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We employ the exact recursion relations to investigate the magnetic properties of a ferrimagnetic Blume�
Capel model composed of mixed spins 5/2 and 3 on the Bethe lattice, considering only nearest-neighbor
interactions. The ground state phase diagrams are constructed in the (DA/q|J |, DB/q|J |) plane, reveal-
ing multiple possible ground states, multiphase points, and phase boundaries. Temperature-dependent
phase diagrams are systematically derived for various single-ion anisotropies, demonstrating a wide
range of critical phenomena, including �rst- and second-order phase transitions, tricritical points, com-
pensation temperatures, and reentrant behavior in the absence of a magnetic �eld. Notably, the system
exhibits up to four distinct compensation temperatures depending on the values of the crystal �eld pa-
rameters. Additionally, under an applied magnetic �eld, the system exhibits complex hysteresis behav-
iors, including single, double, and triple hysteresis loops, which emerge for speci�c parameter regimes.
These �ndings underscore the intricate interplay between anisotropy, thermal �uctuations, and external
�eld in governing the magnetic response of mixed-spin ferrimagnetic systems.

topics: recursion relations, Blume�Capel Ising ferrimagnetic model, Bethe lattice, compensation tem-
perature

1. Introduction

The study of mixed-spin Ising models [1, 2] has
garnered signi�cant research interest due to their
richer physical properties compared to single-spin
systems. In particular, mixed-spin ferrimagnetic
Ising models [3�6] have been widely investigated as
they provide a powerful framework for understand-
ing ferrimagnetism in insulating materials, which is
essential for both fundamental research and techno-
logical applications [7�11].
Extensive theoretical studies [12�17] have ex-

plored binary systems of the form ApB1−p com-
bining half-integer spins (e.g., 1/2, 3/2, 5/2, 7/2)
with integer spins (e.g., 1, 2, 3). The grow-
ing focus on systems containing at least one
spin greater than 3/2 stems from their ability

to reveal novel magnetic phenomena. These sys-
tems have been analyzed using various approaches,
including Monte Carlo simulations [1, 3, 18�21],
mean-�eld theory [5, 6, 22�24], and exact recursion
relations [25�34]. It has been established that crys-
tal �eld e�ects on spin sites can signi�cantly mod-
ify magnetic behavior, in�uencing phase transitions
and critical phenomena such as compensation, hys-
teresis, tricriticality, and reentrant behavior, which
are also strongly dependent on lattice geometry.
The mixed-spin ( 52 , 3) con�guration naturally

emerges in several magnetic oxides, where tran-
sition metal ions adopt these spin states due to
their electronic structures. A notable example is
cobalt ferrite (CoFe2O4), where Fe3+ (s = 5

2 ) and

Co2+ (s = 3) interact within a ferrimagnetic spinel
structure, imparting strong magnetic anisotropy
and high coercivity � key properties for spintronic
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applications [35]. Additionally, perovskite oxides
such as LaMn0.5Fe0.5O3 and NdMn0.5Fe0.5O3 ex-
hibit similar spin combinations, where Fe3+ (s = 5

2 )

and Mn3+ (s = 3) modulate ferrimagnetic or an-
tiferromagnetic behavior depending on tempera-
ture and chemical composition [36]. These materials
serve as relevant experimental platforms for testing
theoretical mixed-spin ( 52 , 3)models, validating pre-
dictions related to magnetic ordering, compensation
phenomena, and phase transitions.
Despite their relevance, only a few recent studies

employing mean-�eld theory have speci�cally exam-
ined the ferrimagnetic Ising model for the mixed
spin-5/2 and spin-3 [37, 38]. These investigations,
focused on the Blume�Capel model, identi�ed mul-
tiple compensation points in a disordered system for
square and simple cubic lattices, as well as reentrant
phase transitions between ordered phases. However,
to our knowledge, the model has only been ex-
plored within the mean-�eld theory. Furthermore,
studies on related models have predicted the exis-
tence of tricritical points and multi-hysteresis be-
havior [18, 19], features yet to be documented for
this speci�c system.
This work advances previous works [37, 38] by

analyzing the e�ects of two distinct anisotropies
on the phase diagrams and compensation temper-
atures of a mixed-spin (5/2, 3) Ising ferrimagnetic
system, employing the exact recursion relations
method [25�34].
The remainder of this paper is structured as fol-

lows: Sect. 2 presents the model and methodological
framework, Sect. 3 discusses the main numerical re-
sults, and Sect. 4 provides the conclusions.

