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A two-dimensional finite cluster model is proposed to describe the coupling
of low energy charge transfer and Frenkel states of an anthracene-like molec-
ular crystal. The results confirm most of the qualitative conclusions of the
extensively used linear crystal model, but suggest the necessity to review
some of its quantitative results. Potential usefulness of the cluster model for
the description of doped crystals is pointed out.

PACS numbers:

1. Introduction

The application of electroabsorption spectroscopy for the investigation of
charge transfer (CT) excitons in molecular crystals [1, 2] stimulated a renewed
interest in the theoretical description of such states. This description has so far
been based on two essentially complementary models.

On the one hand, there has been the localized approach where a charges are
envisaged as stationary, the hole residing at one and the electron at another lattice
site. In that case, the energies of the CT states follow from purely electrostatic
considerations [3-8]. Their calculation, although tedious [3], can be greatly facili-
tated by the Fourier transformation [4-8]. The calculations can be performed with
due account taken of the complete three-dimensional structure of the crystal.

On the other hand, in the alternative approach initiated by Merrifield [9=11],
the structure of the crystal has to be greatly simplifled: the crystal is represented
just by a one-dimensional array of equally spaced molecules. This is the price that
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has to be paid for the inclusion of the off-diagonal (in the local representation)
matrix elements of the Hamiltonian which are responsible for the delocalization of
the charges over many crystal sites, and are neglected in the localized approach.

As the off-diagonal matrix elements of the Hamiltonian (CT integrals) are at
least linear in (small) intermolecular overlap integrals, the CT state energy values
resulting from the localized approach are correct to about 0.1 eV and provide a
very reasonable starting point for a more detailed model taking into account the
dynamic effects giving rise to charge delocalization. This observation motivated
the generalization [8, 12-16] of theMerrifield model for those molecular crystals
which, like anthracene, contain two molecules in the unit cell.

Arguments based on the analysis of the values of the CT integrals [15] led
to the tentative conclusion that the linear model with the modification  mentioned
above is likely to account very well for most properties of the low energy CT states
in anthracene-like crystals. In fact, the CT interaction between the molecules be-
longing to different αb planes of such crystals is much weaker than the correspond-
ing interaction along the b axis. Since the CT interactions along the α axis are
equally weak, the crystal, from the point of view of its lowest CT states, can be
split into a set of linear crystals with two molecules in the unit cell and the stacking
axis directed along the b axis of the actual three dimensional crystal. The expected
cancellation of errors of different origins [15] provided a reasonable basis for the
application of the linear model for the interpretation [15, 16] of the experimental
results [1, 2].

The aspect of the linear model which has barely been considered [16] is due
to the fact that the αb plane of an anthracene like crystal can be partitioned
into the linear crystals in two different ways, so that a given molecule belongs
either to the first or to the second sublattice. These two partitions produce two
physically distinct sets of CT states of (1/2, 1/2, 0) parentage (Fig. 1), and the
linear model can deal with only one of them at a time. An attempt to account for
this fact was made in Ref.[16] wlere the two subsets of the (1/2,1/2,0) states were
assumed to be degenerate and the total electroabsorption signal was calculated
with an additional weighting factor of 2. However, the results obtained in this way
could be only qualitatively correct. In fact, although the direct coupling between
the two sets of CT states is negligible due to the very small values of the CT
integrals for the (1,0,0) direction, there is an indirect interaction via the CT states
of (0,1,0) parentage, mediated by the CT integrals corresponding to the (1/2,1/2,0)
direction. This interaction is bound to split the (otherwise degenerate) states of
(1/2,1/2,0) parentage originating from the two different partitions of the αb plane
into linear crystals.

A one-dimensional model is inherently incapable of dealing with this split-
ting and a two dimensional model becomes necessary. While a complete study of
an infinite two-dimensional crystal presents interest in itself, a finite cluster ap-
proach offers potential advantages for future use in the description of doped crys-
tals where the translational symmetry of the lattice is locally broken. With that
aim in mind, in this paper we present a finite twodimensional cluster model with
periodic boundary conditions. For not too large clusters, the Hamiltonian (based
on the same kind of approximations as have been used in the one-dimensional
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models) can be diagonalized numerically, yielding the eigenvalues and eigenvec-
tors.

Due to the periodic boundary conditions, tle crystal momentum k is still
a good quantum number, like in an infinite crystal. Consequently, the cluster is
essentially equivalent to a two dimesional crystal where only some specific values
of crystal momentum k are allowed (rather than a quasicontinuum). Whatever the
size of the cluster, k=(0, 0) is always one of those values. By a judicious choice of
the cluster size (υidein f rα) it. is possible to ensure that the values of k = (0, ±π)
have been allowed as well.

