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An asymmetric quantum dot with shape anisotropy is selected as the theoretical model. By combining
the linear combination operator method with the unitary transformation method, we theoretically
derive an expression for the ground-state energy of a polaron in an asymmetric quantum dot, where this
energy undergoes Zeeman splitting. In a weak magnetic �eld, the interaction between the spin magnetic
moment and the magnetic �eld induces a splitting of the polaron energy into two components, with the
Zeeman splitting energy being proportional to the magnetic �eld strength. The functional relationships
between the ground-state energy and �ve critical parameters � the electron�phonon coupling strength,
the vibration frequency, the magnetic �eld cyclotron resonance frequency, the transverse con�nement
length, and the longitudinal con�nement length � are analyzed individually. The ground-state energy
is an increasing function of the magnetic �eld cyclotron resonance frequency, while it is a decreasing
function of the electron�phonon coupling strength, the vibration frequency, the transverse con�nement
length, and the longitudinal con�nement length.
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1. Introduction

With the continuous advancement and rapid evo-
lution of material growth technologies, it has be-
come feasible to fabricate semiconductor quantum
dots with diverse morphologies. Quantum dots ex-
hibit a number of novel optoelectronic proper-
ties and transport characteristics, which are sig-
ni�cantly governed by electron�phonon coupling.
As such, research on polaron-related phenomena
in quantum dots has attracted extensive interest
within the scienti�c community. In fact, numerous
studies have investigated the impact of polarons
on quantum dots. These studies include research
on polaron-related topics in symmetric quantum
dots [1�3], as well as investigations on the proper-
ties of polarons in asymmetric quantum dots with
shape anisotropy. In anisotropic quantum dots, elec-
trons are con�ned di�erently along di�erent direc-
tions, most notably exhibiting distinct con�nement
strengths in the transverse and longitudinal dimen-
sions. Currently, asymmetric quantum dots have
become a prominent research focus in materials
science and condensed matter physics. Exploring

their physical properties and applications neces-
sitates both the development of sensitive experi-
mental techniques [4�6] and in-depth advancement
of theoretical analysis methodologies. For example,
Lepine et al. [7] used the Fock approximation put
forward by Matz and Burkey to examine the impact
of asymmetric parabolic potentials on the ground-
state energy of polarons in parabolic quantum dots.
Kandemir et al. [8] adopted a trial wavefunction
approach, which consists of the product of the elec-
tron wavefunction and the coherent phonon wave-
function, to study the polaron e�ect for low-energy
electrons in asymmetric quantum dots. These dots
are bound by a three-dimensional asymmetric har-
monic potential in a magnetic �eld and further con-
�ned by a hydrogen-like impurity. Chen et al. [9]
used the Feynman path integral approach to study
the ground-state energy of electrons in asymmet-
ric quantum dots that are simultaneously coupled
to both the Coulomb potential and the longitudi-
nal optical phonon �eld. Sako et al. [10] applied the
quantum chemical con�guration interaction method
to calculate the spectra, electron density distri-
butions, and ground-state correlation energies of
two electrons con�ned in quantum dots, which are

108

http://doi.org/10.12693/APhysPolA.148.108
mailto:keyanpaper2025@163.com


In�uence of an External Magnetic Field on Polaronic. . .

subject to anisotropic harmonic oscillator poten-
tials with di�erent con�nement strengths. Using a
trial wavefunction approach constructed from the
direct product of the electron and coherent phonon
wavefunctions, Kandemir and Çetin [8] explored the
polaron e�ect exhibited by low-lying electrons in
asymmetric quantum dots. These dots are bound by
a three-dimensional asymmetric harmonic potential
in a magnetic �eld and additionally con�ned by a
hydrogenic impurity.
Research on asymmetric quantum dots has pro-

gressed at a remarkable pace, solidifying its position
as a compelling frontier in the science and technol-
ogy of low-dimensional materials. However, research
on the properties of the magnetic polaron in asym-
metric quantum dots using the linear combination
operator method remains scarce � in particular,
the Zeeman e�ect of a polaron in such systems has
yet to be explored. In this study, we will utilize the
linear combination operator method to analyze the
simple Zeeman e�ect of a polaron in an asymmetric
quantum dot.