2. Model and method description

We consider the Blume�Capel model of a mixed
spin-5/2 and spin-3 Ising ferrimagnetic system de-
�ned on the Bethe lattice, as illustrated in Fig. 1.
Its Hamiltonian is given by

H = −J
∑
<i,j>

siσj −DA

∑
i

s2i −DB

∑
j

σ2
j

−h
(∑

i

si +
∑
j

σj

)
. (1)

Spin-5/2 can take eigenvalues si = ±5/2, ±3/2,
±1/2, while spin-3 can take σj = ±3,±2,±1, 0. In
(1), DA and DB represent the crystal �eld e�ects
on spin-5/2 and spin-3 sites, respectively, h denotes
the external magnetic �eld, and J characterizes the
antiferromagnetic interactions between si and σj .
The Bethe lattice is structured with a central

spin-5/2, followed by alternating generations of
spin-3 and spin-5/2 sites extending inde�nitely, as
shown in Fig. 1. The choice of the central spin,
whether spin-5/2 or spin-3, has no impact on the
system's physical properties.

Fig. 1. Schematic representation of the Bethe lat-
tice with coordination number q = 3, consisting of
two interpenetrating sublattices with spins s = 5/2
and σ = 3. Black circles represent spin-5/2 parti-
cles, while red circles correspond to spin-3 particles.

In order to obtain the exact recursion relation
on the Bethe lattice, some detailed calculations are
necessary. However, we direct readers to the previ-
ous works for all the details [25�34] and give only
the �nal results. Given that σ1 = ±3,±2,±1, 0, the
partial partition function of the central spin s0 can
be calculated as follows

gn(s0) =
∑
σ1

exp
[
β
(
Js0σ1+DBσ

2
1+hσ1

)]
gpm(σ1)=

eβ(3Js0+9DB+3h)gpm(+3)

+ eβ(3Js0+9DB−3h)gpm(−3)

+ eβ(2Js0+4DB+2h)gpm(+2)

+ eβ(−2Js0+4DB−2h)gpm(−2)

+ eβ(Js0+DB+h)gpm(+1)

+ eβ(−Js0+DB−h)gpm(−1) + gpm(0), (2)

where p = q − 1 and m = n − 1. Since the central
spin s0 can take six eigenvalues (±5/2,±3/2,±1/2),
the system has six corresponding partial partition
functions, given by

gn

(
±5

2

)
= eβ(±15J/2+9DB+3h)gpm(+3)

+ eβ(∓15J/2+9DB−3h)gpm(−3)

+ eβ(±5J+4DB+2h)gpm(+2)

+ eβ(∓5J+4DB−2h)gpm(−2)

+ eβ(±5J/2+DB+h)gpm(+1)

+ eβ(∓5J/2+DB−h)gpm(−1) + gpm(0), (3)
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gn

(
±3

2

)
= eβ(±9J/2+9DB+3h)gpm(+3)

+ eβ(∓9J/2+9DB−3h)gpm(−3)

+ eβ(±3J+4DB+2h)gpm(+2)

+ eβ(∓3J+4DB−2h)gpm(−2)

+ eβ(±3J/2+DB+h)gpm(+1)

+ eβ(∓3J/2+DB−h)gpm(−1) + gpm(0), (4)

and

gn

(
±1

2

)
= eβ(±3J/2+9DB+3h)gpm(+3)

+ eβ(∓3J/2+9DB−3h)gpm(−3)

+ eβ(±J+4DB+2h)gpm(+2)

+ eβ(∓J+4DB−2h)gpm(−2)

+ eβ(±J/2+DB+h)gpm(+1)

+ eβ(∓J/2+DB−h)gpm(−1) + gpm(0). (5)

In order to identify the recursion relations, we take
any of the partial partition functions and take the
ratio with the rest, chosen to be gn(−1/2). Thus the
recursion relations for spin-5/2 are given as

X1 =
gn(+

5
2 )

gn(− 1
2 )

=
1

X0

[
eβ(15J/2+9DB+3h)Y p

1

+ eβ(−15J/2+9DB−3h)Y p
2 + eβ(5J+4DB+2h)Y p

3

+ eβ(−5J+4DB−2h)Y p
4 + eβ(5J/2+DB+h)Y p

5

+ eβ(−5J/2+DB−h)Y p
6 + 1

]
, (6)

