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We investigate the dynamics of particle creation in a time-dependent, spatially uniform Sauter pulsed
electric field by analyzing the evolution of the one-particle momentum distribution function. This quan-
tity provides key insights into the non-perturbative process of electron—positron pair production in
strong-field quantum electrodynamics. The longitudinal momentum spectrum of the created particles
exhibits rich features, including spectral splitting and oscillatory behavior, particularly around the time
when the electric field approaches zero. These oscillations can be attributed to quantum interference ef-
fects during the dynamical evolution. By examining the temporal evolution of the spectrum, we identify
three distinct characteristic time scales associated with key spectral transitions, which depend on the
transverse momentum p, . We find out approximate expressions for the relevant time scales as functions
of p, the pulse duration 7, and the field strength Ejy, offering a clearer understanding of the interplay
between field parameters and the dynamics of pair production.
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1. Introduction

The discovery of the positron following Dirac’s
formulation of the relativistic wave equation [1]
marked a foundational milestone in the develop-
ment of quantum field theory. Shortly after its theo-
retical prediction, the positron was experimentally
confirmed [2], firmly establishing the existence of
antimatter. It was soon recognized that quantum
fluctuations of the electron—positron field lead to
nonlinear quantum electrodynamic (QED) phenom-
ena, such as light-by-light scattering in the pres-
ence of classical electromagnetic backgrounds [3].
Among the most striking consequences of this quan-
tum vacuum structure is the prediction that a suf-
ficiently strong electric field can induce the sponta-
neous creation of real electron—positron pairs from
the vacuum [4]. This concept was later formalized
within QED through a non-perturbative analysis of
the one-loop effective action [5, 6], whose imaginary
part encodes the pair production probability and
signals the vacuum instability. For a static, spatially
homogeneous electric field, Schwinger derived the
pair production rate as
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where m and e are the electron mass and charge, re-
spectively. This result reveals the non-perturbative
nature of the process, with an exponential suppres-
sion unless the field strength approaches the so-
called critical value E. = m?/|e| ~ 1.32x10'® V /m.
Although such extreme fields remain inaccessible in
current laboratory experiments, they are believed to
occur in certain astrophysical environments, such
as the vicinity of magnetars or during early cos-
mological epochs [7]. Despite the challenge of di-
rectly probing this regime, experimental progress
has been made in studying strong-field QED ef-
fects. For instance, multiphoton pair production
was observed at Stanford Linear Accelerator Cen-
ter (SLAC) [8], and future laser facilities such
as Extreme Light Infrastructure (ELI) and X-ray
Free Electron Laser (XFEL) [9, 10] are designed
to approach the field strengths required for ob-
serving Schwinger-type pair creation. These ad-
vances have sparked extensive theoretical interest in
vacuum pair production under more realistic field
profiles, particularly time-dependent electric fields
generated by ultrashort laser pulses. Pair creation
mechanisms are typically divided into two broad
regimes [11, 12], i.e., non-perturbative tunneling,
dominant in slowly varying fields (v < 1), and mul-
tiphoton absorption, relevant in rapidly oscillating

fields (v > 1). The Keldysh parameter v = ok
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where w is the field frequency and Ej its ampli-
tude, governs the transition between these two do-
mains. While Schwinger’s original result applies to
an idealized, constant background, realistic exper-
imental conditions involve ultrashort, pulsed, and
spatially localized electric fields [13-16]. When the
pulse duration becomes comparable to the electron
Compton time t. = 1/m =~ 1.3 x 10721 s, the static-
field approximation breaks down. In such scenar-
ios, pair production must be understood as a gen-
uinely time-dependent, non-equilibrium quantum
process.

To describe this, real-time quantum kinetic ap-
proaches have been developed. One widely used
framework is the quantum Vlasov equation [16-19],
which enables calculation of the time evolution
of the single-particle distribution function f(p,t).
These approaches naturally incorporate initial vac-
uum conditions, non-Markovian dynamics, and
memory effects [20]. Moreover, they support a
quasiparticle interpretation of vacuum excitations,
wherein each mode of the distribution evolves
through a characteristic three-stage pattern [20-23],
ie., (i) a quasiparticle electron—positron plasma
(QEPP) forming under the action of the external
field, (ii) a transient regime characterized by strong
oscillatory behavior, and (iii) a residual electron—
positron plasma (REPP) in which the momentum
distribution stabilizes.