2. Theoretical model and theoretical

derivation

In this work, we employ an asymmetric parabolic
quantum dot as a theoretical model, wherein an
electron is subjected to strong con�nement poten-
tials in three-dimensional space. The expression for
such potentials is given as

V (r) =
1

2
m∗ω2

1ρ
2 +

1

2
m∗ω2

2z
2. (1)

In (1), ω1 and ω2 represent the transverse con-
�nement strength and the longitudinal con�nement
strength, respectively, while m∗ stands for the elec-
tron's e�ective mass, and r(ρ, z) denotes the elec-
tron's position vector. In the present model, we
solely consider the Fröhlich interaction between the
electron and the bulk longitudinal optical (LO)
phonon �eld. Furthermore, a uniform magnetic �eld
B = (0, 0, B) is applied along the z-direction, with
the corresponding vector potential A = B

2 (−y, x, 0)
obeying the symmetric gauge. In the e�ective mass
approximation, the full Hamiltonian of the system
may be written as

Ĥ = Ĥe + Ĥph + Ĥe-ph + Ĥz. (2)

In this context, the electronic term is expressed as

Ĥe =
1

2m∗

(
p+

e

c
A
)2

+ V (r) . (3)

The phonon �eld term is formulated within the
standard bosonic representation, i.e.,

Ĥph =
∑
q

ℏωLO â†qâq. (4)

Here, ωLO stands for the bulk longitudinal opti-
cal phonon frequency, q denotes the wave vector,
while â†q and âq represent the phonon creation and

annihilation operators, respectively. The electron�
phonon interaction term is given by

Ĥe-ph =
∑
q

Vq√
V

(
âq e iq·r + â†q e− iq·r

)
. (5)

In (5), V refers to the normalized volume, while Vq

� the Fröhlich coupling constant � is formulated
as

Vq = i

(
ℏωLO

q

)(
ℏ

2m∗ ωLO

)1/4 (
4πα

)1/2
, (6)

where α denotes the electron�phonon coupling
strength.
The Zeeman e�ect term is given by

ĤZ =
1

2
gµBB σ̂z. (7)

Herein, g denotes the Landé factor, µB represents
the Bohr magneton, and σ̂z stands for the Pauli
matrix operator.
We introduce linear combinations of operators for

the electron's momentum and position coordinates,
respectively, as

p̂j =

(
m∗ℏλ

2

)1/2 (
b̂j + b̂†j

)
, (8)

and

r̂j = i

(
ℏ

2m∗λ

)1/2 (
b̂j − b̂†j

)
, (9)

for j = x, y, z. In this context, λ � variational pa-
rameter � denotes the oscillation frequency of the
polaron. We perform a unitary transformation on
the Hamiltonian of the system, with the unitary
transformation operator given by

U = exp
[∑

q

(
â†qfq − âqf

∗
q

) ]
. (10)

Within the formula, fq and f∗
q are variational

parameters, derivable by minimizing the energy
through variation. Following the unitary transfor-
mation, the system's Hamiltonian assumes the form

Ĥ ′ =
1

2m∗

[(
px−

β2

4
ŷ

)2
+

(
p̂y+

β2

4
x̂

)2 ]
+
m∗ ω2

1

2
ρ̂2

+
m∗ ω2

2

2
ẑ2 +

∑
q

ℏωLO
(
â†q+f∗

q

)
(âq+fq)

+
∑
q

Vq√
V

[(
âq+fq

)
e iq·r +

(
â†q+f∗

q

)
e− iq·r

]

+
1

2
g µB B σ̂z. (11)

Here, β2 = 2eB
c . We take the trial wavefunction for

the system's ground state as

|Ψ0⟩ =
(
â χ1/2 + b̂ χ−1/2

)
|0⟩a|0⟩b. (12)

Here, |0⟩b denotes the vacuum state of the opera-

tor b̂, whereas |0⟩a refers to the unperturbed zero-

phonon state, satisfying b̂j |0⟩b = âq|0⟩a = 0. In
turn, χ1/2 = (1, 0)T and χ−1/2 = (0, 1)T cor-
respond to the upward-split and downward-split
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states, respectively. Substituting ρ̂j and r̂j into (12)
and operating on the trial ground-state wavefunc-
tion, we derive the expectation value of the system's
energy as

F
(
fq, f

∗
q

)
=

3ℏλ
4

+
β4ℏ

32(m∗)2λ
+

ℏω2
1

2λ
+

ℏω2
2

4λ

+
∑
q

1√
V

(
Vqfq + V ∗

q f
∗
q

)
exp

(
− ℏq2

4m∗λ

)

+
∑
q

ℏωLO |fq|2 ±
1

2
gµB B. (13)

