthonormal basis ε is chosen. The lattice

Λnis an orbit of the regular representation of the translation group

(843)
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where Z is the ring of integers, n ≡ {1, 2, ..., n} and Xi C Rn consists of n
linearly independent vectors and is called a lattice basis of Λ. The factoriza-

tion of the holosymmetric group Q is connected with a decomposition of the
basis Β and the lattice A. As a result one can write the group Q as the di-
rect product of complete monomial groups, i.e. wreath products with a sym-
metric group [17-19]. There are two special cases of this factorization: (i) the
group I„ generated by the n-dimensional inversion ín , which can be written as a
wreath product wr(Ιn , Σ1 , {1}) and (ii) the n-dimensional hyperoctahedral group
Wn = wr(I1 , Σn, n). The first group is the holohedry of the fully-clinic lattice.  .

The word "fully" means that for each pair b, b' in Β we have b. b' ψ 0, e.g. for
n = 4 we obtain the hexaclinic lattice [20]. The group Wn is the holohedry of the
hypercubic lattice (i.e. Β Ε ε). It has been considered in many papers (see e.g.
[21-26]).

The decomposition of lattice basis Xi into orthogonal subbases is considered
in Sec. 2. In the next section we describe the factorization of the holosymmetric
group Q into complete monomial groups. A passive subgroup of a wreath product
is discussed in Sec. 4. Decomposable and simple groups are considered in Sec. 5.
Examples of 2-, 3- and 4-dimensional lattices are presented in the last Section.

2. Decomposition of a 1attice basis

The lattice basis ß can be decomposed into m < n mutually disjoint and
orthogonal subsets Βα (α Î m) such, that for each pair b, b'  Β there exists
a series b 0 = b, b1 , ... , bk-1 , bk = b' with the condition bi-1 . bá ψ 0. Let f be
a family of these subsets, nα be a cardinality of the subset Β, and let A α be a
k-dimensional lattice determined by the basis ßα . The basis vection bá  ,Ci will be
labelled hereafter as b and .

The subsets U° are gathered into families .Fpkconsisting of all subsets/3awith
the same cardinality k < n and determining identical k-dimensional lattices Λpk(p
labels different "types" of k-dimensional lattices). This means that for each Bα ,
Bb E Fpk a mapping ψ: Εk →Εksuch, thatψ(1α)'ΕΛbis Euclidean. Let mpk
denote a cardinality of the family Fpk and mpk be a set of indices α E in for which
Ba E Fpk

Αn union

is a lattice basis of a (k x mpk)-dimensional sublattice Λ(Βpk ).
The bases Β' E 2 can be chosen in such a way, that the isomorphism  ψ* :

Rk Rk , adjacent to the above mentioned mapping ψ, is determined by the
following relation:
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The presented decomposition of the lattice basis B and the introduced families  F
and Fpk enable us to factorize the holosymmetric group Q of the lattice Λn . We
assume that the bases Bα  Fpk fulfill condition (5) for each pairk, p.It means that
each lattice Λα, α  mpk, is a copy of an "abstract" k-dimensional lattice Λpk and
each Bα  Fpkis a copy of the lattice basis of this lattice. Letεαbe an orthonormal
basis in a linear closure lc(Bα)= Vα. We can assume that the basis ε is the union
of these bases, i.e. each vector b' , i  nα , is a linear combination of only nαvectors
of  εα C ε.

3. Holosymmetric group factorization

Since each element of the holosymmetric group Q is the orthogonal trans-
formation of the space Rn, then this group can be written as a direct product of
holosymmetric groups Qpk

Each group Qpk is a holosymmetric group of lattice Λ(Bpk) determined by the union
(4).

These factorizations allow us to consider only one group Qpk for given k and p.
Hence, we assume that the basis ß decomposes into m subsets ,Ci° with k elements,
each of them determines an identical abstract k-dimensional lattice Λk. The indices
k and p = 1 will be omitted and the group Qpk will be referred hereafter as Q.