X2 =
gn(− 5

2 )

gn(− 1
2 )

=
1

X0

[
eβ(−15J/2+9DB+3h)Y p

1

+ eβ(15J/2+9DB−3h)Y p
2 + eβ(−5J+4DB+2h)Y p

3

+ eβ(5J+4DB−2h)Y p
4 + eβ(−5J/2+DB+h)Y p

5

+ eβ(5J/2+DB−h)Y p
6 + 1

]
, (7)

X3 =
gn(+

3
2 )

gn(− 1
2 )

=
1

X0

[
eβ(9J/2+9DB+3h)Y p

1

+ eβ(−9J/2+9DB−3h)Y p
2 + eβ(3J+4DB+2h)Y p

3

+ eβ(−3J+4DB−2h)Y p
4 + eβ(3J/2+DB+h)Y p

5

+ eβ(−3J/2+DB−h)Y p
6 + 1

]
, (8)

X4 =
gn(− 3

2 )

gn(− 1
2 )

=
1

X0

[
eβ(−9J/2+9DB+3h)Y p

1

+ eβ(9J/2+9DB−3h)Y p
2 + eβ(−3J+4DB+2h)Y p

3

+ eβ(3J+4DB−2h)Y p
4 + eβ(−3J/2+DB+h)Y p

5

+ eβ(3J/2+DB−h)Y p
6 + 1

]
, (9)

X5 =
gn(+

1
2 )

gn(− 1
2 )

=
1

X0

[
eβ(3J/2+9DB+3h)Y p

1

+ eβ(−3J/2+9DB−3h)Y p
2 + eβ(J+4DB+2h)Y p

3

+ eβ(−J+4DB−2h)Y p
4 + eβ(J/2+DB+h)Y p

5

+ eβ(−J/2+DB−h)Y p
6 + 1

]
, (10)

where

X0 = eβ(−3J/2+9DB+3h)Y p
1 + eβ(3J/2+9DB−3h)Y p

2

+ eβ(−J+4DB+2h)Y p
3 + eβ(J+4DB−2h)Y p

4

+ eβ(−J/2+DB+h)Y p
5 + eβ(J/2+DB−h)Y p

6 + 1.
(11)

Similarly, we need the recursion relations for the
spin-3, whose partial partition function is de�ned
as follows

gm(σ1) =
∑
s2

exp
[
β
(
Js2σ1+DAs

2
2+hs2

)]
gpr (s2) =

e
β
2 (5Jσ1+25DA/2+5h)gpr

(
+ 5

2

)
+ e

β
2 (−5Jσ1+25DA/2−5h)gpr

(
− 5

2

)
+ e

β
2 (3Jσ1+9DA/2+3h)gpr

(
+ 3

2

)
+ e

β
2 (−3Jσ1+9DA/2−3h)gpr

(
− 3

2

)
+ e

β
2 (Jσ1+DA/2+h)gpr

(
+ 1

2

)
+ e

β
2 (−Jσ1+DA/2−h)gpr

(
− 1

2

)
.

(12)

By applying (12) to the given eigenvalues of s and σ,
we obtain

gm(±3) = e
β
2 (±15J+25DA/2+5h)gpr

(
+ 5

2

)
+ e

β
2 (∓15J+25DA/2−5h)gpr

(
− 5

2

)
+ e

β
2 (±9J+9DA/2+3h)gpr

(
+ 3

2

)
+ e

β
2 (∓9J+9DA/2−3h)gpr

(
− 3

2

)
+ e

β
2 (±3J+DA/2+h)gpr

(
+ 1

2

)
+ e

β
2 (∓3J+DA/2−h)gpr

(
− 1

2

)
,

(13)

gm(±2) = eβ(±5J+25DA/4+5h/2)gpr

(
+ 5

2

)
+ eβ(∓5J+25DA/4−5h/2)gpr

(
− 5

2

)
+ eβ(±3J+9DA/4+3h/2)gpr

(
+ 3

2

)
+ eβ(∓3J+9DA/4−3h/2)gpr

(
− 3

2

)
+ eβ(±J+DA/4+h/2)gpr

(
+ 1

2

)
+ eβ(∓J+DA/4−h/2)gpr

(
− 1

2

)
,

(14)
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gm(±1) = e
β
2 (±5J+25DA/2+5h)gpr

