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STIMULATED RAMAN SCATTERING OF
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Quantum statistical properties are derived for stimulated Raman scattering
by squeezed phonons including squeezing of vacuum fluctuations in radia-
tion modes and sub-Poisson photon behaviour. Initial radiation can be in
squeezed thermalized and/or sub-Poisson states, phonon system can also
be squeezed. In particular, effects of initial phase conditions, losses, initial
nonclassical behaviour and phonon squeezing are demonstrated in terms of
reduced factorial moments up to the fifth order in combined photon-photon
and photon-phonon modes. Also photon number distribution, quadrature
variances and principał squeeze parameters are shown.

PACS numbers: 42. 50

• 1. Introduction

It is possible to develop a quantum description of Brillouin and Raman
• scattering including photon statistics and correlation properties of photons and

phonons using various approaches in the framework of both the Heisenberg and
Schrödinger pictures (see e.g. [1-4] and references therein; a review can be found
in [5]). In this paper we consider stimulated Raman scattering of squeezed and/or
sub-Poisson light with additional noise components by squeezed phonons. The laser
field is assumed to be so strong that it can be described classically, although a sim-
ilar treatment involving laser mode depletion can also be developed. The phonon
system is effectively described by a single mode which can be squeezed. Making
use of the reduced factorial moments, in some cases up to the fifth order, and pho-
ton number distributions, we discuss sub-Poisson regimes of scattering. Adopting
quadrature variances and principal squeeze parameters, we can find regimes for
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squeezing of vacuum fluctuations in radiation modes provided that the initial  ra
diation field is squeezed and/or sub-Poissonian. Losses and various initial phase
conditions are included.

In Sec. 2 we describe the basic model of nonlinear dynamics including time
development of quantum characteristic function and evolution of basic quantum
statistical characteristics, such as photon number distribution; principal squeeze
parameter, etc., whereas in Sec. 3 the results obtained are discussed and demon-
strated.

2. Quantum dynamics

The, photon-photon interaction for the process under discussion can be de-
scribed by the effective Hamiltonian

where

is the free-field Hamiltonian for Stokes (S), anti-Stokes (A), and vibration phonons

(V) modes, respectively, αS ( α†s),αΑ(ά†A),αV(α†v)being the annihilation (creation)
operation of these modes with frequencies ωS, ωΑ, and ωV; assuming pumped laser
light with the frequency ωL and phase φL to be coherent and so strong that it can
be described classically, we can write down the interaction Hamiltonian in the form
[ 1 ]

here gS and gA are the Stokes and anti-Stokes coupling constants, respectively and
h.c. means the hermitian conjugate terms. The interaction of radiative and phonon '
modes with reservoirs describes .correctly losses in the modes and it is specified by
the additional Hamiltonian

pling constants of photon and phonon modes with their reservoirs, and W) (;"t)
are the corresponding annihilation (creation) reservoir operators. All these opera-
tion obey the standard boson commutation rules
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with all other commutators zero. The frequency resonance conditions are

The corresponding Hesenberg equations have been solved in [1, 2] providing
for their solution

where Ls A V are Markovian Langevin forces [1], áj - &j (0) and

here γ = γS = γa = w are the damping constants.
The corresponding antinormal characteristic function with parameters βj can

be written in the form [6-9]
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where the set (S,A,V) is assumed to be ordered, complex field amplitudes ξj (t) are
determined by

 j (0) being the initial complex amplitudes and the quantum noise func-
tions Β2 (t), Cj(t), D2k(t) and Djk(t) (j # k) are given in the interaction picture
(αj (t) =Aj (t) exp (-iω j t)) by

Substituting solutions (2.5) in (2.8) one can find

where Cj Ξ Cj (0); in these expressions there are no reservoir contributions. Simi-
larly one obtains
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where Βj Ξ Βj(0) and there are reservoir contributions with mean numbers of
reservoir oscillators (ndj) (for a way to include them see [9]). It is evident that
in this way also initial coupling of modes could be included if we conserved the
coefficients Dij (0), Dij (0)≠0.

