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Valence shell diagonal hardnesses (electron repulsion) parameters are re-
ported for the first- and second-row transition metal ions, determined via
finite differences from the Xα eigenvalues for alternative configurations and
charges. Both rigid (unrelaxed orbit als) and orbitally relaxed hardnesses have
been calculated. The relaxed parameters provide a convenient basis for gener-
ating a realistic hardness tensor of catalytic systems involving transition met-
als at the atoms-in-molecules (AIM) oxidation state and configurations, thus
facilitating the charge-sensitivity.analysis of chemisorption systems both at
the AIM and orbital resolutions. The observed trends in the orbital relax-
ation effects are briefly discussed.
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Introduction

The molecular charge-sensitivity-analysis (CSA) [1-14], based upon the con-
cepts of global and regional (rigid and relaxed) chemical potentials, hardnesses,
softnesses, the Fukui function parameters, and the related energy derivatives, has
recently been advocated as an attractive theoretical framework for applications
in the theory of chemisorption and catalysis [11, 13]. This approach has already
been successfully applied both qualitatively and quantitatively to selected ules of
chemistry [1, 2, 4, 5, 7, 9,] and trends in the chemical reactivity [4, 7, 9-17]. Most of
the reporetd applications to large molecular systems adopt the atoms-in-molecules
(AIM) resolution, although the orbitally resolved CSA has also been developed at
various levels of sofistication [13, 18-22]. Future wider applications of this method
would require the realistic AIM (global or orbital) data for alternative oxidation
states and orbital configurations, sufficient to generate the canonical AIM chem-
ical potentials and hardness tensor corresponding to the actual valence state of
the AIM in the system under consideration, as revealed by the standard SCF MO
calculations. Of particular importance is also the inclusion of the orbital relaxation
in the derivatives involving electron population variables. The attempts to include
such effects in atomic systems, via finite differences and the virial theorem (Fock)
scaling, respectively, have recently been reported [20, 23] for selected atoms.

Applications of the CSA to model catalytic systems involving clusters of
metallic and oxide catalysts would require the detailed knowledge of the valence
shell orbital hardnesses for alternative states of transition metal ions, preferably the
data including the changes in the orbital exponents due to a removal or addition
of electrons from/to the metal  atom/ion. One possible source of such parameters,
used in the semiempirical AIM CSA [7], are the experimental values of the electron

affinity and ionization potential data [14, 24], but they hardly cover the full range of
the atomic valence states required for an adequate interpolation; alternatively such
data can be calculated theoretically, e. g., using the Hartree—Fock (HF) or the SCF
calculations [10-13, 17, 19, 21], the hyper-HF [20, 25], Kohn—Sham [Local Density
Approximation (LDA)] [14, 15], and the Χα [20, 22] theories. The latter method
[26, 27] is especially attractive for this purpose since the first derivatives of the
energy, Ε = E(n), with respect to the canonical orbital occupation numbers, n =
(n i , n2 , ...), both variational (orbitally relaxed) and partial (orbitally unrelaxed),
give the repsective one-electron eigenvalues, e = (e l , e 2 , ...):

here n° specifies the atom electron configuration. This feature allows one to de-
termine the approximate estimates of the relaxed hardness (electron repulsion)
derivatives:

via finite differences from the known Χα eigenvalues. The corresponding partial
second derivatives determine the orbitally unrelaxed (rigid) hardnesses:
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It is the main purpose of the present work to report the relaxed and unrelaxed
diagonal (n ii ) hardnesses of transition metal ions (first- and second-row) from Χα
calculations. The reported results have been generated for future applications of
the CSA to catalytic systems.

Calculations and results

The unrelaxed hardnesses, calculated directly within the standard Χα pro-
gram, have been obtained from the usual expression [26]:

where the familiar Slater integral F° accounts for the Coulomb contribution to
the hardness while the second integral represents the local approximation of the
exchange part; here ρi(r) stands for the orbital probability density and α is the
method adjustable parameter scaling the exchange interactions [14, 26].

