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We investigate the dynamics of particle creation in a time-dependent, spatially uniform Sauter pulsed
electric �eld by analyzing the evolution of the one-particle momentum distribution function. This quan-
tity provides key insights into the non-perturbative process of electron�positron pair production in
strong-�eld quantum electrodynamics. The longitudinal momentum spectrum of the created particles
exhibits rich features, including spectral splitting and oscillatory behavior, particularly around the time
when the electric �eld approaches zero. These oscillations can be attributed to quantum interference ef-
fects during the dynamical evolution. By examining the temporal evolution of the spectrum, we identify
three distinct characteristic time scales associated with key spectral transitions, which depend on the
transverse momentum p⊥. We �nd out approximate expressions for the relevant time scales as functions
of p⊥, the pulse duration τ , and the �eld strength E0, o�ering a clearer understanding of the interplay
between �eld parameters and the dynamics of pair production.

topics: particle production, non-perturbative �eld theory, dynamical scaling, strong-�eld quantum elec-
trodynamics

1. Introduction

The discovery of the positron following Dirac's
formulation of the relativistic wave equation [1]
marked a foundational milestone in the develop-
ment of quantum �eld theory. Shortly after its theo-
retical prediction, the positron was experimentally
con�rmed [2], �rmly establishing the existence of
antimatter. It was soon recognized that quantum
�uctuations of the electron�positron �eld lead to
nonlinear quantum electrodynamic (QED) phenom-
ena, such as light-by-light scattering in the pres-
ence of classical electromagnetic backgrounds [3].
Among the most striking consequences of this quan-
tum vacuum structure is the prediction that a suf-
�ciently strong electric �eld can induce the sponta-
neous creation of real electron�positron pairs from
the vacuum [4]. This concept was later formalized
within QED through a non-perturbative analysis of
the one-loop e�ective action [5, 6], whose imaginary
part encodes the pair production probability and
signals the vacuum instability. For a static, spatially
homogeneous electric �eld, Schwinger derived the
pair production rate as

Γ =
(eE)2

4π3
exp

(
−πm

2

|eE|

)
, (1)

wherem and e are the electron mass and charge, re-
spectively. This result reveals the non-perturbative
nature of the process, with an exponential suppres-
sion unless the �eld strength approaches the so-
called critical value Ec = m2/|e| ≈ 1.32×1018 V/m.
Although such extreme �elds remain inaccessible in
current laboratory experiments, they are believed to
occur in certain astrophysical environments, such
as the vicinity of magnetars or during early cos-
mological epochs [7]. Despite the challenge of di-
rectly probing this regime, experimental progress
has been made in studying strong-�eld QED ef-
fects. For instance, multiphoton pair production
was observed at Stanford Linear Accelerator Cen-
ter (SLAC) [8], and future laser facilities such
as Extreme Light Infrastructure (ELI) and X-ray
Free Electron Laser (XFEL) [9, 10] are designed
to approach the �eld strengths required for ob-
serving Schwinger-type pair creation. These ad-
vances have sparked extensive theoretical interest in
vacuum pair production under more realistic �eld
pro�les, particularly time-dependent electric �elds
generated by ultrashort laser pulses. Pair creation
mechanisms are typically divided into two broad
regimes [11, 12], i.e., non-perturbative tunneling,
dominant in slowly varying �elds (γ ≪ 1), and mul-
tiphoton absorption, relevant in rapidly oscillating
�elds (γ ≫ 1). The Keldysh parameter γ = mω

|eE0| ,
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where ω is the �eld frequency and E0 its ampli-
tude, governs the transition between these two do-
mains. While Schwinger's original result applies to
an idealized, constant background, realistic exper-
imental conditions involve ultrashort, pulsed, and
spatially localized electric �elds [13�16]. When the
pulse duration becomes comparable to the electron
Compton time tc = 1/m ≈ 1.3×10−21 s, the static-
�eld approximation breaks down. In such scenar-
ios, pair production must be understood as a gen-
uinely time-dependent, non-equilibrium quantum
process.
To describe this, real-time quantum kinetic ap-