Notably, this dynamical structure resembles the
early-time evolution of the quark—gluon plasma
(QGP) created in ultra-relativistic heavy-ion colli-
sions. In quantum chromodynamics (QCD), strong
longitudinal color-electric fields — analogous to ex-
ternal fields in QED — can lead to quark—antiquark
pair production via a non-Abelian generalization of
the Schwinger mechanism. The initial QCD excita-
tions mirror the QEPP phase, while the intermedi-
ate glasma stage [24-26] displays collective field os-
cillations and plasma instabilities analogous to the
QED transient regime. Ultimately, QGP relaxes to-
ward a quasi-equilibrium state, comparable to the
REPP. This analogy underscores the wider appli-
cability of kinetic theory methods and the quasi-
particle picture in the study of out-of-equilibrium
quantum fields.

While much of the literature has focused on the
longitudinal momentum dynamics, i.e., the evolu-
tion of modes aligned with the direction of the elec-
tric field, the role of transverse momentum has been
relatively less explored. This is despite its impor-
tance for computing physically relevant observables
such as total pair number density, electric current,
and entropy [23, 27-31]. Previous studies have in-
vestigated the time evolution of individual longitu-
dinal momentum modes [16, 25, 32] and the com-
plete longitudinal momentum spectrum [18, 33, 34].
However, the time-dependent behavior of transverse
momentum modes and their effect on the underlying
dynamics of pair formation have received compara-
tively little attention.
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A recent study [35] explored the real-time evo-
lution of the longitudinal momentum spectrum in
a pulsed Sauter-type electric field and identified
nontrivial dynamical substructures, leading to in-
sights into characteristic time scales associated with
particle formation [31, 36]. However, this analy-
sis neglected the transverse degrees of freedom. To
date, no systematic framework exists that classi-
fies the evolution of the spectrum while incorpo-
rating transverse momentum dependence, or ex-
plains how this dependence affects the timing and
features of the various dynamical stages. In this
work, we aim to address this gap. We investigate
the dynamics of electron—positron pair production
in a time-dependent, spatially uniform Sauter-type
pulsed electric field of the form E(t) = Ey sech? (L),
where Ej is the peak field strength and 7 is the pulse
duration. This widely studied configuration serves
as a benchmark for understanding temporal effects
in pair creation [16, 20, 21].

We compute the time evolution of the single-
particle distribution function f(p,t) in the quasi-
particle framework. Focusing first on zero transverse
momentum, we analyze the dynamics of the lon-
gitudinal spectrum and observe a transition from
an initial unimodal peak to a bimodal intermedi-
ate structure with pronounced oscillations, which
eventually settles into a smooth, single-peaked pro-
file at later times. These features enable us to iden-
tify three characteristic time scales associated with
quasiparticle formation, coherence oscillations, and
final stabilization. We then explore how these time
scales depend on transverse momentum. Our results
reveal a nontrivial dependence, which we systemat-
ically classify. This leads to a deeper understanding
of the role of transverse degrees of freedom in the
real-time dynamics of vacuum pair production, fill-
ing an important gap in the literature and providing
new insight into the momentum-space structure of
quantum vacuum instability.

This paper is organized as follows. In Sect. 2,
we introduce the theoretical formalism based
on [37, 38]. In Sect. 3, we analyze the results. In
the last section, we provide a brief conclusion.

Throughout the paper, we use natural units and
set i = ¢ = m = |e|] = 1, and express all variables
in terms of the electron mass unit.