The bases Βa , α E m, are chosen in such a way that the mapping determined
by Eq. (5)' is an orthogonal tranformation. Therefore ; each element of the group

Q is a product

where qα and q, α E h, are elements of the k-dimensional holosymmetric group
Q α and q0 is connected with q by the relation

Then, each q E Q determines a permutation σ q E Σm

and q0  Q can be written as

With this permutation one can write the following formulae:

where ;(α) denotes the counter-image of the element α  m..
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The automorphisms q0  Q form the permutational subgroup Ρ of the group
Q,. Moreover, the family .F is the orbit of this group, i.e. the group Ρ acts transi-
tively on it, and Ρ is isomorphic with the symmetric group  Σm.

The direct product of the holosymmetric groups Q α

is the invariant subgroup of Q (it arises from Eq. (7)). This group is called hereafter
as rotational subgroup of Q. Since each basis Ba determines the identical lattice,
the groups Q a are isomorphic with an abstract k-dimensional holosymmetric group
G and the rotational group R is its m-th power, i.e.

From Eqs. (8) and (11) it follows that the holosymmetric group Q is the semidirect
product of the permutational and rotational subgroups

and therefore, Q is the wreath product ([19, 26]):

When the group G is a primitive one we obtain that the holosymmetric group Q E
. GL(km, R) is the wreath product of primitive subgroup of GL(k, R) and transitive

subgroup of the symmetric group Σm . It coincides with the results presented by
Suprunenko for Sylow subgroups of the general linear group [28]. The case of an
imprimitive subgroup G is discussed in the next Section.

Taking into account Eq. (6) and considering the general case of the n-dimen-
sional lattice Λn we obtain that the holosymmetric group Q is the direct product
of the wreath products:

where Ρpk is isomorphic with the symmetric group Σmpk and Gk is the holosym-
metric group of an abstract k-dimensional lattice Λ. Therefore, each factor in this
product is the complete monomial group (of degree mpk) of the group Gk [17-19].

In the case k = 1 the different types of lattices, labelled by p, can differ from
each other only in the length of the basis vector bi. It yields that all groups G . are
isomorphic with the group Ι = {E, i) generated by the one-dimensional reflection
i : i( b i ) = -b1, so one obtains
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4. Imprimitive holosymmetric group

The holosymmetric group G is a subgroup of the group O(n) C GL(n, R).
This group is imprimitive when the space Rn can be decomposed into the direct
sum of non-empty subspaces Vα, α Ε r ι, m> 1, such that [28]

In the other case the group is primitive. The simplest (and unique for n r< 4) exam-
ple of a primitive group G is the holosymmetric group C6v of the twodimensional
hexagonal lattice. It is impossible to decompose the space R2 into subspaces
which fulfill the condition (18). On the other hand, when G is a subgroup of the
n-dimensional hyperoctahedral group Wn, it is the imprimitive group and each
subspace Vα is one-dimensional (this case is considered below). In the case of the
hexagonal lattice the holosymmetric group is a subgroup of W3 Ξ Oh not of W2.

The holosymmetric group G is the cross-section of the general linear group
over the ring of integers GL(n, Z) AutTn and the n-dimensional orthogonal
group O(n) [1, 26]. The form of the holosymmetric group G depends on the rela-
tions between the scalar products Μij = Mji bi . b,. Each g Ε G C Wn can be
written as a pair (r, σ), where σ Ε Σn is a permutation and r is an element of the
n-th power of the group Ι1 = {E, i):

Since for each vector bi Ε Β there is a vector bj Ε Β such that Mid ψ 0, then the
n-dimensional inversion in = ([i , ... , i],1) is the unique (except for the identity
E Ε I) element from the basis group Ι1n in the group G. The inversion commutes
with each g Ε G, so G can be written as a direct product In ® G', where G' is
isomorphic with a quotient group G/Ι .

The special case of an imprimitive group G is obtained when the basis Β
can be decomposed into pair-wise disjoint subsets Bα , α Ε ι z, with the following
conditions: (i) each subset Β contains vection with the same length λα; (ii) for each
pair b', b Ε mα the scalar product bαi•bαjhas the same value μ'; (iii) the scalar
product b, • b^ does not depend on the choice of vectors and is equal to vαb. From
these conditions it arises that the quotient group G' is isomorphic with a Young
subgroup Σ(n) of the symmetric group Σn, where the partition (n) is determined
by the decomposition of the basis Β into subsets. The group G contains "pure"
permutations and theirs products with the n-dimensional inversion in and can be
written as a direct product .Ι, ® Σ(n ) . Moreover, in this case the holosymmetric
group G is an example of the Coxeter group since a Young subgroup is generated
by transpositions [27, 29].