(
+ 5

2

)
+ e

β
2 (∓5J+25DA/2−5h)gpr

(
− 5

2

)
+ e

β
2 (±3J+9DA/2+3h)gpr

(
+ 3

2

)
+ e

β
2 (∓3J+9DA/2−3h)gpr

(
− 3

2

)
+ e

β
2 (±J+DA/2+h)gpr

(
+ 1

2

)
+ e

β
2 (∓J+DA/2−h)gpr

(
− 1

2

)
, (15)

gm(0) = e
β
2 (25DA/2+5h)gpr

(
+ 5

2

)
+ e

β
2 (25DA/2−5h)gpr

(
− 5

2

)
+ e

β
2 (9DA/2+3h)gpr

(
+ 3

2

)
+ e

β
2 (9DA/2−3h)gpr

(
− 3

2

)
+ e

β
2 (DA/2+h)gpr

(
+ 1

2

)
+ e

β
2 (DA/2−h)gpr

(
− 1

2

)
, (16)

where r = n − 2. Thus, the recursion relations are
given by scaling the partial partition functions by
gm(0), we get

Y1 =
gm(+3)

gm(0)
=

1

Y0

[
e

β
2 (15J+25DA/2+5h)Xp

1

+ e
β
2 (−15J+25DA/2−5h)Xp

2+e
β
2 (9J+9DA/2+3h)Xp

3

+ e
β
2 (−9J+9DA/2−3h)Xp

4+e
β
2 (3J+DA/2+h)Xp

5

+ e
β
2 (−3J+DA/2−h)

]
, (17)

Y2 =
gm(−3)

gm(0)
=

1

Y0

[
e

β
2 (−15J+25DA/2+5h)Xp

1

+ e
β
2 (15J+25DA/2−5h)Xp

2+e
β
2 (−9J+9DA/2+3h)Xp

3

+ e
β
2 (9J+9DA/2−3h)Xp

4+e
β
2 (−3J+DA/2+h)Xp

5

+ e
β
2 (3J+DA/2−h)

]
, (18)

Y3 =
gm(+2)

gm(0)
=

1

Y0

[
eβ(5J+25DA/4+5h/2)Xp

1

+ eβ(−5J+25DA/4−5h/2)Xp
2+eβ(3J+9DA/4+3h/2)Xp

3

+ eβ(−3J+9DA/4−3h/2)Xp
4+eβ(J+DA/4+h/2)Xp

5

+ eβ(−J+DA/4−h/2)
]
, (19)

Y4 =
gm(−2)

gm(0)
=

1

Y0

[
eβ(−5J+25DA/4+5h/2)Xp

1

+ eβ(5J+25DA/4−5h/2)Xp
2+eβ(−3J+9DA/4+3h/2)Xp

3

+ eβ(3J+9DA/4−3h/2)Xp
4+eβ(−J+DA/4+h/2)Xp

5

+ eβ(J+DA/4−h/2)
]
, (20)

Y5 =
gm(+1)

gm(0)
=

1

Y0

[
e

β
2 (5J+25DA/2+5h)Xp

1

+ e
β
2 (−5J+25DA/2−5h)Xp

2 + e
β
2 (3J+9DA/2+3h)Xp

3

+ e
β
2 (−3J+9DA/2−3h)Xp

4 + e
β
2 (J+DA/2+h)Xp

5

+ e
β
2 (−J+DA/2−h)

]
, (21)

Y6 =
gm(−1)

gm(0)
=

1

Y0

[
e

β
2 (−5J+25DA/2+5h)Xp

1

+ e
β
2 (5J/+25DA/2−5h)Xp

2 + e
β
2 (−3J+9DA/2+3h)Xp

3

+ e
β
2 (3J+9DA/2−3h)Xp

4 + e
β
2 (−J+DA/2+h)Xp

5

+ e
β
2 (J+DA/2−h)

]
, (22)

where

Y0 = eβ(25DA/4+5h/2)Xp
1 + eβ(25DA/4−5h/2)Xp

2

+ eβ(9DA/4+3h/2)Xp
3 + eβ(9DA/4−3h/2)Xp

4

+ eβ(DA/4+h/2)Xp
5 + eβ(DA/4−h/2). (23)