Since ∂F
∂fq

= 0, it follows that

f∗
q = −

Vq exp
(
− ℏq2

4m∗λ

)
V ℏωLO

. (14)

By parity of reasoning, we obtain

fq = −
V ∗
q

V ℏωLO exp
(
− ℏ q2

4m∗ λ

) . (15)

Substituting fq and f∗
q back into (13) and re-

placing summation by integration, we yield the po-
laron's ground-state energy

E =
3ℏλ
4

+
β4ℏ

32m2λ
+
ℏω2

1

2λ
+
ℏω2

2

4λ
− α ℏωLO

√
λ

πωLO

±1

2
gµBB. (16)

As is apparent from (16), the ground-state energy
of the polaron exhibits splitting. This phenomenon
corresponds to the simple Zeeman e�ect, which
arises from the interaction between the orbital mag-
netic moment and the magnetic �eld, assuming
weak magnetic �eld conditions. It is also found
from (16) that the Zeeman splitting energy is inde-
pendent of the electron�phonon coupling strength.
Based on the Zeeman e�ect theory, Zeeman split-
ting originates from the energy correction induced
by the varying projections of the total atomic an-
gular momentum along the direction of an external
magnetic �eld. Notably, the Zeeman splitting en-
ergy depends largely on the magnetic moment of the
atoms and the external magnetic �eld intensity, and
bears no direct relation to the electron�phonon cou-
pling strength. Consequently, the above conclusion
is obtained on the basis of our theoretical deriva-
tion.

Herein, the magnetic �eld cyclotron resonance
frequency is given by ωc = eB

m∗c , the transverse
and longitudinal con�nement lengths are de�ned
as l1 =

√
ℏ/(m∗ω1) and l2 =

√
ℏ/(m∗ω2), respec-

tively, the Bohr magneton is µB = eℏ/(2m0c), and
γ = mg/(2m0). We work with the polaron units
ℏ = ωLO = 2m∗ = 1. The ground-state energy of
the polaron transforms to

E =
3

4
λ+

ω2
c

8λ
+

2

λ l41
+

1

λ l42
− α

√
λ

π
± 1

2
γ ωc.

(17)

3. Numerical calculations and discussion

of results

The ground-state energy of the polaron has been
derived by theoretical deduction. It is shown that
the ground-state energy depends on the vibra-
tion frequency, the magnetic �eld cyclotron fre-
quency, the transverse and longitudinal con�nement
lengths, and the electron�phonon coupling strength.
To visually illustrate the in�uence of the Zeeman ef-
fect on the ground-state energy of the polaron in an
asymmetric parabolic quantum dot, we perform nu-
merical calculations on the ground-state energy of
the polaron. We separately discuss the variation re-
lationships between the ground-state energy and,
respectively, the vibration frequency λ, the mag-
netic �eld cyclotron resonance frequency ωc, the
electron�phonon coupling strength, the transverse
con�nement length l1, and the longitudinal con�ne-
ment length l2. The results of the calculations are
presented in Figs. 1�5. In each �gure, E0 denotes the
ground-state energy of the polaron without taking
into account the Zeeman e�ect, E+ represents the
upward-split energy of the polaron when the Zee-
man e�ect is taken into account, and E− stands for
the downward-split energy of the polaron when the
Zeeman e�ect is taken into account.
Figure 1 illustrates the variation of the polaron

ground-state energy E with the vibration frequency
λ and the electron�phonon coupling strength α,
provided that l1 = 0.3, l2 = 0.5, ωc = 5, and
γ = 2 are �xed. The solid line denotes the po-
laron ground-state energy E0 without considering
the Zeeman e�ect, whereas the short solid line and
the dotted line represent the upward-split energy
E+ and downward-split energy E− of a polaron, re-
spectively, when the Zeeman e�ect is included in the
analysis. Figure 1 reveals that the polaron ground-
state energy curve exhibits a decaying trend with in-
creasing vibration frequency. In the expression (17)
for the ground-state energy, not only is the electron
kinetic energy related to the vibration frequency,
but the magnetic �eld energy, electron�phonon in-
teraction energy, and con�nement potential energy
are also associated with λ. The contribution of the
vibration frequency to the electron kinetic energy
is positive. However, the vibration frequency is in-
versely proportional to both the magnetic �eld en-
ergy and the con�nement potential energy, and its
contribution to the electron�phonon interaction en-
ergy is negative. From the trend of the curves in
the �gure, it can be seen that the contribution of
the vibrational frequency to the magnetic �eld en-
ergy, electron�phonon interaction energy, and con-
�nement potential energy is greater than to the ki-
netic energy of the electron. When the vibrational
frequency is around λ = 2, the polaron ground-
state energy is weakly in�uenced by the electron�
phonon coupling strength. As the vibrational fre-
quency increases, the spacing between the curves
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Fig. 1. Curves showing the relationship between

the ground-state energy E and the vibration fre-

quency λ for di�erent values of the electron�phonon

coupling strength α.

