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Influence of an External Magnetic Field on
Polaronic Properties in an Asymmetric Quantum Dot
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An asymmetric quantum dot with shape anisotropy is selected as the theoretical model. By combining
the linear combination operator method with the unitary transformation method, we theoretically
derive an expression for the ground-state energy of a polaron in an asymmetric quantum dot, where this
energy undergoes Zeeman splitting. In a weak magnetic field, the interaction between the spin magnetic
moment and the magnetic field induces a splitting of the polaron energy into two components, with the
Zeeman splitting energy being proportional to the magnetic field strength. The functional relationships
between the ground-state energy and five critical parameters — the electron—phonon coupling strength,
the vibration frequency, the magnetic field cyclotron resonance frequency, the transverse confinement
length, and the longitudinal confinement length — are analyzed individually. The ground-state energy
is an increasing function of the magnetic field cyclotron resonance frequency, while it is a decreasing
function of the electron—phonon coupling strength, the vibration frequency, the transverse confinement
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length, and the longitudinal confinement length.
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1. Introduction

With the continuous advancement and rapid evo-
lution of material growth technologies, it has be-
come feasible to fabricate semiconductor quantum
dots with diverse morphologies. Quantum dots ex-
hibit a number of novel optoelectronic proper-
ties and transport characteristics, which are sig-
nificantly governed by electron—phonon coupling.
As such, research on polaron-related phenomena
in quantum dots has attracted extensive interest
within the scientific community. In fact, numerous
studies have investigated the impact of polarons
on quantum dots. These studies include research
on polaron-related topics in symmetric quantum
dots [1-3], as well as investigations on the proper-
ties of polarons in asymmetric quantum dots with
shape anisotropy. In anisotropic quantum dots, elec-
trons are confined differently along different direc-
tions, most notably exhibiting distinct confinement
strengths in the transverse and longitudinal dimen-
sions. Currently, asymmetric quantum dots have
become a prominent research focus in materials
science and condensed matter physics. Exploring

108

their physical properties and applications neces-
sitates both the development of sensitive experi-
mental techniques [4-6] and in-depth advancement
of theoretical analysis methodologies. For example,
Lepine et al. [7] used the Fock approximation put
forward by Matz and Burkey to examine the impact
of asymmetric parabolic potentials on the ground-
state energy of polarons in parabolic quantum dots.
Kandemir et al. [8] adopted a trial wavefunction
approach, which consists of the product of the elec-
tron wavefunction and the coherent phonon wave-
function, to study the polaron effect for low-energy
electrons in asymmetric quantum dots. These dots
are bound by a three-dimensional asymmetric har-
monic potential in a magnetic field and further con-
fined by a hydrogen-like impurity. Chen et al. [9]
used the Feynman path integral approach to study
the ground-state energy of electrons in asymmet-
ric quantum dots that are simultaneously coupled
to both the Coulomb potential and the longitudi-
nal optical phonon field. Sako et al. [10] applied the
quantum chemical configuration interaction method
to calculate the spectra, electron density distri-
butions, and ground-state correlation energies of
two electrons confined in quantum dots, which are
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subject to anisotropic harmonic oscillator poten-
tials with different confinement strengths. Using a
trial wavefunction approach constructed from the
direct product of the electron and coherent phonon
wavefunctions, Kandemir and Cetin [8] explored the
polaron effect exhibited by low-lying electrons in
asymmetric quantum dots. These dots are bound by
a three-dimensional asymmetric harmonic potential
in a magnetic field and additionally confined by a
hydrogenic impurity.

Research on asymmetric quantum dots has pro-
gressed at a remarkable pace, solidifying its position
as a compelling frontier in the science and technol-
ogy of low-dimensional materials. However, research
on the properties of the magnetic polaron in asym-
metric quantum dots using the linear combination
operator method remains scarce — in particular,
the Zeeman effect of a polaron in such systems has
yet to be explored. In this study, we will utilize the
linear combination operator method to analyze the
simple Zeeman effect of a polaron in an asymmetric
quantum dot.

