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A theoretical analysis of variations in the propagation velocity of ultrasonic
waves in liquid dielectrics in an external DC electric field was performed.
Measurements of these variations in transformer oil in dependence on the
field strength and temperature were made applying the phase method. To
express the experimental results in graphical form numerical procedure of in-
terpolation in Lagrange polynomials was used. The experimentally obtained
variations in the velocity are compared with those predicted theoretically by
the formulae derived.

PACS numbers: 43.35.+d

1. Effect of an external DC electric field on the ultrasonic propagation
velocity in nonconducting liquids

From the point of view of thermodynamics, in order to measure the ultrasonic
propagation velocity, the system has to be led to equilibrium; the equations of
electrostatics are then fulfilled [1]. With regard to the Helmholtz formula [2, 3] for
the square of the propagation velocity of an acoustic wave:

where F is the molar free energy and V — the molar volume of the liquid, we
have to find the form of the free energy F of the system as a function of state. The
general formula is well known from thermodynamics, where the total free energy of

(683)
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the system is made to comprise an energy term dependent on the external electric
field.

For reversible processes taking into account the conditions of equilibrium
as well as the circumstance that the local electric field strength F is identical
throughout the whole volume of the measuring vessel, we have [1]:

where U is the internal energy of the system, V — its volume, F — the local field
in the dielectric, ε = εr , ε 0 — the absolute electric permittivity of the dielectric, p
— the external pressure, S — the entropy, and Τ — temperature. On the basis of
the Eq. (2) we arrive at the following expression for the derivative of tle function
of state

' On insertion of this derivative into the Helmholtz formula (1) we get:

where K = cp /cv, Μ — the molar mass, cE — the ultrasonic propagation velocity
in the presence of the external electric field, βis — isothermal compressibility.
Equation (4) can also be written in the following form:

where c20 is the square of the ultrasonic propagation velocity in the absence of an
external electric field.

Let us now consider the density-derivative in Eq. (5) separately. On intro-
ducing the Lorentz field given by [4]:

we get

With the general Clausius-Mossotti formula, for μ = Ο and X = εr - 1 we
get:

Transforming (7) to the form εr = εr (p) and inserting A for NAα/3ε0Μ we obtain:
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On the other hand, the derivative ∂εr/∂p is a quantity characteristic for the
pressure due to electrostriction in a liquid dielectric [5 ]:

Calculating the density-derivative of pressure we have:

Since (dp/dp)T = (1/p)βis, where βis is the isothermal compressibility of the .
liquid medium,, we have:

On finding (∂εr/∂p)T and (∂ εr/∂p2 )T, we are in 'a position to calculate all
the quantities occurring in (6). From (9) we get

and

Hence, by (12), the derivative of the squared electric field strength with respect to
the density is

We thus have all the elements required to calculate the square of the ultrasonic
propagation velocity in the presence of the external electric field:

For the isothermal case, Eq. (16) finally leads to

Similarly, tle squared velocity c2E can be calculated for liquids with a non-zero
permanent dipole moment it.
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The dielectric constant as a function of temperature, volume and molar mass
. [1] is not explicitly dependent on the external field strength, but the field affects it
indirectly by changes in strength on the magnitude of ε r in a given space point. The
constant εr is moreover frequency-dependent. For low frequencies εr = ε0, whereas
for high frequencies it is less, amounting to εr (ω) = ε∞ . Applying the expression
for the local Onsager field one gets c2E in a form valid for dipolar liquids.

Since in this case the local field strength is [4]:

∂(εrF2)/∂p can be written in the following form:

On the basis of the Onsager's model [4], in which molecules are assumed to be
spherical and short-range interactions are neglected, we arrive at the following
relation between er and ε

The values of (∂εr /∂p)T as well as (∂2 εr/∂p2 )T are readily calculated from
Eq. (20), though the derivative (∂p/∂εr )T is more conveniently calculated with

We furthermore have

where use has been made of (20). The other derivative is
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Also, the two derivatives can be inserted into the formula ( 1 2) leading t the
following expression for the magnitude of (∂E 2 /∂p)T

With all the above derivatives we finally arrive at the following, general
expression for the squared ultrasonic propagation velocity in dipolar dielectrics in
the presence of an externally applied electric field:

2. The phase method of measurement of the ultrasonic propagation
velocity and its variations in liquid dielectrics

Theoretically [6-8], the changes in ultrasonic propagation velocity due to the
influence of an external DC electric field in a liquid dielectr c are predicted to
be very small. Accordingly, in our measurements, we had recourse to the phase
method — one of the most highly sensitive methods available [9, 10]. Using a high
quality digital phase detector and applying computer technique for data process-
ing, we achieved a very high degree of accuracy in our measurements.

A block scheme of the method is given in Fig. 1. The measuring vesseh con-
tained two branches (ultrasonic paths), one of which was the reference ρath and
the other served as measuring path. Both paths were filled with the same liquid di-
electric in which two mutually independent beams of continuous ultrasonic Paves
from emitter transducers (1, 2) attached to a stabilized frequency generator were
made to propagate. The lengths of the two paths were equal, amounting to 1 =
0.248 m.

The measuring vessel was in contact with a system stabilizing the
temperature to within 0.05 K. The receiver transducers (3, 4) were attached to the inputs

of a digital phase detector, the output voltage of which was proportional to the
difference in phases between the two input signals, with phases ϕ0 (in the reference
branch) and ϕ1 (in the measuring branch).