In more general case the group G' is generated by elements which permute
and change sign of the basis vectors. It means that for each α Ε m only the
absolute value of μα is fixed. Another possibility is obtained when G' is contained
in the Young subgroup Σ(n) = αεmΣmα but contains products of permutations
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belonging to different factors Σmα when (at least two of) - these factors are not
subgroups of G. One can say that in this case a permutation of vectors b= E
has to be "connected" with a permutation of vectors belonging to other subsets
Bb # Β .

5. Simple and decomposable holosymmetric groups

An n-dimensional holosymmetric group which cannot be decomposed into a
direct product of wreath products will be called a dimple holosymmetric group. Let
us denote such groups H', where n is a dimension of considered lattice and p =
1, 2, ... , h(n) labels different types of simple holosymmetric groups. The number of
different types of simple holosymmetric groups are 1, 2, 2 and 16 for n = 1, 2, 3 and
4, respectively. We assume that for each dimension n the first (trivial) simple group
is generated by the n-dimensional inversion in, i.e. R I1n = Ιn. The unique nontrivial
simple holosymmetric groups in two and three-dimensional spaces correspond to
the hexagonal families (C6v and D3d for hexagonal and rhombohedral lattice,
respectively).

The decomposable (non-simple) groups in the space Εn can be obtained as
combinations of the simple groups in spaces Ek, k < n. Let (n) = (n1, n2 , ... , n,)
be an ordered partition of the number n into m non-zero parts. Considering all sim-
ple groups Η p < h(ni), one obtains the n-dimensional decomposable holosym-
metric groups. It is important to underline that in the case ni = nj, i, j E m,
three cases have to be considered: (i) ni-dimensional groups are different, (ii) these
groups are isomorphic but corresponding sublattices differ in vector lengths from
each other, (iii) the groups and sublattices are identical. In the last case a wreath
product wr(Hpni, Σ2, {1, 2)) appears in the decomposition of the n-dimensional
group. Of course, this procedure has to be applied in the similar way when more
than two numbers n i are equal. The most interesting case is obtained form = n
(i.e. ni = 1, i E m). In this case the number of non-simple groups is equal to the
number of partitions (n). The decomposable groups for n = 2, 3 are gathered in
Table. For n = 4 there are 4 partitions giving 16 decomposable groups and for
n = 5 these numbers are 6 and 42, respectively. For n = 6 there are 120 groups
which can be decomposed into simple groups HP with ni < 4.

It has to be underlined that number of different groups corresponds to number
of crystal systems not lattices. Different lattices are obtained after consideration
of possible centring in a given crystal system.

6. Examples

The unique one-dimensional holosymmetric group Ι1 = {E, i} is, of course,
primitive and simple and can be written as = wr(I1, Σ 1, {1}). The two and
three-dimensional lattices are described in many books on crystallography or solid
state physics (see e.g. [30, 31]). Below we consider holosymmetric groups of crystal
systems in accordance with the concepts presented by Neubuser, Wondratschek
and Bulow [10].
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The decomposable groups in two and three-dimensional Euclidean space
are presented in Table. The simple groups are following (there are lattice names in
parenthesis): (i) C2 = I2 (clinic), (ii) C6v (hexagonal — this is the unique primitive
group), (iii) Ci = I3 (triclinic) and (iv) D3d (rhombohedral).

For four-dimensional groups we obtain that there are 16 simple groups and 7
of them are primitive. In Sec. 5 we obtain 16 decomposable groups, then we have
32 holosymmetric groups, but it is known that there are 33 crystal systems in
the space Ε4 (see [20]). The applied procedure has not described the ditetragonal
orthogonal D-centred lattice (family XIV and system 18 in [20]). This lattice can
be described as a composition of two identical centred orthogonal lattices (i.e.
rhombic lattices) and the holosymmetric group is given as wr(C2v, Σ2 , {1, 2}).
This example shows that the number of decomposable groups given in Sec. 5 for
n = 5, 6 are only the bottom limits.

