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The properties of hyperspherical representation where the one-body orbitals
are expressed in terms of the square root of the electron density, p(r) and the
angle functions {θi(r)}i=1 . N-1 , (R.F. Nalewajski, P.M. Kozlowski, Acta
Phys. Pol. Α74, 287 (1988)) are discussed, and the expression for the ki-
netic energy density functional is analyzed. This expression contains the

Weizsäcker term plus a correction determined by the angle functions: Tak-
ing into account both the limit of only one occupied level and the slowly
varying electron density with large N, it is shown that the kinetic energy  

density functional interpolates correctly between the known results. Finally,
an example of a linear harmonic oscillator is given and the relation between
the usual orbital pictures is discussed.

PACS numbers: 02.90.+ρ, 31.20.Sy

Density Functional Theory (DFT) has some advantages in the theory of many
body systems such as atoms, molecules and the solid state. One of the most impor-
tant problems in DFT is to derive the single-particle kinetic energy density func-
tional Ts [p(r)] in terms of the electron density p(r) and its lowest derivatives. The
simplest and most basic formulation of DFT is embodied in Thomas-Fermi (TF)
theory, since the kinetic energy is approximated by that corresponding to a free
electron gas e.g. a homogeneous system [1]. Construction of an adequate kinetic
energy density functional is closely related to the problem of N-representability,
namely, for a given density p(r) with p(r) ≥ 0 and f p(r)dr = N, is it always
possible to find antisymmetric, N-electron wave function leading to this density?
The usual approach is based on construction of a set of orthonormal functions
which are continuous, smooth, and extended over all space. This approach has
been discussed in the literature by many authors, for example Macke [2], Gilbert
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[3], Harriman [4] and Lieb [5]. In terms of these functions, the one-body orbitals
are given as the . square root of the electron density times a phase factor which
particularly depends on the constuction, however, the first practical realization
has been put forward by Harriman. In this construction, the orbitals are expressed
as follows (in one-dimension)

where

and all of which yield the same probability density

There are two important points in relation to this constuction. The first is that
Harriman's orbitals lead to approximate expressions for energy functional. This
universal functional is strictly valid within the context of the independent particle
model and it is not possible to obtain a unique energy functional [6]. Tle second
point is that all one-body orbitals have the same electron density imdependent
of orbital quantum numbers. The purpose of the present paper is to demonstrate,
that constuction based on hyperspherical representation [7, 8] removes these basic
difficulties.

Fallowing Refs [7] and [8], one has the relation between one-body orbitals
in terms of the square root of the electron density p(r) and the angle functions
{ θ2(r)}i=1 ... N-1, of the hyperspherical function frame (for simplicity we also as-
sume an occupancy of one electron per  orbital).

Varying the density and the angle functions one can derive the set of Euler
—Lagrange equations as has been demonstrated previously [7, 8]. From the solu-
tion of these equations the optimal density and the set of angle functions can be
determinated. According to Eq. (4), the orbital densities are equal to
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Evidently, in this constuction, orbitals have different densities due to angle func-
tions. The second goal of the present work is to demonstrate that the single-particle
kinetic energy density functional obtained from this transformation interpolates
correctly between known results. Therefore, from this point of view this approach
is of some importance for density functional theory.

In this representation the kinetic energy deity functional takes the form

where Tv., is the familiar von Weizsäcker term

solely determined by the electron density and its gradient. The second contribution
Tθ is equal to

with the function uθ(r) defined as follows

For one level occupied only, the function uθ (r) becomes identically zero, and Eq. (5)
simplifies to Ts = TW. The fact that the kinetic energy density functional could be
expressed as in Eq. (6) has been discussed by many authors in the literature, for
example by herring and coworkers [9, 10]. Tle mean kinetic energy is never less
than the Weizsäcker energy, TW, calculated from the mean particle density and,
Tθ > 0. On the other hand, it is very reasonable to consider that the exact kinetic
energy density functional can be written as a sum of the Weizsäcker term, which
is the local contribution to the kinetic energy plus a correction which involves
nonlocal contributions arising from the -Fermi and Coulomb holes. From this point
of view our approach is fully consistent with the general consideration.

Next, let us consider that N electrons are moving in a one-body effective
potential V(r) which includes the relevant exchange and correlation terms. For a
given potential V(r) the minimum principle of Ε[p(r)] subject to
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leads to the Euler equation

where the Lagrange multiplier μ is the chemical potential. If the electron density is
considered to be slowly varying in the spirit of semiclasical theory, we may neglect
it in the Euler equation derivatives of the electron density

Comparing right hand side of Eq. (12) with the usual semiclasical relation between
density p(r) and potential V(r) (see, for example [1])

one obtains the result for large N

The above relation is fulfilled if the function uθ(r) has the form

It should be also noted that similar analysis in one-dimension gives uθ(x)
c'kp2(x).As we intuitively expect, for largeNthe Thomas-Fermi theory comes

into its own and the Thomas—Fermi term becomes a simple correction to the
Weizsäcker energy.

The nature of the nonlocal contribution has also been analyzed by many authors in
the literature. In the context of a plane-wave approximation, Ludena has demon-
strated that an explicit expression for the nonlocal term leads to the Thomas-Fermi
energy [11], similar to the hyperspherical representation.

Let us illustrate this somewhat formal result by the example of a linear
harmonic oscillator. For only two-hevels occupied the density is

In terms of this density and angle function the first and second orbitals become,
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with the angle function

It should be pointed out that the above phase is solely determined by the density
and its first derivative as the solution of the following differential equation [12] .

The above transformation can be performed for an arbitrary number of levels
recovering the appropriate angle functions. However, for this particular model the
expression for single-particle kinetic energy is known for an arbitrary number of
levels [12, 131,

with

and, as we demonstrated previously, this equation contains as limit both the
Weizsäcker form for N = 1 and the Thomas-Fermi limit as N oo [12]. Of
course, the above relations hold only for a particular harmonic oscillator model
which is known to be local [14]. For the general atomic or molecular case, the
similar relations are more complicated and nonlocal.

The main object of this paper was to demonstrate that the hyperspheri-
cal approach gives a very reasonable representation of the kinetic energy density
functional. This functional behaves correctly between the known limiting results.
However, in order to describe any atomic or molecular system in terms of the elec-
tron density we have to solve a set of nonlinear differential equations presumably
in a self-consistent scheme [7, 8]. This formulation is very parallel to the standard
Schroedinger formulation, where in order to obtain an optimal set of one-body
orbitals we have to solve á set of Hartree-Fock equations. This similarity is even
more explicit in the example of the harmonic oscillator model, which can be alter-
natively formulated in terms of the density.

Finally, it would be worthwhile to obtain a practical scheme for the determi- ,
nation of the set of angle functions in the hyperspherical representation discussed
in tle present paper. We believe that the present approach can find several ap-
plications in density functional theory, for example the properties of the Pauli
potential [7, 8, 15]. 	.
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