2. Theory

2.1. Equations of motion and canonical
quantization

A sufficiently strong electric field can destabilize
the vacuum, leading to the non-perturbative pro-
duction of charged particle-antiparticle pairs. To
describe this phenomenon in the context of QED,
we begin with the Dirac equation in the presence of
a classical electromagnetic background field

(iVHau - eV#A,u —m) ¥(x,t) =0, (2)
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where A" is the external gauge potential. We con-
sider a spatially homogeneous, time-dependent elec-
tric field, represented in the Hamiltonian gauge by
the four-potential

A,=(0, 0, 0, A(1)). (3)

This configuration yields a purely electric field given
by

dA(t)
Elt)=—+= 4
0 =-2, (4)
with no magnetic field component,
B=VxA=0, (5)

ensuring the field is homogeneous in space and
varies only with time.

Such field configurations can be realized experi-
mentally, for instance, by two counter-propagating
laser pulses forming a standing wave. In QED, pair
production is allowed only if at least one of the two
Lorentz invariants,

1 1
—F,,F" = —(E* - B?), (6)
4 2

1 nINA

+Fwl" =E B, (7)

is nonzero [39, 40]. In our case, only the invariant
in (6) contributes, allowing for nontrivial pair pro-
duction.

The first step is the introduction of an ansatz

U(x,t) =
[17°0; + 7 *pr. — ey® A(t) + m] e PTy[E (1) R,
(8)

where k = 1,2,3 and (+) label the positive and neg-
ative frequency components. The spinors R; and Rs

are eigenvectors of 7073, thus
0 1
1 0
R, = , Ro= , 9
1 0 2= (9)
-1 0

normalized such that Rl R, = 2,.

Substituting (8) into the Dirac equation leads to
a second-order differential equation for the time-
dependent mode functions

(97 + ieB() + w?(p,))up(t) = 0
where

W (p.t) =Pl + (p) — eA)” +m?, (11)
Here, p| = psis the momentum along the field di-

rection, and p; = \/p? + p3 is the transverse mo-
mentum.

In the framework of second quantization, the
Dirac field operator is expanded as

d3

U(x,t) = Zr/ (2:5

x [W”(a: t)bpr + 0)

(10)

dr

(@, 1) dp, |,

—pr

(12) @p(t):/ dt’ w(p,t').
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where bpr and dJr are the annihilation and creation
operators for electrons and positrons, respectively.
These obey standard fermionic anti-commutation
relations

{Bpra } {dPT’ 'r’ } = (5([) - p/) 6TT,

To extract physical observables, such as the par-
ticle spectrum, we perform a Bogoliubov transfor-
mation to a quasiparticle basis with time-dependent
operators Bp,(t) and Dp,(t), i.e.,

(13)

BPT (t) = ap(t) Bpr + Bp(t) dAT—prv (14)
Dypr(t) = ap(t) dpr — Bp(t) bl (15)
subject to the normalization condition

lap(®)* + 18p(t)|* = 1. (16)

In this representation, the field operator becomes
. d3p
U(x,t) = —

(2.,1) Z;/Qﬂg

< [940) (@,) Bye(t) + 95 (.0) D, (0], (17)

where the spinors @,(,jf)(:c, t) are given by

P (,t) = ag, (1) U5 (@, 1) + B, (1) Ty, (. 1),
(18)

o) (@) = ap(t) U, (2, 1) — Bp(t) U5l (. t).
(19)

These new spinors retain the same spin structure as
the original basis, i.e.,

+ —
¢1(7T)($7 t) -

[moat —p-y+eAlt)y: + m} elp® (béi) (t) R,
(20)
Here, ¢§,i)(t) denotes the mode function in the
quasiparticle representation, and its evolution en-
codes the pair production dynamics induced by the
time-dependent field.

The function gb;,’\)(t) defines the mode functions
in the quasiparticle representation and is chosen ac-
cording to the ansatz
e$1 Op(t)

\/2w (p,t t)ﬂFP(pnat)}’

where the transverse energy €, (p, ), the longitudi-
nal quasi-momentum P(p|,t) and the quasienergy
w(p,t) are defined, respectively, as

(i)

(21)

er(pr) =y/m*+pi,  Pp),t) =p) —eA),
(22)

and

w(p.t) = [ (p1) + P2(py. ). (23)

The dynamical phase Op(t) is given by

(24)
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The functions ¢§,i)(t) are constructed in such a
way that they coincide with the standard positive
and negative frequency mode functions w;i)(t) in
the limit of a vanishing external electric field.