Fig. 2. Curves showing the relationship between

the ground-state energy E and the magnetic �eld

cyclotron resonance frequency ωc for di�erent val-

ues of the electron�phonon coupling strength α.

widens progressively, which indicates that the in-
teraction between the electron and its surrounding
phonons increases with increasing vibrational fre-
quency. It is also observed in Fig. 1 that the ground-
state energy of the polaron splits into two branches
(upper and lower). This occurs because the Zeeman
e�ect causes the ground-state energy of the polaron
to split in a magnetic �eld.

With the �xed parameters set as l1 = 0.6,
l2 = 0.8, λ = 0.5, and γ = 0.8, Fig. 2 demon-
strates the functional dependence of the polaron
ground-state energy on (i) the cyclotron resonance
frequency in a magnetic �eld and (ii) the electron�
phonon coupling strength. The solid line denotes
the ground-state energy E0 of the polaron without
considering the Zeeman e�ect, whereas the short
solid line and the dotted line represent the upward-
split energy E+ and downward-split energy E− of
the polaron, respectively, when the Zeeman e�ect is

taken into account. As can be seen in Fig. 2, the
polaron ground-state energy exhibits a parabolic
increase with increasing the cyclotron resonance fre-
quency ωc, which indicates that the polaron ground-
state energy is an increasing function of ωc. The
expression ωc = eB

mc is proportional to the mag-
netic �eld B, and so grows with B. As the magnetic
�eld increases, the electron wavefunctions have a
larger overlap with the phonon wavefunction, lead-
ing to an increase in the magnetic �eld energy of
the polaron. In the expression (17) for the polaron
ground-state energy, assuming that the magnetic
�eld energy makes a positive contribution to the
ground-state energy, the latter increases with the
former. Since the magnetic �eld energy is propor-
tional to the square of the magnetic �eld cyclotron
resonance frequency, this trend manifests itself in a
parabolic shape. From Fig. 2, it is further observed
that the polaron ground-state energy splits into two
branches. This splitting arises from the Zeeman ef-
fect under the in�uence of a magnetic �eld. As ωc

increases, the energy splitting gap widens. This can
be explained the last term of (17), because the mag-
netic �eld cyclotron resonance frequency is propor-
tional to the Zeeman splitting energy. When ωc = 0,
the energy splitting vanishes, indicating the absence
of the Zeeman e�ect at zero magnetic �eld.
It can also be seen from Figs. 1 and 2 that when

the vibrational frequency (or the magnetic �eld cy-
clotron resonance frequency) is �xed, the stronger
the electron�phonon interaction, the smaller the
ground-state energy of the polaron. In (17), the
electron�phonon coupling strength α has a neg-
ative contribution to the polaron ground-state
energy. Hence, the stronger the electron�phonon
coupling, the lower the polaron energy. The pres-
ence of phonons lowers the energy of the po-
laron. As a result, the polaron state is more stable
than the bare electron state, and this stability in
turn enhances the stability of the polaron energy
splitting.
For l2 = 0.6, λ = 0.2, ωc = 2, α = 14, and

γ = 1.0, Fig. 3 demonstrates the functional rela-
tionship between the ground-state energy E of the
polaron and the transverse con�nement length l1.
In turn, Fig. 4 demonstrates the dependence be-
tween the ground-state energy E of the polaron
and the longitudinal con�nement length l2, when
l1 = 0.5, λ = 0.2, ωc = 2, α = 8, and γ = 1.0.
From the relationship between con�nement length
and con�nement strength, respectively given by
l1 =

√
ℏ/(m∗ ω1) and l2 =

√
ℏ/(m∗ ω2), it can be

seen that the con�nement length is inversely pro-
portional to the square root of the con�nement
strength. An increase in the con�nement length im-
plies a decrease in the con�nement strength, i.e.,
the binding e�ect of the quantum dot on the elec-
trons weakens. The weakening of the quantum con-
�nement e�ect reduces the electron binding en-
ergy, while the contribution of the electron�phonon
interaction further reinforces this trend. As the
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Fig. 3. Curve of the relationship between the

ground-state energy E and the lateral con�nement

length l1 under the Zeeman e�ect.

