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Using a special analogy to a parametrically forced mathematical pendulum
with energy flux, it is attempted here to model the vortex wake in a fluid due

• to the movement of a cylindrical solid body. We also show that the path taken
by certain fluid particles represents a homoclinic soliton and corresponds to
a spacial separatrix. This in turn may lead through deterministic fluctuation
to diffusion-like chaotic motion.

PACS numbers: 03.40.Gc

1. Introduction

In contrast to the evolution of the velocity field of a fluid which is governed
by Navier-Stokes partial differential equation, the trajectory of a fluid particle is
governed by an ordinary differential equation. Consequently in a Lagrangian de-
scription of a fluid, the results of dynamical system theory of autonomous O.D.E.
may be used directly. This way the observed randomness of a Lagrangian turbu-
lence might be interpreted as deterministic chaos [1]. In the present work we give
simple arguments 'based upon a classical elastic model to confirm the existence
of chaotic diffusion-like particle paths in the presence of deterministic wave-like
fluctuation. There are numerous analogies between elastomechanical and hydro-
dynamical problems such as that holding between the shape of a free fluid surface
under surface tension and the bending of an elastic wire. In what follows, we
use another analogy relating to the Euler elastica [2-6] and the lateral displace-
ment of a fluid particle due to the motion of a circular cylindrical solid body in a
two-dimensional flow [7, 8]. 	,

Subsequently we modify our elastica model in such a way that allows us to
mimic to some reasonable extent the well-known Kármán vortices street created
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in the fluid by movement of the cylinder at certain Reynold numbers [8] (Fig. 4,
6). Finally the similarity of these vortices to travelling loop solitons [9, 10] and the
cornu-like spiral chaos which arises in Riemann sums approximating oscillatory
integrals [11] is pointed out (Fig. 5).

2. Pseudo-random walk of a fluid particle

Consider a circular cylinder of radius α moving in a liquid when its centre
is at the origin of a fixed Cartesian system (x, y). It is easily shown that the
curvature of the path of a fluid particle which is displaced laterly by the cylinder
is given by (see Appendix 1):

Noting that κ = Φ' = dΦ/ds, where s is the arch length of the path and Φ is the =
slope of the path, one could differentiate the previous equation once and find that

Since dy/ds = sin  Φ the previous equation is obviously identical to the classical
elastica equation of Euler (see Appendix 2). Consequently we may state that these
looped stereophoid-like paths which were drawn long ago by J. Maxwell and
G. Taylor [12, 13] are actually spacial homoclinic orbits. In other words they are
spacial separatrix corresponding in a dynamical analogy to a homoclinic orbit
in phase space [4, 6, 14]. It follows then that the entire chain of reasoning used
previously in establishing the possibility for statical loop soliton chaos in the Euler
elastica may now be carried over to show that deterministic wave-like.fluctuation
could lead in the appropriate region of parametric and initial values to a completely
chaotic particle path. The loops themselves may still persist but their spacial
distribution will be erratic and will differ essentially from the classical picture
given in text books. Now, due to the intimate relationship between the stability of
orbits with errational wending numbers, damping and random walker, we feel that
the preceding discussion might be relevant for a new interpretation of diffusion-like
process [15].

It might even be that the analogy with the elastica can be taken one step
further using the analogy between the elastica and the elastic circular ring under
external pressure [14, 16, 17]. That way we may expect that circular motion of a
circular cylinder in a fluid will produce similar diffusion-like behaviour of the fluid
particles. However, what may be even more interesting is what could happen if we
have vortices in the fluid. This we discuss next.

