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Performance of Importance-Sampling Quantum Monte Carlo process is con-
sidered on simple, modeł systems, such as: multi-dimensional oscillator, hy-
drogen-like ions, and "helium oscillator" (quadratic-potential analog of he-
lium atoni). A mean and standard deviation of that process is numerically
determined and also, in the first two cases, calculated analytically together
with the distribution of the process values. Results are presented to show
how a mean value precision and necessary computational time depend on an
importance function quality and dimensionality of the case. Distributions are
shown to be highly asymmetrical which questions the value of variance-based
estimators of precision. However, a variance is proposed to be the good es-
timate of the importance function quality. Finally, effects of fixed-node ap-
proximation on the second excited state of oscillator are presented to explain
the meaning of the differences between exact and approximate solutions.

PACS numbers: 31.15.+q

1. Introduction

Accurate calculations of molecular properties such as binding energies, charge
distributions, and potential energy surfaces as well as underlying problem of elec-
tron correlation effects are an important goal of quantum chemistry [1]. Most of
them use some kind of expansion approach: many-body perturbation theory ; mul-

ticonfiguration self-consistent field, or configuration interaction. However, an order
of dependence of computational time on the number of electrons, that decides what
size or molecules the method can treat and slow convergence for high precision cal-
culations, is a reason for a seek of alternate methods. A new approach — Quantum
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Monte Carlo solution of the many-body Schrödinger equation, based on different
ideas, has undergone a number of reformulations and extensions in recent years
and is changing toward the form that can be efficient and precise enough to treat
electronic molecular systems with less inherent limitations.

Α number of studies have already been performed, mostly on atoms and small
molecules, using different versions of the QMC idea, that gave promising results,
but still many problems have to be eliminated to ensure its wide applicability.

Electronic energy expectation values for systems like He, Be, F (electron
affinity), LiH, Η2O, CH2 radical (splitting between 3 B1 and 1Α1 states), H2+e
(energy barrier), with different importance functions, have been determined, lead-
ing to satisfactory results.

For example, in LiH case, considered by a few authors, 99.1% of the correla-
tion energy was obtained and statistical uncertainty was reduced to a very small
level for the internuclear separation 3.015 a.u. (E = -8.0697 ± 0.0002 a.u. [2]
compared to the best ab initio estimate of the nonrelativistic Born—Oppenheimer
energy —8.0704). Also the whole potential energy surface for LiH ground state has
been determined [3] being in good agreement with the experiment (differences of
the order of 0.005 a.u. and statistical errors of the order of 0.001 a.u.).

Other quantities than energy were also calculated, like expectation values
(z 2 ), (r2) and the quadupole moment for H2 molecule [4] and dipole moment of
LiH at its equilibrium internuclear separation [2, 5].

One of the main advantages that the QMC method reveals, is its versatility.
It is not bounded to any specific wave function representation and its value lies
in the fact that it always goes beyond the analytic form used. Because of that,
the method can take advantage of any existing results for the considered case by
means of an importance function [6, 2] and can even be treated as a "second step"
procedure after SCF or other calculations that improves its outcome.

However, besides other limitations, that will be mentioned in the description
of the method, Quantum Monte Carlo process has a stochastic character, that
cannot be eliminated. As it is always in Monte Carlo methods, the results are
mean values over the process and nevertheless the statistical error can in principle
be eliminated, it can sometimes take long runs to reach a desired level of precision.
The importance-sampling is the technique that we will concentrate on, that helps
to reduce the inherent variance of the QMC process. As presented in the results
of this work, if no precise information about the system under consideration is
available, the statistical uncertainty can become a serious computational problem
and will need a special care.

2. The method

The formulation of the method is based on the analogy between the Schrödin-
ger equation, written in imaginary time, and the classical diffusion equation. The
first to discuss this analogy were Metropolis and Ulam [7] who attributed the idea
to Fermi.

In atomic units, the transformed Schrödinger equation can be written as

. 	 - 	 .
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follows:

Taking into account the diffusion equation analogy, this can be interpreted as the
description of the free diffusion process (the first term of the right-hand side) with
branching (the second term), where the time-dependent many-body wave function
of the system ϕ(r, t) has to be described statistically as the probability density of
finding the "particle" that undergoes the process. (It is positive definite, which
causes problems of negative wave function values description, but we discuss it
later.) The evolution of ϕ(r, t) can be expressed in the following way, using the
expansion in eigenfunctions ϕi and eigenvalues Ei of the system Hamiltonian:

and at long times, the asymptotic form (for ΕT chosen as being equal to Ε0 )  will
be:

Hence, such a Monte Carlo process will evolve to a steady state of the lowest
eigenfunction of the Hamiltonian.