proaches have been developed. One widely used
framework is the quantum Vlasov equation [16�19],
which enables calculation of the time evolution
of the single-particle distribution function f(p, t).
These approaches naturally incorporate initial vac-
uum conditions, non-Markovian dynamics, and
memory e�ects [20]. Moreover, they support a
quasiparticle interpretation of vacuum excitations,
wherein each mode of the distribution evolves
through a characteristic three-stage pattern [20�23],
i.e., (i) a quasiparticle electron�positron plasma
(QEPP) forming under the action of the external
�eld, (ii) a transient regime characterized by strong
oscillatory behavior, and (iii) a residual electron�
positron plasma (REPP) in which the momentum
distribution stabilizes.
Notably, this dynamical structure resembles the

early-time evolution of the quark�gluon plasma
(QGP) created in ultra-relativistic heavy-ion colli-
sions. In quantum chromodynamics (QCD), strong
longitudinal color-electric �elds � analogous to ex-
ternal �elds in QED � can lead to quark�antiquark
pair production via a non-Abelian generalization of
the Schwinger mechanism. The initial QCD excita-
tions mirror the QEPP phase, while the intermedi-
ate glasma stage [24�26] displays collective �eld os-
cillations and plasma instabilities analogous to the
QED transient regime. Ultimately, QGP relaxes to-
ward a quasi-equilibrium state, comparable to the
REPP. This analogy underscores the wider appli-
cability of kinetic theory methods and the quasi-
particle picture in the study of out-of-equilibrium
quantum �elds.
While much of the literature has focused on the

longitudinal momentum dynamics, i.e., the evolu-
tion of modes aligned with the direction of the elec-
tric �eld, the role of transverse momentum has been
relatively less explored. This is despite its impor-
tance for computing physically relevant observables
such as total pair number density, electric current,
and entropy [23, 27�31]. Previous studies have in-
vestigated the time evolution of individual longitu-
dinal momentum modes [16, 25, 32] and the com-
plete longitudinal momentum spectrum [18, 33, 34].
However, the time-dependent behavior of transverse
momentummodes and their e�ect on the underlying
dynamics of pair formation have received compara-
tively little attention.

A recent study [35] explored the real-time evo-
lution of the longitudinal momentum spectrum in
a pulsed Sauter-type electric �eld and identi�ed
nontrivial dynamical substructures, leading to in-
sights into characteristic time scales associated with
particle formation [31, 36]. However, this analy-
sis neglected the transverse degrees of freedom. To
date, no systematic framework exists that classi-
�es the evolution of the spectrum while incorpo-
rating transverse momentum dependence, or ex-
plains how this dependence a�ects the timing and
features of the various dynamical stages. In this
work, we aim to address this gap. We investigate
the dynamics of electron�positron pair production
in a time-dependent, spatially uniform Sauter-type
pulsed electric �eld of the form E(t) = E0 sech

2
(
t
τ

)
,

where E0 is the peak �eld strength and τ is the pulse
duration. This widely studied con�guration serves
as a benchmark for understanding temporal e�ects
in pair creation [16, 20, 21].
We compute the time evolution of the single-

particle distribution function f(p, t) in the quasi-
particle framework. Focusing �rst on zero transverse
momentum, we analyze the dynamics of the lon-
gitudinal spectrum and observe a transition from
an initial unimodal peak to a bimodal intermedi-
ate structure with pronounced oscillations, which
eventually settles into a smooth, single-peaked pro-
�le at later times. These features enable us to iden-
tify three characteristic time scales associated with
quasiparticle formation, coherence oscillations, and
�nal stabilization. We then explore how these time
scales depend on transverse momentum. Our results
reveal a nontrivial dependence, which we systemat-
ically classify. This leads to a deeper understanding
of the role of transverse degrees of freedom in the
real-time dynamics of vacuum pair production, �ll-
ing an important gap in the literature and providing
new insight into the momentum-space structure of
quantum vacuum instability.
This paper is organized as follows. In Sect. 2,

we introduce the theoretical formalism based
on [37, 38]. In Sect. 3, we analyze the results. In
the last section, we provide a brief conclusion.
Throughout the paper, we use natural units and

set ℏ = c = m = |e| = 1, and express all variables
in terms of the electron mass unit.