By combining (12) and (18)—(20), the spinor
mode functions d),(,i)(t) can be expressed in terms
of the quasiparticle basis as

PSP (1) = ap(t)850 (1) — By ()85 (1), (25)
WS () = Bp(t)olH) (1) + e (1)l (1). (26)

The Bogolyubov coefficients ap(t) and Sp(t) are
then given by

ap(t) = if/);_)(t) GJ_(pJ_) (8t—iw(p, t)) w,(f)(t%

(27)
Bp(t) = =i 6p7 (t) eL(p1) (etiw(p,t)) vt (1).
(28)

These expressions show that, once the spinor ¥ (t)
is obtained from the solution of the Dirac equa-
tion (10) for a given background electric field, the
Bogoliubov coefficients — and hence the particle
content of the field — can be determined.

One can define the occupation number of elec-
trons in a given eigenmode (p,r) of the field by
the expectation value of the time-dependent num-
ber operator in the initial vacuum state

fr(pst) <0in|B;r(t)Bpr(t)|0in>~

Similarly, the occupation number of positrons is
given by

Fr(=p,t) = (O] DL 1 () Do (1) 01n). (30)
Charge conjugation symmetry ensures the equality
fr(pv t) = fr(_pv t)' (31)

In the quasiparticle picture, the functions f.(p,t)
and f.(—p,t) represent the time-dependent one-
particle distribution functions for electrons and
positrons, respectively [18, 41].

In the absence of spin-dependent interactions, the
spin index ‘r’ can be omitted, and the total distri-
bution function simplifies to

fp,t) = 2(Bp(t)?, (32)

where the factor of 2 accounts for the two-fold spin
degeneracy.

(29)

+
—pr

2.2. Electric field model

In our study of pair production, we consider
a spatially homogeneous, time-dependent electric
field modeled by the Sauter-type pulse [16, 42]

t
E(t) = Eysech? (> ,
-

where Ej is the peak field strength and 7 char-
acterizes the pulse duration. This field reaches its
maximum at ¢t = 0, decreases to half of its peak

(33)

152

value near ¢t ~ +0.817, and falls below 10% of its
peak at ¢t =~ +27. It asymptotically vanishes as
[t| > 7, while the limit 7 — oo corresponds to a
constant electric field. The corresponding vector po-
tential A(t) is of the form

t>'

T

A(t) = (34)

—FEy7 tanh <

Though current laser technology has not yet
reached the Compton-scale intensities necessary for
direct experimental observation of vacuum pair pro-
duction, emerging high-intensity X-ray laser sources
hold promise for realizing such field strengths in the
near future [10].

In the presence of the external field, the
mode functions ,(t) describing the quantum
states of charged particles satisfy the equation of
motion

[8,? + ieEysech® (t) + w?(p, t)} Pp(t) =0,
g (35)
where w(p,t) is the instantaneous frequency de-
pending on the momentum p = (p.,p|) and the
mass m.
Two linearly independent solutions can be ex-
pressed analytically in terms of Gauss hypergeomet-
ric functions [43]

—iTw iTwy/2
WS (y) = N (p) y= 179072 (1) 7/

X 2F1 (a, bv (6N y)a (36)

— _ iTw —iTwy /2
W5 (y) = NO(p) yimeo/2 (1—y) 7

X 2F1(1—a,1—b,2—c; y), (37)
where the rescaled time variable is

1 t
y=5 (1 + tanh 7_) , (38)
and the asymptotic frequencies are defined by
2

OJS :m2+pi+ (pH —eEoT) s
w% =m? eri + (pH +ekEy 7’)2 . (39)

The hypergeometric function parameters depend
on the field and momenta as

. iTwy 17wy
a=—ieBy1? — ,
2 2
. iTwy  iTwi
b=1+ieEy1? — > 5

c=1-—1iTwp. (40)

The key observable characterizing pair produc-
tion is the one-particle distribution function f(p,t),
which represents the number density of created
pairs with momentum p at time ¢. This quan-
tity can be calculated using the Bogoliubov co-
efficient, as seen in (32), where the Bogoliubov
coefficient Bp(t) is defined in terms of the mode
functions and their time derivatives, as given
in (28).
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In terms of the rescaled time variable y and the mode function z/J,(DJr) (y), the explicit form of the Bogoliubov
coefficient reads
2

