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THE SYMMETRY AND OPTICAL PHENOMENA
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The explicit forms of the broken (by a electric field E, magnetic field H
and spatial dispersion of wave vector k) point symmetry groups of a crys-
tal are given. For these groups the dielectric permeability tensors: εij (ω, E),
éij (ω, H) and εi j (ω, k) — the particular cases of eij (ω, E, H, k) — are writ-
ten out (the susceptibility tensors x,, (ω, E), χij (ω, H) and χij (ω, k) take
the same forms). In order to illustrate the results obtained the electrooptical
phenomena (connected with the tensors (ω, E)) are discussed.

PACS numbers: 75.30.Cr, 78.20.Βh, 78.20.Jq

1. Introduction

The electrooptical phenomena obey the same group-theoretical rules as the
previously discussed magnetooptic ones [1] and as the phenomena related to the
spatial dispersion of the wave vector k [2, 3].

The aim of this paper is to present the complete results allowing us to describe
the electrooptic phenomena (the optical properties of medium in the external
electric field E), the magnetooptic ones (the optical properties of medium in the
external magnetic field H) as well as the optical properties of the medium in which
there is a spontaneous dispersion of wave vector k. In Table I the broken symmetry
groups K(F) for fields F = E, H, k are given for all point groups Κ and all
orientations of the fields F with respect to the symmetry elements of the crystals.
In Table II the explicit forms of the groups K(F) = J(F) + bJ(F) are given, where
J(F) denotes the subgroup consisting of the elements preserving the direction of the
field F (J(F): F→F), while bJ(F) is a set of elements of the group Κ which reverse
the direction of the field F (bJ(F) : F-> -F). For each group K(F) — the number
is given, which shows where, in Table III one can read off the explicit form of the
real part of tensor ^ij  or, more precisely, its even part 7j (ε j (ω, F) = εeij (ω, -F))
and odd part εoij (εoij(ω, F) = -εoij (ω, -F)). The imaginary parts ε' and 	 have
exactly the same forms as 	 and ε , respectively; the Kramers-Kronig relations
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say that if e.g. εe12≠0then alsoε'e12≠0but it does not imply thatεe12 = ε'2.In
Table IIΙ we give also the form of the real part of the tensor έij for all 122 point
groups (cp. Table I). They are written out in the crystalographic frame of axes. If
we need to determine the difference εij (ω, F) - εi j , we must transform the latter
tensor to the local frame of axes in which the tensor έij (ω , F) is written out.

The susceptibility tensori satisfies exactly the same Onsager relation [4]:

as the dielectric parmeability tensor:

Therefore, the tensori j has exactly the same form as έij . The identity of the
forms of tensors Xij and έij  does not mean their equivalence which would imply
that for each two arbitrarily chosen components the conditions εi j /εkl = Xij/Xkl
had to be fulfilled. So, as far as the forms are concerned, the Tables I-III can be
also referred to the Xij (ω , E, H, k) tensors. The analogies in the behaviour of the
tensors εij and Xij in the most essential aspects of our theory (i.e. in the vicinity
of the Néel, Curie temperatures and the point where the group Κ is broken to
Κ(F) group) are depicted in elegant form on Figs. 2 and 3 of the paper [5]. On the
figures the angle of rotation of polarization plane of the light and the magnetic
susceptibility are plotted as functions of the magnetic field.

We can obtain the information about the transport properties of the crystal
also by measuring the X ij tensor [6]. In the paper [6] the tensors xij are measured
on the left- and right-hand side of Néel points. Α different behaviour has been
obtained. It is obvious that for two different point groups Κ we obtain the different
Κ(H) groups (see: Table I and Table II) and consequently the different tensors ij
(and similar 4) are measured.

The investigations of the phase transitions by parallel optical and magnetical
methods have been announced for some time [7, 8].There is a great deal of hope
that the Tables I-III will appear useful in such experiments.

Each medium is less or more dispersive. Therefore, while discussing for ex-
ample the electrooptical effects it won,t do any harm to treat the gyration tensor,
4j(" , k), as the correction to the ii(" E) tensor [9]. Table II allows to discuss
these and similar effects as magnetoelectric optical effects [5, 7, 8, 10], the mag-
netooptical effects in dispersive medium, and so on. The theoretical analyses [9,
11] and the interpretations of experimental data given by experimenters [5, 12, 13]
have been based up to the present on the tables given in the monographs [14] (see:
Refs. [9, 11-13]) and [15] (see: Ref. [5]).