2. Theory

2.1. Equations of motion and canonical
quantization

A su�ciently strong electric �eld can destabilize
the vacuum, leading to the non-perturbative pro-
duction of charged particle�antiparticle pairs. To
describe this phenomenon in the context of QED,
we begin with the Dirac equation in the presence of
a classical electromagnetic background �eld

(iγµ∂µ − eγµAµ −m)Ψ(x, t) = 0, (2)
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where Aµ is the external gauge potential. We con-
sider a spatially homogeneous, time-dependent elec-
tric �eld, represented in the Hamiltonian gauge by
the four-potential

Aµ =
(
0, 0, 0, A(t)

)
. (3)

This con�guration yields a purely electric �eld given
by

E(t) = − dA(t)

dt
, (4)

with no magnetic �eld component,

B = ∇×A = 0, (5)

ensuring the �eld is homogeneous in space and
varies only with time.

Such �eld con�gurations can be realized experi-
mentally, for instance, by two counter-propagating
laser pulses forming a standing wave. In QED, pair
production is allowed only if at least one of the two
Lorentz invariants,
1

4
FµνF

µν =
1

2
(E2 −B2), (6)

1

4
Fµν F̃

µν = E ·B, (7)

is nonzero [39, 40]. In our case, only the invariant
in (6) contributes, allowing for nontrivial pair pro-
duction.
The �rst step is the introduction of an ansatz

Ψ(x, t) =[
iγ0∂t + γkpk − eγ3A(t) +m

]
e ip·x ψ(±)

p (t)Rr,

(8)

where k = 1, 2, 3 and (±) label the positive and neg-
ative frequency components. The spinors R1 and R2

are eigenvectors of γ0γ3, thus

R1 =


0

1

0

−1

 , R2 =


1

0

−1

0

 , (9)

normalized such that R†
rRs = 2δrs.

Substituting (8) into the Dirac equation leads to
a second-order di�erential equation for the time-
dependent mode functions(
∂2t + ieE(t) + ω2(p, t)

)
ψp(t) = 0, (10)

where

ω2(p, t) = p2⊥ +
(
p∥ − eA(t)

)2
+m2. (11)

Here, p∥ = p3 is the momentum along the �eld di-

rection, and p⊥ =
√
p21 + p22 is the transverse mo-

mentum.

In the framework of second quantization, the
Dirac �eld operator is expanded as

Ψ̂(x, t) =
∑

r

∫
d3p

(2π)3

×
[
Ψ (+)

pr (x, t) b̂pr +Ψ
(−)
−pr(x, t) d̂

†
pr

]
, (12)

where b̂pr and d̂
†
pr are the annihilation and creation

operators for electrons and positrons, respectively.
These obey standard fermionic anti-commutation
relations

{b̂pr, b̂†p′r′} = {d̂pr, d̂†p′r′} = δ
(
p− p′) δrr′ . (13)

To extract physical observables, such as the par-
ticle spectrum, we perform a Bogoliubov transfor-
mation to a quasiparticle basis with time-dependent
operators B̂pr(t) and D̂pr(t), i.e.,

B̂pr(t) = αp(t) b̂pr + βp(t) d̂
†
−pr, (14)

D̂pr(t) = α−p(t) d̂pr − β−p(t) b̂
†
−pr, (15)

subject to the normalization condition

|αp(t)|2 + |βp(t)|2 = 1. (16)

In this representation, the �eld operator becomes

Ψ̂(x, t) =
∑

r

∫
d3p

(2π)3

×
[
Φ(+)

pr (x, t) B̂pr(t) + Φ
(−)
−pr(x, t) D̂

†
pr(t)

]
, (17)

where the spinors Φ
(±)
pr (x, t) are given by

Φ(+)
pr (x, t) = α∗

p(t)Ψ
(+)
pr (x, t) + β∗

p(t)Ψ
(−)
pr (x, t),

(18)

Φ(−)
pr (x, t) = αp(t)Ψ

(−)
pr (x, t)− βp(t)Ψ

(+)
pr (x, t).