€1 (pL) 2 d
B0 = L (2 va-n g+ iwow) o500 (a1)

i 2w(p,t) (wp,t) = Plpy,t)) |\7 dy P
Substituting the hypergeometric solutions, the distribution function becomes

wip,t) + P(p,t) |2 ab . . ’

t) = —y(l—y)— 1) — (1— — , 42
fPt) = g o Ayl |7 VA7 i+ i@ 1) =~ (=)o ywi) fo (42)
where
f1:2F1(1+a,1+b71—|—C;y), f2:2F1(a7b7C;y)‘ (43)

[

This exact analytic expression for the time- particle stage [21, 44]. This is even more pronounced
dependent momentum distribution function f(p,t) in Fig. 1f, at ¢ = 37, where a second peak arises near
encapsulates the full dynamics of pair creation in- p| & —2, and the central peak around p; = 0 be-
duced by the Sauter pulse. comes sharp and decorated with dense fringes. The

structure seen at ¢t = 3.37 (Fig. 1g) confirms the
bimodal nature of the distribution and the pres-

3. Result ence of strong quantum interference. This peak sep-
aration suggests two distinct particle populations,
3.1. Momentum spectra namely those created early and accelerated by the

field, and those created later with less acceleration.

At later times, t = 47 and ¢t = 57 (Fig. 1h and i,

We numerically investigate the time-resolved  respectively), the interference fringes fade and the
dynamics of the longitudinal momentum spectra spectrum stabilizes into a smooth, narrow peak at
(LMS) f(p),pi,t) of produced electron-positron  p ~ 0. This freeze-in reflects the final distribution

pairs in the presence of a time-dependent Sauter- of on-shell particles — at this time, particles become
type electric field. The transverse momentum p, is real ones.
treated as a fixed parameter. Overall, Fig. 1 captures the rich quantum dy-

Figure 1 presents a detailed time evolution of the namics of vacuum pair production, from virtual
longitudinal momentum spectrum f(p,pL = 0,t) fluctuations to real particle formation. The tran-
under the influence of a Sauter-type electric field sition from smooth to oscillatory and back to

with parameters Ey = 0.2E, and 7 = 12 m™%. smooth distributions is a hallmark of the co-
The snapshots span from early times (¢ = —7/2) herent time evolution in non-perturbative QED
to late times (¢t = 57), illustrating the full dy-  processes.
namical history of pair creation from the vacuum. To deepen our understanding of vacuum pair pro-
In the early-time frames, i.e., (a) ¢t = —7/2, (b)  duction, we investigate the influence of the trans-
t = 0, and (c) t = 7/2, the spectrum exhibits  verse momentum p, on the time evolution of the
a smooth unimodal profile with a peak shifting  longitudinal momentum spectrum f(p),p1,t) in
from positive to negative p). This drift is con- the presence of a time-dependent electric field,
sistent with the evolution of the vector poten-  while much of the existing literature has primar-
tial A(t), through the relation p; = —eA(t). The  ily addressed the asymptotic momentum distribu-
distributions remain smooth and bell-shaped, in- tion f(py,pL,t — oo) for various field configu-
dicative of the quasiparticle stage [21], where par- rations [22, 45-49]. In particular, we analyze how
ticles are off-shell and the field is still ramping  transverse momentum modifies the characteristic
up. quantum interference structure, reshapes the spec-
At ¢ = 7 (Fig. 1d), the field strength has started  tral profiles, and induces delays in the dynami-
to decay, and the peak moves further into nega- cal onset of pair creation. Specifically, our study

tive p|. A sharp falloff appears on the right tail, considers a Sauter-type electric field with strength
and the overall amplitude begins to decrease. The Ey = 0.2 E, and temporal width 7 = 10 m~!. We
spectrum is still single-peaked but begins to exhibit fix the transverse momentum to representative val-

subtle deviations from Gaussianity. ues p; = 0.3, 0.6, 0.9 and investigate the temporal
By t = 237 (Fig. le), clear interference os-  evolution of the LMS.