The "particles" that undergo the process are meant as sets of 3N coor-
dinates, where N is the number of particles in the system, or if we consider
Born-Oppenheimer approximation, the number of electrons. These "particles" are
usually called "configurations". Expressing the propagation of the configurations
by means of the Green function formulation, we can write:

The analytic form of G is not generally known, but in so called Short-Time ap-
proximation used here, we can express it as:

a product of two terms: a normalized Gaussian term (representing diffusive mo-
tion) and an exponential branching term (representing duplication/elimination of
configurations) [8].

However, such a basic process can be significantly improved in terms of ob-
taining average values, introducing the idea of importance-sampling [9, 10]. It is
one of the most efficient ways to reduce variation in process parameters and to
eliminate possible instabilities in the branching term, coming from singularities in
the potential V(r). If we define an importance function ψT(r), we can describe
the propagation of distribution f (r, t) = ϕ(r, t)ψT(r) instead of ϕ(r,t) by means
of the Green function: .
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with the "local energy" El(r) defined, for the system's Hamiltonian H, as:

There are four main advantages of this approach:
1. The suitably chosen importance function ψT can reduce variations in the sample
size coming from the branching term, if El is smooth and slowly-varying.
2. The new term — 2DÑIn |ψT| that adds to the diffusive motion description, is
related to a drift velocity, superimposed on that motion. This process makes the
most important areas of the high ψT value better populated by moving configu-
rations.
3. The ground state energy of the system can be simply calculated as the ensemble
average of the local energy El(r) sampled from the steady-state function f (r):

4. The Fermi antisymmetry problem can be handled easily. In a basic approach only
a positive definite wave function can be permitted, which is obviously not tue for
molecular systems. However, if ψT could have been chosen with the proper location
of nodes, separating positive and negative regions, the effective importance func-
tion f (r) would be positive everywhere. The Fixed-Node approximation states
that the importance function ψT should be specified to have nodes as close to the
tue ones as it is possible and that the wave function should be forced to have the
same nodes, by use of the absorbing barrier for random walks that crosses them. -

_ The computational scheme in the case of the Fixed-Node Short-Time Quan-
tum Monte Carlo version looks as follows:
1. Initialize a set of N configurations according to the starting probability density
— f( r, 0) .

2. For each configuration in the set, realize diffusive random movement based on
3N-dimensional Gaussian distribution and drift movement based on ΨT gradient.
3. Ií the configuration would cross a node of ψT (a sign change), eliminate it from
the set.
4. Else, accept the move with the probability:

which guarantees a detailed balance in the process.
5. Calculate the branching exponential term value Μ — multiplicity and according
to the value: int(Μ+ζ), where ζ is a random (0-1 interval) number, eliminate (0)
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or multiply (> 1) the configuration.
6. Continue from (2) for the next configurations, until none of them is left. Then
calculate El values necessary for estimation of the energy.
7. Repeat steps (2)-(6) until the mean values are computed with the desired pre-
cision.

Quantum Monte Carlo method has a possibility of being, in principle, an
accurate method, besides its statistical character, but approximations mentioned
above, proved to be useful, at least for small atomic and molecular systems. How-
ever, it is possible to remove both of them, at least partially.

In Short-Time approximation removal it is noticed that, despite the fact, the
Green function (4) is not generally known, it can be iteratively sampled by gen-
erating, so called, "intermediate" configurations, leading to a proper propagation
for large time steps [11]. This can shorten the computational time necessary to
simulate the systems evolution.

When the nodes of the many-body wave function are not known well enough,
or not described properly by the importance function, to reach the desired level of
precision in calculations, it is necessary to apply the algorithm that lets them ad-
just properly. Several propositions were described in [11, 12], from which the nodal
release method seems to be most useful. In this case, after the Fixed-Node steady
state was achieved, absorbing barriers on nodes are eliminated and configurations
can cross them. In such a process their contribution changes sign at each crossing.
Effectively the distribution changes the nodes position. However, after some period
of time, a transition to the Bose ground state occurs, leading to increase of the
process variance, which restricts the use of the release node approach.