(19)

These new spinors retain the same spin structure as
the original basis, i.e.,

Φ(±)
pr (x, t) =[
iγ0∂t − p · γ + eA(t)γ3 +m

]
e ip·x ϕ(±)

p (t)Rr.

(20)

Here, ϕ
(±)
p (t) denotes the mode function in the

quasiparticle representation, and its evolution en-
codes the pair production dynamics induced by the
time-dependent �eld.

The function ϕ
(λ)
p (t) de�nes the mode functions

in the quasiparticle representation and is chosen ac-
cording to the ansatz

ϕ(±)
p (t) =

e∓ iΘp(t)√
2ω(p, t)

[
ω(p, t)∓ P (p∥, t)

] , (21)

where the transverse energy ϵ⊥(p⊥), the longitudi-
nal quasi-momentum P (p∥, t) and the quasienergy
ω(p, t) are de�ned, respectively, as

ϵ⊥(p⊥) =
√
m2 + p2⊥, P (p∥, t) = p∥ − eA(t),

(22)

and

ω(p, t) =
√
ϵ2⊥(p⊥) + P 2(p∥, t). (23)

The dynamical phase Θp(t) is given by

Θp(t) =

∫ t

dt′ ω(p, t′). (24)
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The functions ϕ
(±)
p (t) are constructed in such a

way that they coincide with the standard positive

and negative frequency mode functions ψ
(±)
p (t) in

the limit of a vanishing external electric �eld.
By combining (12) and (18)�(20), the spinor

mode functions ψ
(±)
p (t) can be expressed in terms

of the quasiparticle basis as

ψ(+)
p (t) = αp(t)ϕ

(+)
p (t)− β∗

p(t)ϕ
(−)
p (t), (25)

ψ(−)
p (t) = βp(t)ϕ

(+)
p (t) + α∗

p(t)ϕ
(−)
p (t). (26)

The Bogolyubov coe�cients αp(t) and βp(t) are
then given by

αp(t) = i ϕ(−)
p (t) ϵ⊥(p⊥)

(
∂t− iω(p, t)

)
ψ(+)
p (t),

(27)

βp(t) = − i ϕ(+)
p (t) ϵ⊥(p⊥)

(
∂t+iω(p, t)

)
ψ(+)
p (t).

(28)

These expressions show that, once the spinor ψp(t)
is obtained from the solution of the Dirac equa-
tion (10) for a given background electric �eld, the
Bogoliubov coe�cients � and hence the particle
content of the �eld � can be determined.
One can de�ne the occupation number of elec-

trons in a given eigenmode (p, r) of the �eld by
the expectation value of the time-dependent num-
ber operator in the initial vacuum state

fr(p, t) = ⟨0in|B̂†
pr(t)B̂pr(t)|0in⟩. (29)

Similarly, the occupation number of positrons is
given by

f̄r(−p, t) = ⟨0in|D̂†
−pr(t)D̂−pr(t)|0in⟩. (30)

Charge conjugation symmetry ensures the equality

fr(p, t) = f̄r(−p, t). (31)

In the quasiparticle picture, the functions fr(p, t)
and f̄r(−p, t) represent the time-dependent one-
particle distribution functions for electrons and
positrons, respectively [18, 41].
In the absence of spin-dependent interactions, the

spin index `r' can be omitted, and the total distri-
bution function simpli�es to

f(p, t) = 2|βp(t)|2, (32)

where the factor of 2 accounts for the two-fold spin
degeneracy.