cillations emerge on the right flank of the spec- Figure 2 displays the LMS at various time snap-

trum. These oscillations result from the coherent su- shots for these transverse momentum values, re-

perposition of particle production amplitudes from vealing rich time-dependent behavior. Crucially,

different times. Their appearance marks the on- the evolution is characterized by three distinct

set of the stage that corresponds to the parti- stages: an initial smooth phase with quasiparti-

cle reaching the on-shell condition of the residual cles, a quantum interference regime with oscillatory
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structures, and a final freeze-in phase dominated
by on-shell pair formation. To describe these tran-
sitions, we introduce three critical time scales:

e t., — time of central peak formation, mark-
ing the emergence of the central peak near
p| ~ 0, indicating the onset of on-shell parti-
cle creation.

tsep — peak separation time, where two dis-
tinct peaks become resolved in the LMS. One
peak is associated with earlier creation (typi-
cally at p; < 0) and the other represents new
pairs centered around zero momentum.

tais — time at which quantum interfer-
ence fringes disappear and the LMS becomes
smooth and unimodal, signaling the comple-
tion of the pair creation process.

For moderate transverse momentum p; = 0.3 m,
the LMS at ¢t = 25 m~! (Fig. 2a) is unimodal
and broad, indicating the QEPP regime. The cen-
tral peak forms at t., ~ 32 m~!, as shown
in Fig. 2b, which also marks the emergence of
high-frequency oscillations. The spectrum displays
a pronounced bimodal structure, revealing the pres-
ence of quantum interference between different cre-
ation channels. These fringes gradually fade, and
by tais ~ 57 m~! (Fig. 2c), the spectrum becomes
sharply peaked and smooth. This indicates that
coherence between different tunneling channels is
lost, and the LMS reflects the final state of on-shell
particles.

At higher transverse momentum p; = 0.6 m, the
time evolution follows the same qualitative stages,
but the key time scales are significantly delayed.
In Fig. 2d, at t = 34 m™!, early signs of a secondary
central peak and oscillations are observed. These
features mature in Fig. 2e at tsep ~ 40 m™!, where
a central peak dominates over the now-receding
early-time peak at negative momentum. Oscilla-
tions are strong and symmetric about p| = 0. Fi-
nally, in Fig. 2f, by t = 67 m~!, the LMS has fully
transitioned to a single, smooth peak, identified at
tais = 67 m~L.

For the largest value studied, p; = 0.9 m, the
effective mass is significantly higher, resulting in a
substantial delay in the emergence of interference
features. At t = 45 m~! (Fig. 2g), the spectrum
is still broad and asymmetric, with faint oscilla-
tions just beginning to form. The full development
of the central peak and oscillatory fringes occurs
at teep ~ 54 m~! (Fig. 2h). This bimodal struc-
ture again shows the superposition of early and
late production events. The final spectrum becomes
smooth and featureless by tgs ~ 77 m~! (Fig. 2i),
completing the transition into the residual particle
regime.

The key finding across all three momentum
values is that the critical time scales tcp, fsep,
tais are systematically delayed as transverse mo-
mentum increases. This is because the total en-
ergy cost for pair creation grows with p, via the
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TABLE I

Effect of transverse momentum on different time
scales. The time scale tc, corresponds to the appear-
ance of a central peak, tsep is when two peaks become
distinctly separated, and tqis indicates the disappear-
ance of the oscillations in the LMS. All time scales
are in units of [m™'].

pilm] | tep [m7Y] | tsep [mTY] | tais [m
0.00 22 30 50
0.30 25 32 57
0.60 34 40 67
0.90 45 54 77

relation e(p;) = /m? + p?, thereby requiring a
longer duration under the electric field for the pairs
to reach their on-shell condition. The central peak
emerges later, the interference fringes shift to later
times, and the final freeze-out is similarly delayed.

Moreover, the strength and visibility of the inter-
ference oscillations diminish slightly with increasing
p1, suggesting that transverse momentum reduces
coherence between different tunneling channels.
This can be physically interpreted as transverse
motion suppressing the overlap between interfering
wave packets in momentum space [35].