The energy values of the states which correspond to k = (0,0) and k = (0, ±π)
do not depend on the size of the cluster, so that relatively small clusters may be
used in actual calculations. As just these energy values are the most, interesting
ones from the point of view of spectroscopic applications [15, 16], the planar cluster
model seems to provide a feasible way to test the validity of the linear crystal model
used previously [14-16].

2. The cluster model

Let us consider a rigid planar cluster consisting of n x m molecules from
the αb plane of an anthracene-lke crystal (n molecules along the b axis and m
molecules along the α axis). In order to imitate the situation in !tle bulk of the
crystal and to eliminate artifacts due to the presence of boundaries, we impose the
periodic boundary conditions (Fig. 2). In otler words, we join the left edge of the
cluster with its right edge and the upper edge with the lower, so that the topology
of the cluster becomes equivalent to that of a, tous.
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Each molecule in the cluster has six nearest neighbours. The four positions
(± 1/2,±1/2,0) are equivalent, and so are the two positions (0,±1,0). (Note that
the (±1/2,±1/2,0) positions are not equivalent to the (0,±1,0) positions).

The cluster contains N = mn molecules. In analogy to the linear model
[14-16] we confine the treatment to the nearest neighbour CT states, so that our
basis consists of the following localized states: i) the set of N functions describing
Frenkel excitons located at each of the N molecules. These functions will be de-
noted as |A*), where Α stands for the molecule in hand. Only one Frenkel state per
molecule is taken into account; ii) the set of 6N functions (denoted as |A+B - ))
describing the CT states with the hole located at a given molecule A and the elec-
tron located at one of the six nearest neighbours B. 4N functions represent the
(1/2,1/2,0) states and 2N functions represent the (0,1,0) states (the "crosswise"
and "lengthwise" CT states of Refs. [12, 15], respectively). In this basis the matrix
elements of the Hamiltonian read: .

(Α* |H |Α*) = ΕF is the diagonal energy of the Frenkel
exciton located at molecule A;
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are the electrostatic energies of the CT states ("crosswise" and "lengthwise", re-
spectively);

are the Frenkel exciton transfer ("resonance") integrals for the (1/2,1/2,0) and
(0,1,0) direction, respectively;

are the corresponding electron and hole transfer integrals, respectively; and

are the Frenkel exciton dissociation integrals.
All other matrix elements are set equal to zero.
The above labelling of the matriX elements follows directly from that used

for the one-dimensional model of Refs.[15, 16], where the definitions in terms of
molecular orbitals as well as other details may be found.
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Τo all intents of the present paper (which is merely to test the one-dimensional
model), vibrational degrees of freedom are irrelevant and are consistently disre-
garded.

3. Implementation and input data

In the actual implementation we use, the basis functions are numbered in the
following way:

The first N functions are those corresponding to Frenkel excitons and they are
labelled by the number of the molecule on which the exciton resides. The following
6N functions represent the CT states. As each molecule has six nearest neighbours,
there are six different CT states with the hole located at a given molecule and the
electron at a nearest neighbour molecule. The direction of a vector pointing from
the position of the hole to that of the electron is labelled by an integer l, running
from 1 for (1/2,1/2,0) to 6 for (1/2,-1/2,0). The basis function corresponding to
the CT state with the hole located at n-th molecule and the electron located at
its nearest neighbour in the direction 1 has the number N + 6(n - 1) + l.

The computer routine building the Hamiltonian matrix scans all the molecules '
of the cluster and for each molecule all the directions. Given the number of the
molecule and of the direction, another routine finds the. number of the corre-
sponding nearest neighbour molecule and subsequently the numbers of the basis
functions representing the CT states involving the two molecules. This set of data
allows to define all the necessary matrix elements according to the prescriptions
of the preceding section.

The objective of this paper is to test the performance of the one-dimensional
model used previously rather than to describe any specific physical system. Con-
sequently, the input data need not represent any actual crystal. However, to make
sure that the conclusions pertain to a physically relevant situation, we have used
the input data corresponding to the anthracene crystal which was the standard
testing case for previous theories [1, 2, 7, 8, 14-18]. The numerical values of the
parameters are as follows -(all values in eV): EF = 3.2234, ΕP = 3.562, EL =
3.685, W = -0.0479, M = —0.0152, Je = 0.0244, Jh = -0.0443, Je = 0.0526,

= -0.0418, De = 0.0281, Dh = —0.0510, D = 0.0605, D = -0.0481.
They are essentially the same as in the most recent paper on anthracene [18].
In view of the continuing discussion in the literature [3, 4, 15-19] it was 	 •

not clear whether the band gap EG = 4.42 eV or EG = 4.25 eV would be
appropriate for the anthracene crystal. Due to the model nature of the present
paper, this issue is of secondary importance here. Therefore, in order to avoid the
problems of vibronic coupling [16], irrelevant in the present context, we have used
the former, more conservative value.