3. ImpIementation

The aim of the work presented here was to analyze performance of the FN
QMC method and examine possible problems sources, using model systems for
which .exact solutions for the wave function and energy are known. These were:
one-dimensional and multi-dimensional quantum oscillator, hydrogen atom (and
hydrogen-like ions), and "helium oscillator" — quadratic-potential analogy of he-
lium atom.

The implementation of the method, used in computations, was based on the
one introduced by Reynolds, [13]. According to that, the following features have
been included. Application of the importance function was as shown in the intro
duction. In the case of oscillator excited states, the elimination of configurations
that crossed nodes of the importance function has been applied to force the wave
function to have properly positioned nodes. A procedure of each configuration
movement acceptance/rejection has been used to guarantee the detailed balance
in the process for any time step size. An estimation of the ground state energy by
the mean value of El = (ΗψT )/ψT was used and no other averages were cOmputed.

Differently from that implementation, other way to check the quality of the
averages was applied, making the comparison of the theoretical and computational
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results easier. First, the configurations were propagated during the period of time
that was long enough to reach a stationary state. This was examined by tracing
(Εl) until it was not moving significantly. Then, the process was propagated to
compute the average and variance for the stationary "ground state" with the
desired precision. The values from all time steps for all configurations were treated
equally and used for averaging. Time of the propagation was long enough for the
system to loose "memory" of the initial state, so the position of each configuration
was treated as in accordance with stationary probability density distribution and
the global average was computed basing on all of their values. Forming "blocks"
to average over their averages seemed to be unjustified and difficult to represent
theoretically. However, this does not change the interpretation of quantities like
variance — only their values. The computation was performed until the standard
deviation of (Εl) value reached 0.0004 level, but not shorter than 200 time steps.

Approximately 300 configurations were propagated simultaneously (the list
was normalised only when it exceeded 400 or went down by 200, by random copying
or deletions) — the number is of no importance for the process except for the
computational time.

The time step size was chosen arbitrarily as 0.005 on the basis of own obser-
vations and suggestions of Reynolds et al. All theoretical calculations neglect the
time step ;error and the comparison with the computed results shows that it was
not the significant value.

All the results are presented in atomic units.

4. Results for model systems

Influence of the importance function quality on QMC process was studied on
two model systems: quantum oscillator and hydrogen atom.

4.1. Multi-dimensional oscillator

The case was defined by a potential considered, for simplicity, with a constant
of force being equal to 1in the form:

The importance function used was in the form:

that makes easy, using constant α, to alter the shape (width) of the function.
The constant α can be related to the constant of force disturbation by expression
α = [(1 +f.c.dist)/2D]1/2
Considering V and ψT as functions defining stochastic process of obtaining Εl
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values on the basis of stationary distribution of configurations, i.e. QMC process,
the mean values for El were computed:

where (Εl) is the value of the energy of the state, σ is the process standard devi-
ation of Ei values and σ2 is the process variance of Ε1  values.

If one uses them to determine the quality of (Εl), one can relate it easily to
computational time necessary to reach the desired level σ(E, ^ of standard deviation
of (Ei)

The way in which σ2 depends on n — the number of dimensions—comes from ad-
ditivity of independent process variances. One can easily transform this expression
if ii constant is anisotropic.

The result gives us a view, how computational effort grows up with the num-
ber of particles described and with the quality of the importance function for
QMC process. However, one also has to take into account that numerical effort
of importance function value evaluation grows both with the number of particles
involved and with the quality of this function. This dependence can be estimated
for applications to chemical systems as proportional to n 2 , because the interpar-
ticle distances calculation seems to be the most time-consuming operation. This
gives us a n3 order dependence for the whole procedure.

The results for chosen values of n are plotted in Fig. 1 together with the
values of σ obtained from QMC calculations to verify the theoretical approach.
The differences are due to statistical errors of σ values.

In order to examine the way that Εl values deviate from (Εl), the probability
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density distribution of Ei in QMC process was calculated:

and plotted in Fig. 2 for different values of α. One can see that distributions are
highly asymmetrical and far from normal distribution, which suggests that σ and

σ(Εl)should be of very limited employment in the QMC process description.