The time scales extracted from the figure analy-
sis are summarized in Table I, illustrating their in-
creasing trend with respect to p; .

Table I quantitatively captures the delayed dy-
namical response of the system with increasing p |,
emphasizing the role of transverse degrees of free-
dom in modulating both the rate and coherence of
pair production processes.

3.2. Dependence of time scales on field parameters
and transverse momentum

To complement the qualitative interpretation of
the longitudinal momentum spectrum, we investi-
gate how the characteristic time scales of pair pro-
duction — namely, the central peak formation t,,
peak separation ¢sep, and disappearance of oscil-
lations tq;s — depend quantitatively on external
field parameters and the transverse momentum p .
These time markers capture the dynamical phases
of the pair creation process, from the emergence
of on-shell pairs to the decoherence of interference
structures.

We numerically extracted the time scales from
simulations across a range of Sauter pulse parame-
ters, varying the field strength Ej, pulse duration 7,
and fixing transverse momentum values p; € [0, 1].
By fitting the results to a generalized power-law
form,

ti= oy T“"’Egipj_i, (¢ € {cp, sep, dis}), (44)
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we find excellent agreement across the parameter
space. The corresponding fit coefficients o, a;, b;, ¢;
are listed in the data table provided in the supple-
mentary paper [50]. The resulting fit coeflicients are

_51 g _5 2
tep = 0.4606 1. 77 By i p?,

7

% 8 7% 13
79 By *°pi®,

tsep ~ 0.7808t. '™

L ~ 2.9291, 5 7% B 6 p
dis ~ 4. c T 0o PI- (45)

These expressions quantitatively encode how each
stage of the momentum-resolved quantum dynamics
scales with the physical inputs. All three timescales
increase with 7 and p; but decrease with increas-
ing Ey, consistent with the picture that stronger
fields accelerate pair creation while transverse mo-
tion adds inertia, delaying transitions. Notably, the
largest sensitivity to field strength occurs in ¢, re-
flecting how quickly pairs can emerge from the vac-
uum in the presence of intense electric fields. By
contrast, tqis is less sensitive to p, , suggesting that
once interference structures form, their evolution to-
ward asymptotic states becomes less dependent on
transverse dynamics.

This hierarchy implies that the onset of coher-
ence (i.e., interference fringes) is more heavily sup-
pressed for large p, , but once present, the duration
and decay of these structures are altered less dras-
tically. Since transverse momentum effectively in-
creases the energy gap, the pair production channel
opens more slowly, delaying t., and consequently
shifting all downstream processes.

These scaling relations provide predictive tools
for controlling the dynamical window in which
quantum interference is prominent. In particular,
short pulses and strong fields compress the relevant
timescales, enabling faster buildup and freeze-out
of the LMS. Conversely, larger p, values extend
the timescales, potentially separating the dynamical
phases more distinctly. This could assist in experi-
mental resolution or enhance numerical diagnostics
of intermediate quantum regimes.

Our results suggest that the observed interference
structures in the momentum spectrum are sensi-
tive probes of both temporal and momentum-space
dynamics. The functional forms derived here may
serve as benchmarks for strong-field QED model-
ing, and for calibrating analytic approximations or
semiclassical interpretations of quantum tunneling
in intense backgrounds.

4. Conclusions

We have presented a detailed dynamical study
of electron—positron pair creation in a Sauter-type
electric field, emphasizing the role of transverse mo-
mentum, p, . By analyzing the longitudinal momen-
tum spectra at various time slices and transverse
momenta, we demonstrate the emergence of three
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dynamical stages: the initial smooth single peak dis-
tribution, an intermediate interference-rich regime,
and a final freeze-out phase. Our results show that
increasing p, leads to suppression of particle cre-
ation, delays in the onset of key features in the spec-
tra, and modifies the width and height of the final
distribution. We provide analytical expressions for
the relevant time scales in terms of p, , the pulse du-
ration 7, and the field strength Ejy. These findings
are relevant for understanding real-time dynamics
in strong-field QED and can serve as a benchmark
for quantum kinetic approaches to particle produc-
tion.
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