2. Theoretical model and theoretical
derivation

In this work, we employ an asymmetric parabolic
quantum dot as a theoretical model, wherein an
electron is subjected to strong confinement poten-
tials in three-dimensional space. The expression for
such potentials is given as

V(?") 2.2

! m*wip? + 1m*wzz . (1)
2 2

In (1), w1 and wy represent the transverse con-
finement strength and the longitudinal confinement
strength, respectively, while m* stands for the elec-
tron’s effective mass, and r(p, z) denotes the elec-
tron’s position vector. In the present model, we
solely consider the Frohlich interaction between the
electron and the bulk longitudinal optical (LO)
phonon field. Furthermore, a uniform magnetic field
B = (0,0, B) is applied along the z-direction, with
the corresponding vector potential A = g(fy, x,0)
obeying the symmetric gauge. In the effective mass
approximation, the full Hamiltonian of the system
may be written as

H=H,+ Hy, + Hep, + H,. (2)

In this context, the electronic term is expressed as
e \2
(p+Sa) +v). 3)

The phonon field term is formulated within the
standard bosonic representation, i.e.,

Hy, =Y hwio dhig.
q

Here, wro stands for the bulk longitudinal opti-

cal phonon frequency, q denotes the wave vector,

while &:fl and a4 represent the phonon creation and

H, =

2m*

(4)
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annihilation operators, respectively. The electron—
phonon interaction term is given by

. V. . .
Hopn =Y L (g %7 + af 7M7),
= VV

In (5), V refers to the normalized volume, while V
— the Frohlich coupling constant — is formulated
huwro

(5 (k) w6

where « denotes the electron—phonon coupling
strength.
The Zeeman effect term is given by

(5)

h
2m* wLo

Va

1 R
Hyz = EQMBBUz- (7)

Herein, g denotes the Landé factor, up represents
the Bohr magneton, and &, stands for the Pauli
matrix operator.

We introduce linear combinations of operators for
the electron’s momentum and position coordinates,
respectively, as

(AN

b= < 5 > (bj + bI) ; (8)
and

- NV "

EA <2m*)\> (b5-5). ©

for j = z,y, 2. In this context, A — variational pa-
rameter — denotes the oscillation frequency of the
polaron. We perform a unitary transformation on
the Hamiltonian of the system, with the unitary
transformation operator given by

U=exp| Y (ahfs—aaf;) |-

Within the formula, f;, and f; are variational
parameters, derivable by minimizing the energy
through variation. Following the unitary transfor-
mation, the system’s Hamiltonian assumes the form

2 2
i 1 sz_fg) +<ﬁy+ﬂ:§c) ]+ i

_ mIw o
© om*
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(10)
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Here, 8% = 2¢B_ We take the trial wavefunction for
the system’s ground state as

| Wo) = (dX1/2 + 8X—1/2) 10)a[0)p-

Here, |0), denotes the vacuum state of the opera-
tor b, whereas |0), refers to the unperturbed zero-
phonon state, satisfying b;|0), = 4]0 = 0. In
turn, x12 = (1,0)T and x_i,» 0,1)T cor-
respond to the upward-split and downward-split

(12)
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states, respectively. Substituting p; and 7; into (12)
and operating on the trial ground-state wavefunc-
tion, we derive the expectation value of the system’s
energy as

. 3hA B4h
F (f a: . q ) =

1 T 30m )

1
+ — (V fq +Vq*f;) exp <—
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n hw?
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: (13)
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9F _ ), it follows that

Since 3 T
ﬁq2 )

. Vaexp (—m
fq - VﬁwLo

By parity of reasoning, we obtain

fo= Vq* )

Vh WL,0 eXp (
Substituting f, and f; back into (13) and re-
placing summation by integration, we yield the po-
laron’s ground-state energy

(14)

T (15)
4m* X\

3N B hw?  w? )
E=—tamaton to —@liwoy o
1
+591BB. (16)