This paper is meant to answer the specific question how well the results
of the linear model can reproduce those obtained from the planar model and to
what extent the discrepancies can be reduced by a judicious renormalization of the
parameters. It was argued in [18] that some effects of the interactions which are
not explicitly included in the linear model can be accouirted for by treating some
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parameters as effective. The proposed refinements,  aimed to improve the physical
relevance of the results for the Frenkel states, consisted in [18]: a) doubling of the
Frenkel exciton transfer integral M to account for the resonance interaction with
the nearest neighbour molecules which are not included in the model linear crystal
and
b) renormalization of the diagonal Frenkel exciton energy

to account for the leading part of the CT interaction with those molecules.
As an alternative to b), we pr esently propose:

c) renormalization of the CT and exciton dissociation integrals J , J'h, De, D'h by
the factor of 2 1 / 2 .

In the following, we will compare the results of the planar model, obtained
by numerical diagonalization of the Hamiltonian matrix of Section 2, with two
alternative sets of results of the linear model. The two sets were calculated with
the input parameters adjusted according to a) and b) (Linear Model 1, hereafter
referred to as LM1), and to a) and c) (Linear Model 2 = LM2), respectively.

For the linear model calculations, the method of Ref. [17] (to which the
Reader is referred for details) was used. (In Eq.(6d) of Ref.[17], Dh sin(kn') should
be replaced by -Dh sin(kn), and the sine term should be included in the sum over
n. The error does not affect the results at k = 0 and k = π, but slightly changes
some of the dispersion relations at other k values).

The cluster type calculations (Section 2) have been performed for clusters dif-
fering both in "length" (n = 3-6) and in "width" (m = 4-8). In the pseudoband
calculations of the linear model, the "length" (number of unit cells) of the model
crystal was assumed to be the same as the "length" n of the corresponding cluster,
so that the energy values were calculated only at the n values of kb permitted by
the periodic boundary conditions. This allowed to refer the eigenvalues obtained
from the cluster model to pseudoband energies at specific points of the Brillouin
zone in the one-dimensional model, and facilitated the analysis of the results.

It is worth noting that a pseudoband energy eigenvalué for a given value of
kb does not depend on the "length" n of the model linear crystal for which it was
calculated. Therefore, the differences between the results obtained for different n
values are due exclusively to the fact that different sets of kb values are allowed.
This also means that the obtained eigenvalues are exactly the same as for an
infinite crystal (at the same value of crystal momentum).

This observation allowed us to ascribe the cluster eigenvalues to specific
k values without the necessity to invoke and analyze the eigenvectors. For ex-
ample, with n = 3, 4 and 6, the sets of allowed kb values are (in units of π)
{-2/3, 0,2/3); {-1, -1/2,0, 1/2) and {-1., —2/3, -1/3,0, 1/3, 2/3), respectively.
Accordingly, the eigenvalues that coincide for n = 3, 4 and 6 correspond to kb = 0,
those that coincide for n = 4 and 6 correspond to kb = -π , etc.

Some of the kb = 0 states are easy to identify anyway due to the absence
of the (k, -k) degeneracy resulting from the time inversion symmetry. As for cen-
trosymmetric crystals the electronic states are degenerate at the kb = -π edge
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of the Brillouin zone [16], non-degenerate states may appear only at kb = 0.
Therefore, lack of degeneracy is an unambiguous indication that the state in hand
corresponds to the centre of the Brillouin zone, but there may still be some states
which are degenerate even at kb = 0, which would not be detected by this criterion.

An analogous argument may be used for k$ .

4. Results and discussion

The main quantities of direct spectroscopic interest are the energy eigenvalues
in the centre (kb = ka = 0) [15] and at the kb = ± π(ka0) edges of the Brillouin
zone [16]. Their values obtained from the planar cluster model are compared in
Table I with those from pseudoband calculations (LM1). As. it has been explained
in Section 2, some of the CT states of (1/2,1/2,0) parentage are not included in
the linear model, which is reflected in the table. Apart from this difference, it is
readily seen that the results of Linear Model 1 are always qualitatively and in
some aspects even quantitatively correct.