4.2. Hydrogen-like ions

The second model system considered was a hydrogen atom or in general,
hydrogen-like ions defined by:

with the importance function of the form:

_Z is a nucleus charge.
This case is much more important for molecular applications in Born-Oppen-

heimer approximation, because of basically the same form of potential and impor-
tance function as commonly used (Slater type orbitals). Deviation of the impor-
tance function from the exact wave function is achieved by change of α constant,
which can be interpreted as a change of nucleus charge screening or simply as using
a not optimal Slater function coefficient for calculations.
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Analytically calculated parameters of QMC process for El values are:

In the independent particles model, the dependence on the number of particles
would be the same as it was in the multi-dimensional oscillator model.

The dependence of El standard deviation σ on α for Z = 1 is plotted in Fig.
3 together with σ obtained from QMC computations.

The probability density distribution of Εl in QMC process was calculated
and is in the form:

This function is plotted in Fig. 4 for different values of α. Asymmetry of the
distributions is easily seen, as well as far ranges of their values, which in this case
also suggests that σ or are improper as distribution parameters.

4.3. Helium oscillator

Another model system that was used to examine QMC procedure was the
system of two fermion particles trapped in a quadratic potential well, repelling
according to Hook's law, i.e. via also quadratic repulsion term:

where r12, r1, r2 — are the distance between particles and the distances from the
center of the system, respectively This problem can easily be solved exactly [14].
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The ground state energy and the wave function are given by:

Such a system exists only for β < k/2, in the opposite case repulsion causes its
destabilization. The second important feature is that the wave function becomes
angularly correlated and contracted with growing β.

Two series of computations were performed, for k stated being equal to 1,
with the use of the importance function in the form of the wave function of two
independent particles:

Figure 5 shows a plot of the energy as a function of β calculated from Eq. (11)
and computational QMC results obtained for α = 1, i.e. for the wave function
exact when β = 0. For small β the numerical results are in good agreement with
formula (11), but the computational effort grows quickly with β. However, for
β = 0.4, 0.5, values of (El) become significantly different from what they should
be, in spite of the value of σ(Εl), being equal for all points. But if ψT has a
variable parameter α, it is possible to adjust its value to minimise the variance
of the process. Figure 6 shows exemplary dependence of σ on α parameter for
repulsion β = 0.2. The values of σ can be obtained with sufficient precision even
after very short uns, making possible to optimise the importance function with



On the Fixed-Node Importance-Sampling Quantum Monte Carlo ... 785

little numerical effort. In this case the importance function has only freedom of
radial expansion/contraction and the optimal value of α gives the contraction
coefficient properly: 1/2 (√k+ ' √k — 2β) ≈ 0.88 even if the wave function was not
computed. However, for further minimization of σ, it would be necessary to include-
the interparticle correlation factor in ψT (like Jastrow pair correlation factor used
by Reynolds [13] and others).

4.4. Excited states of oscillator

In all previous examples the problem of wave function nodes did not exist. In
real calculations, however, it must occur. To examine importance of nodes position
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imposed on the wave function, the energy of the oscillator second eXcited state
was computed from FN QMC process. The importance function used was in the
form:

where D is the displacement of nodes from true values, and other constants are
chosen in such a way that no singularity in El can occur. As shown in Fig. 7,
nodes position influences significantly (Εl). It was shown by Reynolds that for the
ground state the Fixed-Node energy is an upper bound to a true energy value, but

for excited states it is surely not true. As can be seen, (El) value for a disturbed
nodes wave function includes contribution from lower states and the process tends
to reach the lowest possible states for a given nodes position. In the limit of nodes
stretched to + and -infinity it reaches the ground state (E = 0.5), in the limit of
nodes going to the position x = 0, it reaches the first excited state (E = 1.5).

5. Conclusions

The analysis of properties of Quantum Monte Carlo process performed for
a few model systems shows undoubtedly great value of importance-sampling in
variance reduction of average values like (Εl). However, it has its effect not only in
reducing computational time necessary to reach particular level of average value
precision. If disproportion between the importance function and the tue wave
function is wide, it is shown that distribution of value of interest in QMC process
can become asymmetric and far from normal distribution, in which the case values
like variance and standard deviation of mean are no longer proper parameters of
the distribution and it is unsafe to estimate precision of computations on their
basis.
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However, it is possible that transformations of the data to "normalise" its dis-
tribution, use of different precision estimates or other variance reduction methods
can bring much better results if they are adapted to FN\QMC characteristics.

It can be seen that the variance of the QMC process is sensitive to differences
between the importance function and the true wave function, and often can be
determined with little numerical effort. This can be used to optimise the approxi-
mate analytical form of the wave function or to prepare the importance function
before high precision computations.
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