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The effective relaxation time Τ2. is calculated in the weak collision case for
a system of identical nuclear spins perturbed by periodic sequences of r.f.
pulses and dipole-dipole and quadrupole interactions.
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1. Introduction

The aim of this paper is to calculate effective relaxation time T2e for identical
nuclear spins in the presence of r.f. multipulse sequences and molecular motions.
The effective relaxation times have been considered in a series of papers for periodic
sequences of 90° r.f. pulses [1-12] and r.f. pulses with arbitrary nutation angle [13,
14]. In most of the previous papers only secular part of dipole-dipole interaction
has been taken into account. In the present paper we consider the relaxation
due to fluctuating secular and nonsecular parts of the dipolar and quadrupolar
interactions and multipulse sequences with arbitrary phase and nutation angles.

2. General theory

Nuclear spin relaxation and spin dynamics can be described on the basis of the
density operator σ which obeys Liouville-von Neumann equation of motion [15]:

where 7-C is spin Hamiltonian, in angular frequency units. The 1-[ is a sum of
strong Zeeman interaction of spins with external magnetic field B0, interaction
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with radiofrequenccy (r.f.) field Β1, static part of spin interactions and time
dependent perturbation Ή(t), due to random fluctuating part of spin interactions.

Using transformation into interaction frame (rotating toggling frame — RTF)
[6] and two following iteraction in (1), as well as Fano expansion of the density
operator by orthogonal tensor operators 7j [16] (spherical or cartesian tensors)
one can get an equation for expectation values (Τ;) in the weak collision approx-
imation:

where Ajk and Rjk are spin dynamics [16] and relaxation matrixes respectively
and Ή(t) is the perturbation Hamiltonian in RTF.

The diagonal elements, Rjj = Rj, of the relaxation matrix are the relaxation
rates for the observables (Ta) whereas Rjk for j ≠ k are the cross relaxation rates
between (Τ j) and (Tk). Taking Τj = where 1/c = Tr(Ix)2=Τr(Iz)2,
the effective relaxation times Τ2e and T1e ean be calculated, where

From Eq. 4 one can easily obtain the general expression for i/T1e by inserting
operator Iz instead of Ιx.

In this paper we shall calculate Τ2e due to the fluctuating part of spin interac-
tions. One should note that the static part of spin interactions can also contribute
to the relaxation rate. This effect will be discussed elsewhere.

Consider a system of identical nuclear spins Ii = I in a strong magnetic field
B0 along z axis, subject to a periodic train of very short r.f pulses (delta pulses):

at resonance frequency ω0 = γΒ0, where θk and ϕk are nutation and phase angles
of the pulses with repetition period of the cycle Tc = ΣNk=0 	 τk

After following transformations into rotating frame (RF) and RTF [6] the
time dependent spin Hamiltonian Ή(t) for dipolar and quadrupole interaction of
axial symmetry may be presented in the form:
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where T2m (Ii , Ij ) , Υ2m (θ, ϕ) and C2m (θ, ϕ) are spherical tensors (unnormalized),
spherical functions and Racah functions of second rank.

Dmm ' (Ω(t)) ≡D(2)mm'(Ω(t)) is Wigner rotation matrix for second rank tensor,
Ω(t) ≡ (α(t), β(t), γ(t)) are Euler angles of resultant rotations of RTF during
multipulse sequence and bij, bii are dipolar and quadrupole coupling constants
respectively.

We assume that orientation of RTF and spins relative to RF is fixed between
following pulses, i.e. Dmm' (Ω(t)) is picewise constant function of time:

where Pk(t) are square pulses of the width 'k, which can be expanded in Fourier
series: 	.