After having calculated the recursion relations for
spin-5/2 and spin-3, we are now ready to obtain the
magnetization values by using them. The magneti-
zation for the spin-5/2 atoms can be obtained from

M5/2 = Z−1
5/2

∑
{s0}

s0 P
(
{s0}

)
=

Z−1
5/2

∑
{s0}

s0 e
β(DAs20+hs0) gqn(s0), (24)

where

Z5/2 =
∑
{s0}

eβ(DAs20+hs0) gqn(s0) (25)

is the partition function in the case when the cen-
tral site is chosen to be a spin-5/2 site. Thus, for
given values of s0, the magnetization is obtained as

M5/2 =
1

2

[
5e

β
2 (25DA/2+5h)Xq

1 − 5e
β
2 (25DA/2−5h)Xq

2

+ 3e
β
2 (9DA/2+3h)Xq

3 − 3e
β
2 (9DA/2−3h)Xq

4

+ e
β
2 (DA/2+h)Xq

5 − e
β
2 (DA/2−h)

]
×
[
e

β
2 (25DA/2+5h)Xq

1 + e
β
2 (25DA/2−5h)Xq

2

+ e
β
2 (9DA/2+3h)Xq

3 + e
β
2 (9DA/2−3h)Xq

4

+ e
β
2 (DA/2+h)Xq

5 + e
β
2 (DA/2−h)

]−1

. (26)

By analogy to all the calculations given above, the
magnetization values for spin-3 sites may be ob-
tained by picking the central site as spin-3 and re-
peating the whole procedure. However, we do not
repeat them and just give the �nal result as follows

M3 = Z−1
3

∑
{σ0}

σ0 P
(
{σ0}

)
=

Z−1
3

∑
{σ0}

σ0 eβ(DBσ2
0+hσ0) gqm(s0), (27)
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where

Z3 =
∑
{σ0}

eβ(DBσ2
0+hσ0) gqm(σ0) (28)

is the partition function in the case the central site is
picked to be a spin-3 site. Finally, the magnetization
is given as

M3 =
[
3eβ(9DB+3h)Y q

1 − 3eβ(9DB−3h)Y q
2

+ 2eβ(4DB+2h)Y q
3 − 2eβ(4B−2h)Y q

4

+ eβ(DB+h)Y q
5 − eβ(DB−h)Y q

6

]
×
[
eβ(9DB+3h)Y q

1 + eβ(9DB−3h)Y q
2

+ eβ(4DB+2h)Y q
3 + eβ(4B−2h)Y q

4

+ eβ(DB+h)Y q
5 + eβ(DB−h)Y q

6 + 1
]−1

. (29)

Assuming that the bilinear interaction parame-
ter J between spin-5/2 and spin-3 sites is of anti-
ferromagnetic type, i.e., the nearest neighbors are
aligned antiparallel to each other, the total magne-
tization is given as

MT =
1

2

(
M5/2 +M3

)
, (30)

which will help us to elucidate the compensation
behaviors of our model.

3. Discussions of the numerical �ndings

3.1. Ground-state phase diagrams

The zero-temperature phase diagram, or ground
state phase diagram, is crucial in the study of mag-
netic systems. To construct it, we used the internal
energy per site, de�ned as

E0 = siσj −
1

q|J |

(
DAs

2
i +DBσ

2
j

)
. (31)

Considering the eigenvalues of type-s and type-σ,
we determine all spin con�gurations and their cor-
responding energies (Table I). By identifying the
values of DA and DB that minimize each con�g-
uration's energy, we constructed the ground state
phase diagram in the (DA/q|J |, DB/q|J |) planes for
all q. As shown in Fig. 2, this phase diagram re-
veals eleven phase con�gurations, eight multiphase
points, and several multiphase lines. Our results are
qualitatively comparable to those of [38], despite the
latter being based on a square lattice rather than a
Bethe lattice.

3.2. Thermal behaviors of sublattice
magnetizations

This section presents the thermal variations of the
magnetizationsM5/2 andM3 of the two sublattices,
aiming to establish a correspondence between these

Fig. 2. Ground state phase diagram of the model
in the (DA/q|J |, DB/q|J |) plane. Here, q denotes
the coordination number, i.e., the number of nearest
neighbors.

TABLE I

Energies of the di�erent spin con�gurations of the
ground state phase diagram for the mixed spin-5/2
and spin-3.