The following simplest finite-difference estimate of the relaxed diagonal hard-
ness has been adopted in the present study:

where Δn = 1/2 and the shifted occupancy vector ni = (n01 , n02 ... ,n0i  - Δn, ...)
involves a removal of Δn electrons from the  i-th orbital only relative to n°.

The results for the first- and second-row transition metals are listed in Ta-
ble I. In Fig. 1 we examine the resulting trends in the magnitude of the orbital
relaxation effects, measured by the J irel/Jiunrel ratio, for the oxidation states and
configurations considered in Table I.
The experimental approximations of the orbital hardnesses for a given oxidation
state q can be generated via the familiar Pariser [28] finite difference formula:

for the relevant electron configurations here Ι is the corresponding orbital ioniza -

tion potential (Ι (q -1) = Α (q) is the corresponding orbital electron affinity). The
socalled Valence State Ionization Energies (VSIE) developed for the Self Consi-
tent Charge and Configuration Molecular Orbital Theory [29], via an interpolation
of the average atomic spectroscopic data, can be used to approximate the valence
orbital ionization potentials (electron affinities).

In Table H we compare the Χα relaxed orbital hardnesses with the cor-
responding experimental estimates from Eq. (6) and the VSIE,: for the first-row
transition metals. Α graphical representation of this comparison is shown in Fig. 2.
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Discussion

It follows from Fig. 1 that the magnitude of the s-type relaxed hardness,
relative to the corresponding rigid hardness value, xnl(q) - Jnlrel(q)/Jnlrel(q), is
predicted to remain approximately constant ( ~90%) within the Χα model, for all
transition metals considered in the present study. This ratio is slightly higher (--
93 %) for the positive ions (q = 1) due to a "harder" orbital electron distribution
for a less screened nucleus. The unexpectedly low x5s value for Nb is probably an
artefact of a very approximate nature of the numerical differentiation of Eq. (5).
It also follows from Fig. 1 that the relaxational lowering of the hardness value in
the d-type orbitals is much higher than that observed for s-type orbitals, ranging
from 20-45% for neutral atoms.

A reference to Fig. 1 also shows that the xnd ratios from the Χα calcula-
tions exhibit a slightly decreasing trend across a given row of transition metals.  A
comparison of the xnd values for the elements in the same group of the periodic
table also reveals that in most cases x3d(q) < x4d(q); also, for a given element,
xnd(q) < xnd(q + 1). The observed deviations from these general characteristics
can certainly be attributed partly to the changing configurations, leading to varia-
tions in the nuclear charge shielding; they are also partly the artefacts of the finite
difference' procedure adopted in this work. Since a higher xnl value reflects a lower
orbital relaxation lowering of the hardness, i.e. a "harder", less polarizable electron
distribution, we conclude that the Χα model predicts a slight relative hardening
of the nd electrons across a given row of transition metals, and a relative soften-
iug of the en d when going from the first to the second row of transition metals.
Such a relative hardening of the electron distribution is also observed when going
to higher oxidation states, as one would expect intuitively on the basis of simple
nuclear screening considerations.

However, as can be seen in Table II, the ηii values from the VSIE are often
lower for q = 1, 2 than those for q = 0, particularly for d orbitals. These deviations
are represented in Fig. 2 by the cluster of points deviating most from the otherwise
satisfactory correlation between the hardnesses from the Χα and VSIE sources.
In general the agreement for s orbitals is better than that observed for d orbitals.
It should be stressed that both estimates use different Δn in the finite difference
procedure: Δn = 1/2 in Eq. (5) (one numerical differentiation) and Δn = ±1 in
Eq. (6) (two numerical differentiations), and different configuration averaging.

The full AIM modeling of the hardness tensor would also require the corre-
sponding collection of the off-diagonal hardnesses for the valence shell orbitals
and different oxidation states. Such parameters can in principle be generated using
a similar finite difference approach based upon either the Χα calculations or ex-
perimental spectroscopic data for atomic systems. Alternatively one can transform
the known molecular orbital (MO) hardness tensor, already reflecting the actual
valence states of constituent atoms, to the AIM representation [13, 18]. The latter
approach is strongly recommended when the CSA follows the standard SCF MO
calculations for molecular systems.
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