As is apparent from (16), the ground-state energy
of the polaron exhibits splitting. This phenomenon
corresponds to the simple Zeeman effect, which
arises from the interaction between the orbital mag-
netic moment and the magnetic field, assuming
weak magnetic field conditions. It is also found
from (16) that the Zeeman splitting energy is inde-
pendent of the electron—phonon coupling strength.
Based on the Zeeman effect theory, Zeeman split-
ting originates from the energy correction induced
by the varying projections of the total atomic an-
gular momentum along the direction of an external
magnetic field. Notably, the Zeeman splitting en-
ergy depends largely on the magnetic moment of the
atoms and the external magnetic field intensity, and
bears no direct relation to the electron—phonon cou-
pling strength. Consequently, the above conclusion
is obtained on the basis of our theoretical deriva-
tion.

Herein, the magnetic field cyclotron resonance
frequency is given by w, eB ' the transverse

and longitudinal confinement 7lr(Leanths are defined

as l; = \/h/(m*wy) and ly = \/h/(m*ws), respec-
tively, the Bohr magneton is ug = eh/(2mgc), and
v = mg/(2mg). We work with the polaron units
h = wpo = 2m* = 1. The ground-state energy of

the polaron transforms to
A1
R
o

wf 2 1
SRS VBY;! g We
2
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3. Numerical calculations and discussion
of results

The ground-state energy of the polaron has been
derived by theoretical deduction. It is shown that
the ground-state energy depends on the vibra-
tion frequency, the magnetic field cyclotron fre-
quency, the transverse and longitudinal confinement
lengths, and the electron—phonon coupling strength.
To visually illustrate the influence of the Zeeman ef-
fect on the ground-state energy of the polaron in an
asymmetric parabolic quantum dot, we perform nu-
merical calculations on the ground-state energy of
the polaron. We separately discuss the variation re-
lationships between the ground-state energy and,
respectively, the vibration frequency A, the mag-
netic field cyclotron resonance frequency w., the
electron—phonon coupling strength, the transverse
confinement length /1, and the longitudinal confine-
ment length 5. The results of the calculations are
presented in Figs. 1-5. In each figure, Ey denotes the
ground-state energy of the polaron without taking
into account the Zeeman effect, E; represents the
upward-split energy of the polaron when the Zee-
man effect is taken into account, and E_ stands for
the downward-split energy of the polaron when the
Zeeman effect is taken into account.

Figure 1 illustrates the variation of the polaron
ground-state energy E with the vibration frequency
A and the electron—phonon coupling strength o,
provided that I; = 0.3, I = 0.5, w. = 5, and
vy 2 are fixed. The solid line denotes the po-
laron ground-state energy FE, without considering
the Zeeman effect, whereas the short solid line and
the dotted line represent the upward-split energy
FE, and downward-split energy E_ of a polaron, re-
spectively, when the Zeeman effect is included in the
analysis. Figure 1 reveals that the polaron ground-
state energy curve exhibits a decaying trend with in-
creasing vibration frequency. In the expression (17)
for the ground-state energy, not only is the electron
kinetic energy related to the vibration frequency,
but the magnetic field energy, electron—phonon in-
teraction energy, and confinement potential energy
are also associated with A. The contribution of the
vibration frequency to the electron kinetic energy
is positive. However, the vibration frequency is in-
versely proportional to both the magnetic field en-
ergy and the confinement potential energy, and its
contribution to the electron—phonon interaction en-
ergy is negative. From the trend of the curves in
the figure, it can be seen that the contribution of
the vibrational frequency to the magnetic field en-
ergy, electron—phonon interaction energy, and con-
finement potential energy is greater than to the ki-
netic energy of the electron. When the vibrational
frequency is around A = 2, the polaron ground-
state energy is weakly influenced by the electron—
phonon coupling strength. As the vibrational fre-
quency increases, the spacing between the curves
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Fig. 1. Curves showing the relationship between
the ground-state energy F and the vibration fre-
quency A for different values of the electron—phonon
coupling strength .
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Fig. 2. Curves showing the relationship between
the ground-state energy E and the magnetic field
cyclotron resonance frequency w,. for different val-
ues of the electron—phonon coupling strength a.

widens progressively, which indicates that the in-
teraction between the electron and its surrounding
phonons increases with increasing vibrational fre-
quency. It is also observed in Fig. 1 that the ground-
state energy of the polaron splits into two branches
(upper and lower). This occurs because the Zeeman
effect causes the ground-state energy of the polaron
to split in a magnetic field.