2.2. Electric �eld model

In our study of pair production, we consider
a spatially homogeneous, time-dependent electric
�eld modeled by the Sauter-type pulse [16, 42]

E(t) = E0 sech
2

(
t

τ

)
, (33)

where E0 is the peak �eld strength and τ char-
acterizes the pulse duration. This �eld reaches its
maximum at t = 0, decreases to half of its peak

value near t ≈ ±0.81τ , and falls below 10% of its
peak at t ≈ ±2τ . It asymptotically vanishes as
|t| ≫ τ , while the limit τ → ∞ corresponds to a
constant electric �eld. The corresponding vector po-
tential A(t) is of the form

A(t) = −E0τ tanh

(
t

τ

)
. (34)

Though current laser technology has not yet
reached the Compton-scale intensities necessary for
direct experimental observation of vacuum pair pro-
duction, emerging high-intensity X-ray laser sources
hold promise for realizing such �eld strengths in the
near future [10].
In the presence of the external �eld, the

mode functions ψp(t) describing the quantum
states of charged particles satisfy the equation of
motion[
∂2t + ieE0 sech

2

(
t

τ

)
+ ω2(p, t)

]
ψp(t) = 0,

(35)

where ω(p, t) is the instantaneous frequency de-
pending on the momentum p = (p⊥, p∥) and the
mass m.
Two linearly independent solutions can be ex-

pressed analytically in terms of Gauss hypergeomet-
ric functions [43]

ψ(+)
p (y) = N (+)(p) y− iτω0/2

(
1−y

) iτω1/2

× 2F1(a, b, c; y), (36)

ψ(−)
p (y) = N (−)(p) y iτω0/2

(
1−y

)− iτω1/2

× 2F1(1−a, 1−b, 2−c; y), (37)

where the rescaled time variable is

y =
1

2

(
1 + tanh

t

τ

)
, (38)

and the asymptotic frequencies are de�ned by

ω2
0 = m2 + p2⊥ +

(
p∥ − eE0 τ

)2
,

ω2
1 = m2 + p2⊥ +

(
p∥ + eE0 τ

)2
.

(39)

The hypergeometric function parameters depend
on the �eld and momenta as

a = − ieE0 τ
2 − iτω0

2
+

iτω1

2
,

b = 1 + ieE0 τ
2 − iτω0

2
+

iτω1

2
,

c = 1− iτω0. (40)

The key observable characterizing pair produc-
tion is the one-particle distribution function f(p, t),
which represents the number density of created
pairs with momentum p at time t. This quan-
tity can be calculated using the Bogoliubov co-
e�cient, as seen in (32), where the Bogoliubov
coe�cient βp(t) is de�ned in terms of the mode
functions and their time derivatives, as given
in (28).
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In terms of the rescaled time variable y and the mode function ψ
(+)
p (y), the explicit form of the Bogoliubov

coe�cient reads

|βp(t)|2 =
ϵ2⊥(p⊥)

2ω(p, t)
(
ω(p, t)− P (p∥, t)

) ∣∣∣∣(2

τ
y(1−y) d

dy
+ i ω(p, y)

)
ψ(+)
p (y)

∣∣∣∣2 . (41)

Substituting the hypergeometric solutions, the distribution function becomes

f(p, t) =
ω(p, t) + P (p∥, t)

2ω0 (ω0−P0)ω(p, t)

∣∣∣∣2τ y(1−y)ab
c
f1 + i

(
ω(p, t)− (1−y)ω0 − yω1

)
f2

∣∣∣∣2 , (42)

where

f1 = 2F1(1 + a, 1 + b, 1 + c; y), f2 = 2F1(a, b, c; y). (43)

This exact analytic expression for the time-
dependent momentum distribution function f(p, t)
encapsulates the full dynamics of pair creation in-
duced by the Sauter pulse.

3. Result

3.1. Momentum spectra

We numerically investigate the time-resolved
dynamics of the longitudinal momentum spectra
(LMS) f(p∥, p⊥, t) of produced electron�positron
pairs in the presence of a time-dependent Sauter-
type electric �eld. The transverse momentum p⊥ is
treated as a �xed parameter.
Figure 1 presents a detailed time evolution of the