The main discrepancies occur in the manifold of the states of (0,1,0) parent-
age, whose energies are consistently underestimated by the linear model. The
Davydov splitting of the Frenkel states is also seriously underestimated, but this
effect is probably due to an accidental cancellation of different contributions for
this particular parameter set.

It is interesting to note that most of the discrepancies can be removed by
readjusting the parameters used in the linear model. With the renormalized values
of the parameters (LM2), the linear model reproduces, correct to less than 1 meV,
all the energy values resulting from the cluster model calculations, except those
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indicated in Table I by asterisks. The latter ones represent the four CT states of
(1/2,1/2,0) parentage which are not included in the linear model and therefore the
fact that they cannot be handled is an inherent limitation of that model. They are
doubly degenerate both at the centre and at the edge of the Brilloun zone.

These observations support the qualitative conclusions of Refs.[14-18], but
refute some of the quantitative results. They suggest that the .energy values of
CT transitions calculated in [15, 16, 20] have to be re-evaluated. At least to some
extent this might be done within the linear crystal model with the parameters
renormalized according to the prescription of LM2. This approach may be par-
ticularly useful for the calculations of the pressure dependence of Frenkel exciton
energies [18].

One of the problems where a model of CT states in polyacene crystals
was needed concerned the interpretation of electro-absorption spectra [1, 2]. Sev-
eral models have been introduced in that context (their results for the states of
(1/2,1(2,0) and (0,1,0) parentage are visualized in Fig.3):

1. the reasonable starting point [1, 2] was the localized model where the
interactions .mediated by the off-diagonal (in the local basis) matrix elements of
the Hamiltonian were totally disregarded. As these elements are known to be
of the same order of magnitude as tle gaps between the diagonal energies, this
approach was conceptually unsatisfactory. It was also inherently incompatible with "
experimentally observed intensities [8];
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, 2. the localized model was supplemented by an ad hoc inclusion of the ad-
ditional splitting due to the electron and hole transfer integrals [8]. This allowed
to rationalize the observed intensities in qualitative terms, but offered no way of
systematic verification by direct calculations;

3. a linear crystal model was introduced [14], which, although very approxi-
mate, provided a more or less systematic framework to calculate both the energies
and the intensities of CT transitions.

Subsequent analysis [15] demonstrated that only degenerate CT states can
produce the observed [2] linear Stark effect. Still within the same linear model of
Ref.[14], the involvement of the states from the edge of the Brillouin zone (accom-
panied by plonons) was postulated, with ensuing proposal regarding the value of
the band gap [15].

The presence of the additional states of (1/2,1/2,0) parentage discussed in
this paper suggests that a reinterpretation of electroabsorption spectra [1, 2] may
again become necessary. The fact that they are degenerate may have important
consequences for the fi nal interpretation, possibly eliminating the necessity to in-
voke the phonons. The new states should also be included in tle band structure
calculations [17].

Another quantity of potential relevance to the interpretation of experimen-
tal results is the density of states [16]. Obviously, it should differ for one- and
twodimensional models. This aspect of our results is presented in Fig.4 in the
form of histograms representing the number of cluster eigenstates per energy in-
terval, depending on the "width" m of the cluster (the "length" of the cluster
is fixed at n = 5). (The figure should be considered only as an illustration of the
trend — the actual values obtained for any finite cluster are of course an extremely
poor approximation of the density of states in an infinite crystal).

The clusters under consideration may be thought of as one, two, three or four
linear crystals with two molecules in the unit Bell, combined together.

The histograms show that apart from the trivial increase of the total number
of states, their distribution in energy also changes with the change of cluster size.
The most conspicuous change takes phace when the cluster width increases from
two to four molecules, the former case representing the linear crystal with two
molecules in the unit cell [14-18]. Ths is the expected effect of the change of
topology. In other cases, the changes are present, but not so pronounced.

The observation that for truly twodimensional clusters (m = 4  8) the
general distribution of energy levels does not depend very strongly on cluster size
suggests that even small clusters may provide meaningful conclusions and give
interesting insight into the physics of the problem. This conclusion may have some
practical consequences.

In fact, tle cluster approach seems to be particularly well suited for the
consideration of doped crystals, where the presence of an impurity breaks the
translational symmetry of the lattice so that the local description becomes

apρroρriate. The results presented above suggest that relativehy small chusters may
suffice to draw meaningful conclusions in that case. This problem will be taken
up in a forthcoming paper, dealing specifically with doped crystals and aimed to

•interpret the recent experimental data [21-23]. We hope that the cluster model
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will provide a basis for a future approach formulated in terms of Green's functions.
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