where ω 	 2π/Τc is cycle frequency. From Eq. 11 and Eq. 12 one gets:

where

Using commutation relations for spherical tensors [17, 18], orthogonality of spher-
ical tensors and functions and assuming exponential correlation function with cor-
relation time τc one gets from Eqs. 4-14 the following expressions which are valid
for sufficiently small values of average r.f. field, i.e. when γ1I Β21τ2c « 1:
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where Jmij (ω) = Jm (ω) is the reduced spectral density of the correlation function
which is assumed to be independent of i, j and ΔΜ2 is change of the second
moment of the resonance line in the case of motional narrowing (compared with
Μ2 for rigid lattice). In further considerations we shall limit our discussion only to
Τ2e . For simplicity we can drop the factor Km , which is unity in isotropic systems,
or we can introduce it into definition of Jm (ω). Using orthogonality of the spherical
functions and square pulse functions Pk(t) and assuming ωI » ωc one can present
expresion for Τ2e in a useful form:

where dmm' (β) = Dmm' (0, β, 0) and Ωk = (αk , βk, γk).
In the case of r.f. pulses with fixed phase ϕk = ϕ one gets Ωk = (ϕ -

π/2, βk, π/2 - ϕ).
Using Eqs. (22) and (23) we shall consider several sequences which are com-

monly used in NMR. In the case of Ostroff-Waugh-Mansield-Ware sequences ex-
tended for arbitrary angles, Θ = 2πΡ/N, by Rhim [13] and Vega and Vaughan [14],

τk = 2τ,Τc = 2Nτ with y,xcorre-
sponding to the angles φ0 = π/2, ϕk = 0 and Ω 0 = (0, 0, 0), Ωk = (-π/2, kθ, π/2)
for k ψ 0 one gets:

where Τ2 is spin—spin relaxation time and u = τ/τc.
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For a second extended sequence OWMW, (π/2)  — [—τ— θx - 2τ- θ-x - τin ,
with arbitrary θ, Ω0 = (0, 0, 0) and Ω1 = (—π/2, θ, π/2), τk = 2τ and T = 4τ one
gets:

Taking subtraction of Eqs. (25) and (26) one gets the diference of the relaxation
rates for these two sequences:

This difference has maximum value for cos θmax = (1+ tanh u) -1 / 2 . In the case of
fast motion, when u = τ/τc »1 one gets maximum value ofδforθmax= π/ 4 and

4π whereas for slow motion, when u « 1, one gets maximum δ for θmax = u 1 / 2

and π - u1 / 2 . In the case of θ = π/2 one gets δ = 0, i.e. relaxation time T2e for
both sequences is the same as predicted earlier [7] for m = 0 whereas for CPMG
sequence [19-20] one gets Tee = Τ2.
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3. Spin—spin relaxation in the presence of continuous distribution of
the correlation times

Consider a system consisted of some spin subsystems, each of them character-
ized by relative spin population pk and effective relaxation time (Τ2 e )k. According
to the Zimmerman theory [21], in the case of fast exchange or fast spin diffusion
one can write:

In the presence of a continuous distribution of correlation times, described by a
function g(τc), Eq. (26) may be written in the form:

It has been shown in earlier papers [22, 23] that results of spin-lattice relaX-
ation time measurements in some biological systems can be interpreted assuming,
so called, Log—Gauss (logarithmic-Gaussian) distribution of the correlation times
f (s) [24]:

where τ0 is the mean correlation time and α is a parameter determining the width
of the distribution.

From Eqs. (27) and (28) one can get an expression for average spin—spin ef-
fective relaxation time Τ2e, in the presence of Log-Gauss distribution of correlation
times and fast spin exchange:

Effective spin-spin relaxation times Τ2 e, as a function of τ0/τ, have been numer-
ically calculated from (29) for different values of parameter α. Results of these
calculations are presented in Fig. 1.

Assuming Arrhenius temperature dependence of τ0 one can see from this
figure that temperature dependence of Τ2e flattens with increasing width of the
distribution of correllation times.

In the case of slow exchange between spin subsystems one can write the
relaxation function in the form:

In the presence of continuous Log—Gauss distribution of correlation times one can
write:
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The results of the numerical calculations of the relaxation function R(t) in the case
of slow spin exchange for different values of τ0/τ and α are presented in Fig. 2.
As can be expected, for small width of the distribution the relaxation function
is well described by one exponential decay. With increasing distribution width
nonexponentiality of the relaxation function becomes more and more evident.
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