As examples we consider three four-dimensional lattices: (i) ditetragonal
(ΧΙΙ.16), ""(ii) octagonal (ΧVIII.26) and (iii) icosahedral (ΧΧII.31). They corre-
spond to decomposable, simple imprimitive and simple primitive groups, respec-
tively. In each case the crystal family and crystal system (F.S) is given according
to [20].

In the first case nonzero elements of a scalar product matrix Μ are fol-
lowing: Μ1,1 = Μ3,3 = A, Μ2,2 = Μ4,4 = B and Μ1,2 = Μ3,4 = C. Then the
four-dimensional space can be decomposed into two twodimensional orthogonal
subspaces spanned over bases {b, b2 } and {b3 , b4}, respectively. The lattices de-
termined in these subspaces are identical and their basis vectors have the same
lengths. Since the holosymmetric group of the clinic lattice is generated by the
twodimensional inversion i2 (two-fold rotation) then the holosymmetric group Q
of the considered lattice can be written as a wreath product

The symmetric group Σ2 is a permutational subgroup of Q and I is a rotational
subgroup of Q. This group is isomorphic with the D4 group and is generated by
the transposition τ = ([Ε, Ε], (12)) and by the inversion (in the first or the second
subspace) i = ([Ε, i2], (1)(2)).

In the second case the matrix Μ has the following nonzero elements: Μ1,1 =
Μ2,2 = Μ3,3 = Μ4,4 = A and Μ1,3 = Μ1,4 = Μ2,4 = —Μ2,3 = B. The lattice
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basis cannot be decomposed and the holosymmetric group Q is a subgroup of the
hyperoctahedral group W4. Moreover, any subgroup of Σ4 is not contained in Q.
It is easy to show that the holosymmetric group is generated by elements which
permute the basis vectors and change their signs. For example the generators can
be chosen as g 1 = ([E, E, i, E], (12)(3)(4)) and g2 = ([E, i, E, i], (13)(24)). This
group is isomorphic with the group D8 , so it is also a Coxeter group.

The third case is very similar to twodimensional crystal lattice (also to body
centered cubic lattice which, however, do not form a new crystal system). There are
10 vectors with the same length and their ends form two regular four-dimensional
simplexes. Therefore, it is easy to show that this group can be written as I 4 ® Σ5
and is a subgroup of the hyperoctahedral group W5.

7. Final remarks

In this paper we have examined the holosymmetric group of a given n-dimen-
sional crystal lattice Λ. The factorization of this group has been performed in
accordance with the geometric properties of the lattice described by a matrix of
scalar products M. On the other hand, the proposed method cannot be applied to
the holosymmetric groups Gpk(Eqs.(15,16)). These groups, in both primitive and
imprimitive cases, can be considered to be the simplest parts of the holosymmetric
group. Knowing all groups Gk with k < n one can constuct the holosymmetric
groups of the n-dimensional lattices except for the n-dimensional groups G,. Of
course, in this way we will not obtain any simple groups. Moreover, in general case
we can constuct only a part of all decomposable groups.

The proposed method can be useful in the examination of symorphic space
groups. The transłation group Tn of the lattice Λn can be decomposed into a direct
product of subgroups Τpk accordingly with the decomposition of the lattice basis
13 into subbases Bpk (Eq. (4)). From Eq. (6) it follows that in this case the space
group S can be written as S = ®k,pSpk, where Spk is the symorphic space group of
the (k x mpk)-dimensional lattice and

Since Tpk is a direct product of mpk translation groups Tκ defined in an abstract
space Rk, then Eqs. (15, 16) give us

We use the isomorphism .

which is proved in one of us Ph.D. Thesis [32]. In the case k = 1 (see Eq. (17)) we
obtain (Τ1 = Τ)

If we consider a finite lattice with Τ 	 CN then the group Sp1 is a complete
monomial group (of degree mi) of the group CΝv. The groups wr(CΝv, Σn, n) for
n = 2, 3 have also been considered in the above mentioned Ph.D. Thesis [32].
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