Fig. 4. Curve of the relationship between the

ground-state energy E and the longitudinal con�ne-

ment length l2 under the Zeeman e�ect.

con�nement length increases, the negative contri-
bution of this electron�phonon interaction energy
becomes even more pronounced. Note that as the
con�nement length increases, the con�ning poten-
tial energy decreases, while the negative contribu-
tion of the electron�phonon interaction increases
more strongly. These two factors collectively cause
an overall reduction in the polaron ground-state en-
ergy. This conclusion re�ects the quantum con�ne-
ment e�ect, speci�cally that the smaller the con�ne-
ment length, the greater the polaron ground-state
energy.

For λ = 1.0, l1 = 1.0, l2 = 1.2, α = 10, and γ = 2,
Fig. 5 shows the variation law of the ratio of the
polaron ground-state energy to the Zeeman split-
ting energy, E0/EZ, with the magnetic �eld cy-
clotron resonance frequency ωc and the electron�
phonon coupling strength α. As is evident in Fig. 5,
regardless of the value assigned to α, the ratio

Fig. 5. Curves of the ratio of zero-�eld splitting

energy to Zeeman splitting energy, E0/EZ, as a

function of the magnetic �eld cyclotron resonance

frequency ωc for di�erent values of the electron�

phonon coupling strength α.

E0/EZ increases as ωc increases. The phenomenon
whereby the ratio E0/EZ increases with ωc arises
essentially from the discrepancy in their rates of
change with magnetic-�eld strength. From the trend
of the curves, it is seen that the magnitude of the
increase in the ground-state energy outpaces that of
the Zeeman splitting energy. The Zeeman splitting
energy EZ is in a linear positive correlation with
the magnetic �eld cyclotron resonance frequency ωc.
The case of the polaron ground-state energy E0

is di�erent, since the square of the magnetic cy-
clotron resonance frequency contributes positively
to E0. Thus, as ωc increases, E0 grows at a faster
than linear rate. When ωc is �xed, a compari-
son of curves for di�erent electron�phonon cou-
pling strength shows that the stronger the electron�
phonon coupling strength, the higher the ratio of
the polaron ground-state energy to the Zeeman
splitting energy. The stronger the electron�phonon
coupling strength, the more intense the electron�
phonon interaction, leading to a more signi�cant
negative contribution to the ground-state energy.
But, even as the magnetic �eld increases, localized
electrons dampen this negative contribution. In sys-
tems with stronger electron�phonon coupling α, this
dampening e�ect exerts a more notable impact on
the total energy. This is equivalent to an additional
increase in the polaron ground-state energy. The
Zeeman splitting energy is mainly governed by the
electron spin magnetic moment and the magnetic
�eld � with no direct connection to the electron�
phonon coupling strength. Therefore, the stronger
the electron�phonon coupling strength, the more
distinct the growth advantage of the ground-state
energy over the Zeeman splitting energy. This ul-
timately results in the overall E0/EZ curve being
higher as the electron�phonon coupling strength in-
creases.
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4. Conclusions

Using a combination of the linear combination
operator method and the unitary transformation
method, we theoretically derive the expression for
the ground-state energy of a polaron in an asym-
metric quantum dot under the in�uence of the Zee-
man e�ect. In a weak magnetic �eld, the spin mag-
netic moment interacts with the magnetic �eld,
inducing splitting of the polaron energy into two
components. The Zeeman splitting energy is pro-
portional to the magnetic �eld strength. As the
cyclotron resonance frequency increases, the energy
splitting interval widens accordingly. In the absence
of a magnetic �eld, the energy levels remain de-
generate, con�rming the absence of the Zeeman ef-
fect under such conditions. Functional relationships
between the ground-state energy and the electron�
phonon coupling strength, the vibration frequency,
the magnetic �eld cyclotron resonance frequency,
the transverse con�nement length, and the longitu-
dinal con�nement length are discussed. The ground-
state energy is an increasing function of the mag-
netic �eld cyclotron resonance frequency, whereas
it behaves as a decreasing function with respect to
the electron�phonon coupling strength, the vibra-
tion frequency, the transverse con�nement length,
and the longitudinal con�nement length.
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