3. Chaotic vortices, Cornu spirals and the fluttering elastics

In the previous Section we considered the effect of a cylinder moving in a
fluid. Here we consider two circular cylinders streamed by a fluid [8]. In this case,
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as is well known, two kinds of streamlines form as shown in Fig. 1(a). Now as we
let the radius of the cylinder shrink we obtain the sequence shown in Fig. 1(b,c).
Anyone who has observed the motion of a travelling loop soliton in a long flexible
wire [6, 9] will notice the similarity between them and the vortices shown in Fig.
1(c) which can easily be made visible in an actual experiment. It is this similarity

which was the motive behind trying to model some of these fluid motions using the
elastica. In the case of a Hamiltonian system, the model was relatively straight
forward and we found some interesting spacially chaotic deformation as shown
in Fig. 2. Some problems arise however in the spacial interpretation of positively
and negatively dissipative elastica. In the case of positive disspation, i.e. damping,
this may be interpreted as nonconservative tangential friction forces akin to the
so called follower forces discussed in [5, 14]. Negative dissipative is consequently
the adjoint system, a so called flutter set [14]. We may mention that the inclusion
of this type of negative damping was motivated by some problems connected to
protein deformation. Figures 2-4 show the results of our numerical experiments.
The spacial entanglement which looks quite similar to randomly coiled polymer
chains is quite interesting (Fig. 3). They correspond in the dynamical analogy to
the region of a strange attractor in a parametrically excited system. However we
feel that the most interesting numerical results are those with the spiral-like de-
formation (Fig. 4). They strongly resemble some of the pseudo-random Cornu-like
spirals (Fig. 5) found for instance in the Riemann sums approximating oscillatory
integral [11]. However they have some similarity to a well-known real physical
phenomenon, namely the Bernard—Κarman vortices (Fig. 6), [7, 8, 12, 13].
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4. Conclusion

The elastica and in particular the imperfect flutter elastica provides a sur-
prisingly simple model which reflects some fundamental aspects of diffusion and
turbulence-like behaviour in fluids. Of course using our numerical technique we
can never show true chaos. Nevertheless using the pre-entropy related ideas of
O. Roessler we can show asymptotic chaos [2]. When we observed the spiral chaos
of the elastica we were initially inclined to think that it is only a numerical in-
stability phenomenon. However repeated independent calculations using different
methods have convinced us that they are a true feature of the nonlinear dynamics
of our model. The appearance of self-similarity on all scales which these spirals
reflect shows that we are dealing with an important phenomenon which may be
strongly linked to mixing, diffusion-like process and chemical vortices.

Appendix 1. The equation of the elastics

1. The Hamiltonian of the perfect initially straight elastica corresponding to
unforced undamped pendulum is

where Φ is the angle of inclination of the central line of the elastica, (') = do /ds
and s is the arch length of the deformed elastica which is assumed to be totally
inextensible. Consequently Φ' is the curvature of the deformed (buckled) elastica.
The parameter λ=√ P/α corresponds to the natural frequency where Ρ is the
axial load and α is the bending stiffness. This means that the bending moment is
Μ = αΦ'.

2. The imperfect elastica corresponding to a periodically excited pendulum
is
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where αn is a measure for the amplitude of the harmonic axial imperfection (crooked-
ness) of the central line and ω is the frequency of this periodical spacial imperfec-
tion.

3. The elastica corresponding to a parametrically excited pendulum is

4. The elastica corresponding to a parametrically excited pendulum with
positive (or negative) damping is

where k is the constant of linear positive (or negative) dissipation.
For more details and derivation see [4] or [14].

Appendix 2. The differential equation of a fluid particle

In addition to x 'and y we use a polar coordinate system r, . φ whose origin
also coincides with the center of the cylinder, to describe the path ε of the particle.
The curvature of the path is thus given by

where Φ = 2φ is the slope of the path measured from the horizontal x direction of
the motion. On the other hand the streamline is given by

and nοting that sin φ = sin Φ/2 = y/r we can eliminate r and find

This may be written as

and differentiating both sides as a function of y one finds

That means
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nr

From (1) and (7) it is evident that

where the constant h gives the initial and final distance of the particle. Differenti-
ating (8) one finds

Noting that dy/ds = sin Φ we obtain

where λ = 2/α. Equation (10) is mathematically identical with the equation of the
elastica (Appendix 1).
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