The determination of the phase velocity c0 (where the subscript "0" denotes
the value of c at zero external field), with regard to the relation
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involves measurements of
1) the path 1 between the transducers,
2) the frequency of the ultrasonic wave, and
3) the number of wavelengths n in the vessel (not necessarily an integer).

The digital phase detector used by us — by way of the changes in voltage
at its output — permitted the determination of the change in phase or rather the
difference in phase between the two signals coming, respectively, from the reference
path and from the measuring path, where the change is caused by action of the
external field on the liquid.

As long as reflection of the sine wave between the transducers , is insignificant
[11] the absolute variations in propagation velocity amounts to

Thus, all these quantities (Δϕ, l, f, and n0) affect the accuracy achieved in deter-
mining the change in the velocity of the wave. When applying the phase method,
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use can be made of the formula

It shows that the accuracy achieved in measuring the relative change in propa-
gation velocity of the wave is dependent on that achieved in measuring the total
phase ϕ0 and the change in phase Δϕ in the vessel only. Thus the length 1 of the
latter and the frequency f do not affect the magnitude of Δc/c0 directly. However, :
the longer the vessel and the higher the frequency (the transducers can operate
on an odd harmonic) the greater is the phase ϕ0 thus enhancing the sensitivity of
the measuring setup at a given sensitivity of the phase detector.

When taking readings of the output voltage from the phase detector with
a computer by way of an 8-bit analog-digital transducer, the smallest change  in
phase accessible to observation is

This means that — in the case of carbon tetrachloride, and f = 1.6 MHz,
1 = 0.248 m, Τ = 293K and c0 = 938 m/s — the smallest observable change in
velocity would be

corresponding to a measurement of the relative change in phase velocity Δc/c with
an accuracy of 4.05 x 10' 6 .

It should be noted that the accuracy of the measuring device can be much
higher but the accuracy in measuring the velocity is limited by difficulties in
maintaining the physical properties of the liquid constant (its temperature, density,
homogeneity, flowlessness, etc.) and by inhomogeneities of the acoustic field.

3. The experimental results and their analysis

Our experimental study of the effect of an externally, applied DC electric field
on the propagation velocity of ultrasonic waves was carried out on minerah trans-
former oil, carefully purified with aluminum trioxide, dried on metallic sodium,
and additionally "electric field-cleaned" [12].

Measurements were performed for electric field strengths in the range from
0 to 308 kV/m and temperatures from 253 to 293 K. The ultrasonic frequency
amounted to 1.6 MHz. The absolute value of the velocity was determined with Eq.
(27) and its variation with Eq. (28).

Figures (2-4) exemplify time-dependent recordings of the changes in pIopa-
gation velocity in the electric field for different field strengths.

The duration of each measurement amounted to about 2 minutes. The graphs
(Figs. 2-4) show that after a lapse of time, which depends on the magnitudes. of
the experimental parameters, the ultrasonic velocity settles at a well defined level.
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The only information we lad recourse to in our further analysis concerned the
magnitude of ΔCΕ in the steady state. We assumed for each measurement a con-
ventional time equal to 117 seconds. On the basis of some tens of ΔcΕ-recordings,
taken in different physical conditions of the field strength E and temperature Τ
we plotted ΔcE versus Ε for the transformer oil dealing with Τ as a parameter
(see Fig. 5). Fig. 6 shows an example of ΔcE = f (Τ), with E as a parameter.

In plotting the graph of Fig. 6 we applied Lagrange interpolation [13, 14] the
principle of which is that the graphs resulting from this mathematical operation
shall traverse the experimental points.

The formulae for the squared propagation velocity derived by us from the
change in free energy on application of the external DC electric field, in conjunc-
tion with the present experimental results, enable us to announce several general
conclusions.

The absolute change in propagation velocity in the viscous medium, in various
physical conditions, is of the order of ΔcΕ (10 -2 =1) m/s; hence, its relative
variation amounts to Δc/c0 (10 -5 =10 -9). On the other hand, the relative
variations evaluated theoretically from the Eqs. (17 and 26) are of the order of

10-7 for typical non-dipolar aud dipolar dielectrics in the presence of a DC
electric field.

Thus, the divergence between the experimental results and the theoreti-
cal evaluations is considerable, suggesting the existence (beside the field-induced
change in free energy) of yet other faction modifying the propagation velocity in the
liquid. The measurements, however, reveal two distinct trends in the behaviour
of the velocity variations: for a given temperature the effect is the greater the
stronger is the field applied to the dielectric. This trend was observed for all the
temperatures; however, the variation ΔcΕ was maximal for the lowest temperature
Τ = 253 K but decreased with growing Τ.
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The theory of dielectrics shows that variations in free energy related with
dipole polarization usually occur on a microsecond time-scale, whereas our mea-
surements prove that the changes in propagation velocity in the oil occurred on a
time-scale of as much as several tens of seconds, suggesting that the electric field
acts on tle velocity by affecting the free energy and, moreover, by way of yet other
mechanisms.

Its elucidation will be the object of our other work, both theoretical and
experimental.

Also, the theoretical formulae show that for electric fields in the range (0
Emax) the magnitude of (∂Ε2 /∂p)T is practically independent of the field strength,
i.e. that the change in density due to electrostriction is proportional to Ε 2 .
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