longitudinal momentum spectrum f(p∥, p⊥ = 0, t)
under the in�uence of a Sauter-type electric �eld
with parameters E0 = 0.2Ec and τ = 12 m−1.
The snapshots span from early times (t = −τ/2)
to late times (t = 5τ), illustrating the full dy-
namical history of pair creation from the vacuum.
In the early-time frames, i.e., (a) t = −τ/2, (b)
t = 0, and (c) t = τ/2, the spectrum exhibits
a smooth unimodal pro�le with a peak shifting
from positive to negative p∥. This drift is con-
sistent with the evolution of the vector poten-
tial A(t), through the relation p∥ = −eA(t). The
distributions remain smooth and bell-shaped, in-
dicative of the quasiparticle stage [21], where par-
ticles are o�-shell and the �eld is still ramping
up.
At t = τ (Fig. 1d), the �eld strength has started

to decay, and the peak moves further into nega-
tive p∥. A sharp fallo� appears on the right tail,
and the overall amplitude begins to decrease. The
spectrum is still single-peaked but begins to exhibit
subtle deviations from Gaussianity.
By t = 2.3τ (Fig. 1e), clear interference os-

cillations emerge on the right �ank of the spec-
trum. These oscillations result from the coherent su-
perposition of particle production amplitudes from
di�erent times. Their appearance marks the on-
set of the stage that corresponds to the parti-
cle reaching the on-shell condition of the residual

particle stage [21, 44]. This is even more pronounced
in Fig. 1f, at t = 3τ , where a second peak arises near
p∥ ≈ −2, and the central peak around p∥ = 0 be-
comes sharp and decorated with dense fringes. The
structure seen at t = 3.3τ (Fig. 1g) con�rms the
bimodal nature of the distribution and the pres-
ence of strong quantum interference. This peak sep-
aration suggests two distinct particle populations,
namely those created early and accelerated by the
�eld, and those created later with less acceleration.
At later times, t = 4τ and t = 5τ (Fig. 1h and i,
respectively), the interference fringes fade and the
spectrum stabilizes into a smooth, narrow peak at
p∥ ≈ 0. This freeze-in re�ects the �nal distribution
of on-shell particles � at this time, particles become
real ones.
Overall, Fig. 1 captures the rich quantum dy-

namics of vacuum pair production, from virtual
�uctuations to real particle formation. The tran-
sition from smooth to oscillatory and back to
smooth distributions is a hallmark of the co-
herent time evolution in non-perturbative QED
processes.
To deepen our understanding of vacuum pair pro-

duction, we investigate the in�uence of the trans-
verse momentum p⊥ on the time evolution of the
longitudinal momentum spectrum f(p∥, p⊥, t) in
the presence of a time-dependent electric �eld,
while much of the existing literature has primar-
ily addressed the asymptotic momentum distribu-
tion f(p∥, p⊥, t → ∞) for various �eld con�gu-
rations [22, 45�49]. In particular, we analyze how
transverse momentum modi�es the characteristic
quantum interference structure, reshapes the spec-
tral pro�les, and induces delays in the dynami-
cal onset of pair creation. Speci�cally, our study
considers a Sauter-type electric �eld with strength
E0 = 0.2Ec and temporal width τ = 10 m−1. We
�x the transverse momentum to representative val-
ues p⊥ = 0.3, 0.6, 0.9 and investigate the temporal
evolution of the LMS.
Figure 2 displays the LMS at various time snap-

shots for these transverse momentum values, re-
vealing rich time-dependent behavior. Crucially,
the evolution is characterized by three distinct
stages: an initial smooth phase with quasiparti-
cles, a quantum interference regime with oscillatory
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Fig. 1. (a�i) Time evolution of longitudinal momentum spectrum. The value of transverse momentum is
considered to be zero, and all units are in electron mass units. The �eld parameters are E0 = 0.2Ec and
τ = 12 m−1.

Fig. 2. Time evolution of longitudinal momentum spectrum. The transverse momentum p⊥ is treated as a
�xed parameter, and we explore its e�ect on the evolution of the distribution function at representative values
p⊥ = 0.3, 0.6, and 0.9. All quantities are expressed in units of the electron mass. The �eld parameters are
E0 = 0.2Ec and τ = 10 m−1.
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structures, and a �nal freeze-in phase dominated
by on-shell pair formation. To describe these tran-
sitions, we introduce three critical time scales:

� tcp � time of central peak formation, mark-
ing the emergence of the central peak near
p∥ ∼ 0, indicating the onset of on-shell parti-
cle creation.