In this paper we will discuss only the electrooptical effects. The discussion
will be short as we have some analogies with previously discussed magnetooptical
effects [1] and the effects following from the dispersion of wave vector k in medium
[2, 3]. Since the time the papers [1, 2] have appeared, there have been no new
theoretical and experimental ideas, so there is no need to supplement the previous
discussions [1, 2].
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2. The electrooptical effects

The tensors εij (ω, E) (i.e. εeij(ω, E)andεoij(ω, Ε) -the particular cases of the
tensor (2) - are obtained in exactly the same way as the tensor εij (ω, II) [1] and

εij(ω,k)[2]. When adopting the previously described group-theoretical procedure
we must remember that the field E is invariant under the action of the following
groups J(E)= 1, 2, m, mm2, 3, 3m, 4, 4mm, 6, 6mm,11', 21', ml', mm21', 31', 3m1',
41', 4mm1', 61', 6mm1', 2', m', m'm2', m'm'2, 3m', 4', 4'mm', 4m'm', 6', 6'mm',
6m'm'. The results obtained in this way are not in contradiction to experimental
data [5-8, 10, 12, 13, 16, 17].

The nonreciprocal rotation of the plane of light polarization discussed in
the papers [5, 7, 8, 10], which is induced by electric field in Cr2O3 crystal (the
symmetry group K= 3 m') for geometry k || Ε || z (then K(E)= 3 m') can be
observed not only for K(E)= 3'm' but also when K(E) = 3 32, 3 m', 4/m,, 422,
4/m,m,m,, 6 ', 6/m', 622,ßm'2, 6/m,m,m,; the reciprocal rotation can be observed
for K(E)= 3, 32', 3m', 4/m, 42'2', 4/mm'm', 6, 6/m, 62'2', 62'm', 6/mm'm'. In
the former case the angle of rotation of polarization plane satysfies the condition:

while in the latter case - the condition

The remark: for nonreciprocal rotation the relation (4) but not (3) should be valid,
while for reciprocal one - vice versa, i.e. the relation (3) but not (4) is valid; note
that if the left-hand side of the relations (3) and (4) corresponds to the geometry
±k || Ε||zthen the right-hand side of this relations corresponds to the geometry
±k|| -Ε|| z. In turn, the experimental definitions are based on the geometries
±k|| Ε|| zandk|| Ε||z,respectively. We see that the common elements of
theoretical sugestison and experimental definitions are the mutual relation between
the vector k and Ε.

It follows from our results that the nonreciprocal rotation in Y3Fe5O12 for
the geometry k I| Ε II Η II z, observed in experiments [5, 7, 8], is generated
by the magnetic field H and not by the electric one Ε. Remark: it follows from
theoretical definition of nonreciprocal and reciprocal rotations of the plane of light
polarization that the external magnetic field H can only generate the reciprocal
rotation, while the electric field Ε and the spatial dispersion of wave vector k can
generate both rotations, i.e. the nonreciprocal and reciprocal ones (cp. Table  II

and III).
For groups K(E) different from the above mentioned ones (e.g. K(E) =

m'm'm, m'mm', mm'm', m'm'm', mm'm, m'mm, and so on) or for k||Ε we are
dealing with more complicated functions for φ(Ε) than those given by formulae
(3) and (4); however, also for them the first term of power series can sometimes
take the form (3) or (4). The form of the above function depends not only on
the symmetry but also on the relations between the components of the tensor
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έij(ω, E). For the same group K(E) and two media we can obtain two different
functions φ(Ε). It is not useful to discuss the all possible relations between the
elements of εij (ω, E). It is more easy to interpretate the experimental data than to
predict them. The group-theoretical method does not allow us to estimate which
of the two functions allowed by the symmetry is more likely to be a proper one.

If J(Ε) =3m, 4mm, 6mm, 31', 3m1', 41', 4mm1', 61', 6mm1', 4', 6',
4'mm', 6'mm' or K(E) = 3m , 4/mmm, 6/mmm, 62m, 31' , 321', 3m1',
4/m1', 4221', 4/mmm1', 61' , 6/m1', 6221', 62m1', 6/mmm1', 3 m, 4'/m, 4'/m',
4'22', 4/m'mm, 4'/mmm', 4'/m'm'm, 6'/m', 6'/m, 6'22', 6m2', 6/m'mm,
6'/mmm', 6'/m'm'm then the z-axis is, similarly as in the case Ε = 0, the optical
axis; it means that birefringence Δn = n 1 - n2 equals zero:

and the first term of power series can take the form

or

For the groups K(E) = 2/m,  2'x/m'x, 2x/mx1', 2y /my , 2'y/m'y, 2y /my 1', 2z /mz ,

2'z/m'z, 2z/mz1',mmm, mmm', mmml' the function (6), and consequently (7)
or (8) will also appear for any geometry of vector k with respect to the field Ε.
The quadratic [16, 17] and linear [12, 13] dependences of the field E belong to the
most frequently measured.

The first term of power series for K(E) =1,4',  41', 12m, 42m1', 42'm' , 4 2m',
4°m2' takes the form

for k1 E|| z, but in the case K(Ε) = 4 °m2' - also for k Ε z.
In the case of other groups K(E) or for arbitrary geometry of the vector

k with respect to the field Ε the form of the function Δn(Ε) is determined not
only by symmetry but also by the material constants. These functions are more
complicated than (7), (8) or (9). For such a case it is more easy to consider the
concrete experimental data than to discuss it in general form.
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