With the fixed parameters set as [y 0.6,
lp=08 A = 05, and v = 0.8, Fig. 2 demon-
strates the functional dependence of the polaron
ground-state energy on (i) the cyclotron resonance
frequency in a magnetic field and (ii) the electron—
phonon coupling strength. The solid line denotes
the ground-state energy Ej of the polaron without
considering the Zeeman effect, whereas the short
solid line and the dotted line represent the upward-
split energy E. and downward-split energy E_ of
the polaron, respectively, when the Zeeman effect is
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taken into account. As can be seen in Fig. 2, the
polaron ground-state energy exhibits a parabolic
increase with increasing the cyclotron resonance fre-
quency w,, which indicates that the polaron ground-
state energy is an increasing function of w.. The
expression w,. £2 is proportional to the mag-
netic field B, and so grows with B. As the magnetic
field increases, the electron wavefunctions have a
larger overlap with the phonon wavefunction, lead-
ing to an increase in the magnetic field energy of
the polaron. In the expression (17) for the polaron
ground-state energy, assuming that the magnetic
field energy makes a positive contribution to the
ground-state energy, the latter increases with the
former. Since the magnetic field energy is propor-
tional to the square of the magnetic field cyclotron
resonance frequency, this trend manifests itself in a
parabolic shape. From Fig. 2, it is further observed
that the polaron ground-state energy splits into two
branches. This splitting arises from the Zeeman ef-
fect under the influence of a magnetic field. As w,
increases, the energy splitting gap widens. This can
be explained the last term of (17), because the mag-
netic field cyclotron resonance frequency is propor-
tional to the Zeeman splitting energy. When w, = 0,
the energy splitting vanishes, indicating the absence
of the Zeeman effect at zero magnetic field.

It can also be seen from Figs. 1 and 2 that when
the vibrational frequency (or the magnetic field cy-
clotron resonance frequency) is fixed, the stronger
the electron—phonon interaction, the smaller the
ground-state energy of the polaron. In (17), the
electron—phonon coupling strength « has a neg-
ative contribution to the polaron ground-state
energy. Hence, the stronger the electron—phonon
coupling, the lower the polaron energy. The pres-
ence of phonons lowers the energy of the po-
laron. As a result, the polaron state is more stable
than the bare electron state, and this stability in
turn enhances the stability of the polaron energy
splitting.

For 5 =06, A=02, w.=2, a=14, and
v = 1.0, Fig. 3 demonstrates the functional rela-
tionship between the ground-state energy E of the
polaron and the transverse confinement length [;.
In turn, Fig. 4 demonstrates the dependence be-
tween the ground-state energy E of the polaron
and the longitudinal confinement length 5, when
l1=05 A=02, w.=2, « 8, and v =1.0.
From the relationship between confinement length
and confinement strength, respectively given by
I = Vh/(m*w) and Iy = \/h/(m* wy), it can be
seen that the confinement length is inversely pro-
portional to the square root of the confinement
strength. An increase in the confinement length im-
plies a decrease in the confinement strength, i.e.,
the binding effect of the quantum dot on the elec-
trons weakens. The weakening of the quantum con-
finement effect reduces the electron binding en-
ergy, while the contribution of the electron—phonon
interaction further reinforces this trend. As the
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Fig. 3. Curve of the relationship between the
ground-state energy F and the lateral confinement
length /1 under the Zeeman effect.