� tsep � peak separation time, where two dis-
tinct peaks become resolved in the LMS. One
peak is associated with earlier creation (typi-
cally at p∥ < 0) and the other represents new
pairs centered around zero momentum.

� tdis � time at which quantum interfer-
ence fringes disappear and the LMS becomes
smooth and unimodal, signaling the comple-
tion of the pair creation process.

For moderate transverse momentum p⊥ = 0.3 m,
the LMS at t = 25 m−1 (Fig. 2a) is unimodal
and broad, indicating the QEPP regime. The cen-
tral peak forms at tcp ≈ 32 m−1, as shown
in Fig. 2b, which also marks the emergence of
high-frequency oscillations. The spectrum displays
a pronounced bimodal structure, revealing the pres-
ence of quantum interference between di�erent cre-
ation channels. These fringes gradually fade, and
by tdis ≈ 57 m−1 (Fig. 2c), the spectrum becomes
sharply peaked and smooth. This indicates that
coherence between di�erent tunneling channels is
lost, and the LMS re�ects the �nal state of on-shell
particles.
At higher transverse momentum p⊥ = 0.6 m, the

time evolution follows the same qualitative stages,
but the key time scales are signi�cantly delayed.
In Fig. 2d, at t = 34 m−1, early signs of a secondary
central peak and oscillations are observed. These
features mature in Fig. 2e at tsep ≈ 40 m−1, where
a central peak dominates over the now-receding
early-time peak at negative momentum. Oscilla-
tions are strong and symmetric about p∥ = 0. Fi-

nally, in Fig. 2f, by t = 67 m−1, the LMS has fully
transitioned to a single, smooth peak, identi�ed at
tdis ≈ 67 m−1.
For the largest value studied, p⊥ = 0.9 m, the

e�ective mass is signi�cantly higher, resulting in a
substantial delay in the emergence of interference
features. At t = 45 m−1 (Fig. 2g), the spectrum
is still broad and asymmetric, with faint oscilla-
tions just beginning to form. The full development
of the central peak and oscillatory fringes occurs
at tsep ≈ 54 m−1 (Fig. 2h). This bimodal struc-
ture again shows the superposition of early and
late production events. The �nal spectrum becomes
smooth and featureless by tdis ≈ 77 m−1 (Fig. 2i),
completing the transition into the residual particle
regime.
The key �nding across all three momentum

values is that the critical time scales tcp, tsep,
tdis are systematically delayed as transverse mo-
mentum increases. This is because the total en-
ergy cost for pair creation grows with p⊥ via the

TABLE I

E�ect of transverse momentum on di�erent time
scales. The time scale tcp corresponds to the appear-
ance of a central peak, tsep is when two peaks become
distinctly separated, and tdis indicates the disappear-
ance of the oscillations in the LMS. All time scales
are in units of [m−1].

p⊥ [m] tcp [m−1] tsep [m−1] tdis [m
−1]

0.00 22 30 50

0.30 25 32 57

0.60 34 40 67

0.90 45 54 77

relation ϵ(p⊥) =
√
m2 + p2⊥, thereby requiring a

longer duration under the electric �eld for the pairs
to reach their on-shell condition. The central peak
emerges later, the interference fringes shift to later
times, and the �nal freeze-out is similarly delayed.
Moreover, the strength and visibility of the inter-

ference oscillations diminish slightly with increasing
p⊥, suggesting that transverse momentum reduces
coherence between di�erent tunneling channels.
This can be physically interpreted as transverse
motion suppressing the overlap between interfering
wave packets in momentum space [35].
The time scales extracted from the �gure analy-

sis are summarized in Table I, illustrating their in-
creasing trend with respect to p⊥.
Table I quantitatively captures the delayed dy-

namical response of the system with increasing p⊥,
emphasizing the role of transverse degrees of free-
dom in modulating both the rate and coherence of
pair production processes.