In general we assume initially squeezed light with additional noise compo-
nents nj so that

r^ being the squeeze parameter and φj the squeeze phase. If nj = 0, the initially
squeezed state is obtained which reduces to the coherent state provided that rj = 0

(Β = 1, Cj = 0).
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3. Results and discussion

Using the above expressions the single-mode and compound mode cases can
be discussed from the point of view of photon statistics in the same way as in
[3]. All relevant equations to calculate the photon number distributions p(., t), its
factorial moments (Wk (t)), quadrature variances ((Δq(t)) 2 ) and ((Δp(t)) 2) and
the principal squeeze parameter λ(t) [10] have been given in section 2.1 and 2.2 of
the paper [3] for single mode and compound mode cases, respectively. We mainly
provide results in the form of reduced factorial moments for the compound modes
involving the coupling of modes , i.e. we use the following quantities

W denotes the integrated intensity. For the principal squeeze parameter we have

The following initial phase relations of phases φj of the initial complex am-
plitudes ξj have been considered:

The phases of rotating terms (Cj) are φs = φ A =φV = π, whereas the
phases of coupling constants are arggs = arggA = π/2; further we have chosen
the values |gS| = 107 s-1 , |gA| = 2 x 10 7 s-1 for the coupling constants, γ =
108 s-1 for the damping constant (if not given othervise) and nj = (ndj) = 0. , In
order to obtain the maximum in nonclassical behaviour, the value of the squeeze
parameter rj ≈0.37 was found to be appropriate. In the following figures we note

• (|gA| 2 - |gS|2)1/2t = Ωt simply as t.
In Fig. 1 we see the second reduced factorial moment FSA(2) for rV - 0 (un-

squeezed. phonons) under the phase conditions (3.2). Below zero we have sub-Poiss-
on behaviour. We see that the effects return periodically provided that losses
are neglected. The phase condition (i) can lead to super-chaotic (super-Gaussian)
statistics, whereas the conditions (ii) and (iii) admit only small sub-chaotic fluc-
tuations.

The time evolution of F&) , k, = 2-5 together with the mean integrated inten-
sity (WSA) is shown in Fig. 2 for initially sub-Poisson light (Δφ = -π, the other
parameters are as in Fig. 1). One can observe that attenuation of the resulting
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integrated intensity is related to a conservation of nonclassical behaviour, whereas
in the region where the attenuation is reversed to the amplification, there is a
strong increase of quantum noise, which is reduced again for later times.

If the system is damped (γ = 108 s-1 ), one can see in Fig. 3 that relatively
long-time conservation of the initial sub-Poisson behaviour is reached for the con-
sidered initial phase conditions and finally a super-chaotic state is obtained for
long interaction times.

In Fig. 4 we demonstrate the time evolution of F2 ) for combined modes SA,
VS and VA if the phonon system is squeezed (rV = 0.37) under the phase condition
(i). We see that the most pronounced nonclassical effects are in photon-phonon

modes and also saturation effects are evident.
As shown in Fig. 5 the correlation properties of the Stokes and anti-Stokes

modes are slightly dependent on the squeeze parameter rV of the phonon system
and a super-chaotic state is asymptotically reached. .
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In Fig. 6 we demonstrate results in light scattering on squeezed phonons
exposing the evolution of the principal squeeze parameter λ without and with
damping. We see that substantial squeezing of vacuum fluctuations can be obtained
in all combined modes (values below λ = 1) including the effect of nonlinear
dynamics. In modes SA and VS stationary nonclassical effects can happen despite
of the damping is reckoned.

In Fig. 7 we demonstrate the reduced factorial momentsF(k)ij k =2-5 and
the integrated intensity (W) in modes SA (Fig. 7 a), VS (Fig. 7 b) and VA (Fig.
7 c) for unsqueezed phonons (rV = 0) and Δφ = 0 with the other parameters
as in Fig. 3. These figures demonstrate that under the chosen conditions the ini-
tial sub-Poisson behaviour can be improved in the photon-phonon modes by the
nonlinear dynamics, which supports nonclassical behaviour in photon-phonon cor-
relations more effectively than in photon-photon correlations.
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The sub-Poisson behaviour can periodically return (Fig. 8) if losses are ne-
glected.

Figure 9 provides the time evolution of the photon number distribution for
the scattered compound mode SA under the phase matching (Δφ = 0) and for
unsqueezed phonon system (rV = 0) demonstrating the evolution from the initially
sub-Poisson statistics to strongly super-chaotic statistics. .

Finally we note that the external noise nj and reservoir noise (ndj) generally
lead to the degradation of nonclassical behaviour' of light.
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