Fig. 4.
ground-state energy F and the longitudinal confine-
ment length I under the Zeeman effect.

Curve of the relationship between the

confinement length increases, the negative contri-
bution of this electron—phonon interaction energy
becomes even more pronounced. Note that as the
confinement length increases, the confining poten-
tial energy decreases, while the negative contribu-
tion of the electron—phonon interaction increases
more strongly. These two factors collectively cause
an overall reduction in the polaron ground-state en-
ergy. This conclusion reflects the quantum confine-
ment effect, specifically that the smaller the confine-
ment length, the greater the polaron ground-state
energy.

For A=1.0,1; =1.0,lo =1.2,a=10,and v = 2,
Fig. 5 shows the variation law of the ratio of the
polaron ground-state energy to the Zeeman split-
ting energy, Ey/Eyz, with the magnetic field cy-
clotron resonance frequency w. and the electron—
phonon coupling strength a. As is evident in Fig. 5,
regardless of the value assigned to «a, the ratio
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Fig. 5. Curves of the ratio of zero-field splitting
energy to Zeeman splitting energy, Fo/Ez, as a
function of the magnetic field cyclotron resonance
frequency w. for different values of the electron—
phonon coupling strength «.

Ey/Ez increases as w, increases. The phenomenon
whereby the ratio Fy/Ey increases with w, arises
essentially from the discrepancy in their rates of
change with magnetic-field strength. From the trend
of the curves, it is seen that the magnitude of the
increase in the ground-state energy outpaces that of
the Zeeman splitting energy. The Zeeman splitting
energy Fy is in a linear positive correlation with
the magnetic field cyclotron resonance frequency w..
The case of the polaron ground-state energy FEj
is different, since the square of the magnetic cy-
clotron resonance frequency contributes positively
to Ey. Thus, as w, increases, Ey grows at a faster
than linear rate. When w. is fixed, a compari-
son of curves for different electron—phonon cou-
pling strength shows that the stronger the electron—
phonon coupling strength, the higher the ratio of
the polaron ground-state energy to the Zeeman
splitting energy. The stronger the electron—phonon
coupling strength, the more intense the electron—
phonon interaction, leading to a more significant
negative contribution to the ground-state energy.
But, even as the magnetic field increases, localized
electrons dampen this negative contribution. In sys-
tems with stronger electron—phonon coupling «, this
dampening effect exerts a more notable impact on
the total energy. This is equivalent to an additional
increase in the polaron ground-state energy. The
Zeeman splitting energy is mainly governed by the
electron spin magnetic moment and the magnetic
field — with no direct connection to the electron—
phonon coupling strength. Therefore, the stronger
the electron—phonon coupling strength, the more
distinct the growth advantage of the ground-state
energy over the Zeeman splitting energy. This ul-
timately results in the overall Ey/Ey curve being
higher as the electron—phonon coupling strength in-
creases.
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4. Conclusions

Using a combination of the linear combination
operator method and the unitary transformation
method, we theoretically derive the expression for
the ground-state energy of a polaron in an asym-
metric quantum dot under the influence of the Zee-
man effect. In a weak magnetic field, the spin mag-
netic moment interacts with the magnetic field,
inducing splitting of the polaron energy into two
components. The Zeeman splitting energy is pro-
portional to the magnetic field strength. As the
cyclotron resonance frequency increases, the energy
splitting interval widens accordingly. In the absence
of a magnetic field, the energy levels remain de-
generate, confirming the absence of the Zeeman ef-
fect under such conditions. Functional relationships
between the ground-state energy and the electron—
phonon coupling strength, the vibration frequency,
the magnetic field cyclotron resonance frequency,
the transverse confinement length, and the longitu-
dinal confinement length are discussed. The ground-
state energy is an increasing function of the mag-
netic field cyclotron resonance frequency, whereas
it behaves as a decreasing function with respect to
the electron—phonon coupling strength, the vibra-
tion frequency, the transverse confinement length,
and the longitudinal confinement length.
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