3.2. Dependence of time scales on �eld parameters
and transverse momentum

To complement the qualitative interpretation of
the longitudinal momentum spectrum, we investi-
gate how the characteristic time scales of pair pro-
duction � namely, the central peak formation tcp,
peak separation tsep, and disappearance of oscil-
lations tdis � depend quantitatively on external
�eld parameters and the transverse momentum p⊥.
These time markers capture the dynamical phases
of the pair creation process, from the emergence
of on-shell pairs to the decoherence of interference
structures.
We numerically extracted the time scales from

simulations across a range of Sauter pulse parame-
ters, varying the �eld strength E0, pulse duration τ ,
and �xing transverse momentum values p⊥ ∈ [0, 1].
By �tting the results to a generalized power-law
form,

ti = αi τ
aiEbi

0 p
ci
⊥ , (i ∈ {cp, sep, dis}), (44)
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we �nd excellent agreement across the parameter
space. The corresponding �t coe�cients αi, ai, bi, ci
are listed in the data table provided in the supple-
mentary paper [50]. The resulting �t coe�cients are

tcp ≈ 0.4606 t
− 51

25
c τ

8
7 E

− 5
4

0 p
2
3

⊥,

tsep ≈ 0.7808 t
− 171

100
c τ

8
9 E

− 21
20

0 p
7
13

⊥ ,

tdis ≈ 2.929 t
− 43

33
c τ

6
7 E

− 5
6

0 p
1
3

⊥. (45)
These expressions quantitatively encode how each

stage of the momentum-resolved quantum dynamics
scales with the physical inputs. All three timescales
increase with τ and p⊥ but decrease with increas-
ing E0, consistent with the picture that stronger
�elds accelerate pair creation while transverse mo-
tion adds inertia, delaying transitions. Notably, the
largest sensitivity to �eld strength occurs in tcp, re-
�ecting how quickly pairs can emerge from the vac-
uum in the presence of intense electric �elds. By
contrast, tdis is less sensitive to p⊥, suggesting that
once interference structures form, their evolution to-
ward asymptotic states becomes less dependent on
transverse dynamics.
This hierarchy implies that the onset of coher-

ence (i.e., interference fringes) is more heavily sup-
pressed for large p⊥, but once present, the duration
and decay of these structures are altered less dras-
tically. Since transverse momentum e�ectively in-
creases the energy gap, the pair production channel
opens more slowly, delaying tcp and consequently
shifting all downstream processes.
These scaling relations provide predictive tools

for controlling the dynamical window in which
quantum interference is prominent. In particular,
short pulses and strong �elds compress the relevant
timescales, enabling faster buildup and freeze-out
of the LMS. Conversely, larger p⊥ values extend
the timescales, potentially separating the dynamical
phases more distinctly. This could assist in experi-
mental resolution or enhance numerical diagnostics
of intermediate quantum regimes.
Our results suggest that the observed interference

structures in the momentum spectrum are sensi-
tive probes of both temporal and momentum-space
dynamics. The functional forms derived here may
serve as benchmarks for strong-�eld QED model-
ing, and for calibrating analytic approximations or
semiclassical interpretations of quantum tunneling
in intense backgrounds.

4. Conclusions

We have presented a detailed dynamical study
of electron�positron pair creation in a Sauter-type
electric �eld, emphasizing the role of transverse mo-
mentum, p⊥. By analyzing the longitudinal momen-
tum spectra at various time slices and transverse
momenta, we demonstrate the emergence of three

dynamical stages: the initial smooth single peak dis-
tribution, an intermediate interference-rich regime,
and a �nal freeze-out phase. Our results show that
increasing p⊥ leads to suppression of particle cre-
ation, delays in the onset of key features in the spec-
tra, and modi�es the width and height of the �nal
distribution. We provide analytical expressions for
the relevant time scales in terms of p⊥, the pulse du-
ration τ , and the �eld strength E0. These �ndings
are relevant for understanding real-time dynamics
in strong-�eld QED and can serve as a benchmark
for quantum kinetic approaches to particle produc-
tion.
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