Ground state Energy

(5/2,−3) E1 = 15
2
− 1

q|J| (
25
4
DA + 9DB)

(5/2,−2) E2 = 5− 1
q|J| (

25
4
DA + 4DB)

(5/2,−1) E3 = 5
2
− 1

q|J| (
25
4
DA +DB)

(5/2, 0) E4 = − 25
4q|J|DA

(3/2,−3) E5 = 9
2
− 1

q|J| (
9
4
DA + 9DB)

(3/2,−2) E6 = 5− 1
q|J| (

25
4
DA + 4DB)

(3/2,−1) E7 = 3
2
− 1

q|J| (
9
4
DA + 9DB)

(3/2, 0) E8 = − 9
4q|J|DA

(1/2,−3) E9 = 3
2
− 1

q|J| (
1
4
DA + 9DB)

(1/2,−2) E10 = 1− 1
q|J| (

1
4
DA + 4DB)

(1/2,−1) E11 = 1
2
− 1

q|J| (
1
4
DA +DB)

(1/2, 0) E12 = − 1
4q|J|DA

magnetizations and the various spin con�gurations
predicted by the ground-state phase diagram ana-
lyzed in Sect. 3.1.
In Fig. 3, the thermal behaviors of the sublat-

tice magnetizations M5/2 and M3 are presented
for various values of crystal �elds, DA and DB .
It is evident that the anisotropy plays a cru-
cial role in determining the spin con�gurations at
kT/|J | = 0. Speci�cally, for �xed values of DA/|J |
with DB/|J | = 0.25 (Fig. 3a), the magnetization
of sublattice B, i.e., M3, adopts a single saturation
value M3 = 3.0, while M5/2 exhibits multiple satu-

ration values, namely 1
2 , 1,

3
2 , 2, and

5
2 . Similarly,
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Fig. 3. Thermal behaviors of the sublattice magnetizations M5/2 and M3 for various values of crystal �eld
interactions; (a) the curves displayed when DB/|J | = 0.25 for selected values of DA/|J | and (b) the curves
displayed with DA/|J | = 0.25 for selected values of DB/|J |.

Fig. 4. Temperature-dependent phase diagrams in the (DB/|J |, kT/|J |) planes for q = 3, 4, 5, and 6. The
solid and dashed lines refer to the second-order and the �rst-order phase transition lines, respectively. The
dotted curves represent the compensation temperature lines. The solid circles refer to tricritical points.

for �xed values of DB/|J | with DA/|J | = 0.25
(Fig. 3b), the magnetization of sublattice A, i.e.,
M5/2, takes a single saturation value M5/2 = 2.5,
while M3 presents several saturation values, namely
1, 3

2 , 2,
5
2 , and 3.

A direct comparison with the ground-state phase
diagram in Fig. 2 con�rms a perfect agreement be-
tween the numerical results and the predicted con-
�gurations. Furthermore, in both cases, the abso-
lute values of |M3| and |M5/2| decrease smoothly as
temperature increases and eventually vanish at the
critical temperature Tc. These �ndings align quali-
tatively with previous studies [23, 24], despite dif-
ferences in spin values.

3.3. Phase diagrams and magnetic properties

The phase diagrams of this study are plotted
in the (DA/|J |, kT ) and (DB/|J |, kT ) planes for
given values of DB/|J | and DA/|J |, respectively.
They include the second-order transition lines (Tc),
�rst-order transition lines (Tt) creating the mag-
netizations discontinuities, and compensation lines
(Tcomp) where sublattice magnetizations cancel out.
The solid and dashed lines in the �gures represent
Tc and Tt, respectively, while the red dotted lines
indicate Tcomp. The tricritical points, where the Tc-
and Tt-lines merge, are marked by solid circles.
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Fig. 5. Temperature-dependent phase diagrams in the (DA/|J |, kT/|J |) planes for given values of DB/|J |, as
indicated on the curves, when q = 3. The solid and dashed lines refer to the second-order and the �rst-order
phase transition lines, respectively. The dotted curves represent the compensation temperature lines. The solid
circles refer to tricritical points.

Fig. 6. Temperature-dependent phase diagrams in the (DB/|J |, kT/|J |) planes for given values of DA/|J |, as
indicated on the curves, with q = 3. The solid and dashed lines refer to the second-order and the �rst-order
phase transition lines, respectively. The dotted curves represent the compensation temperature lines. The solid
circles refer to tricritical points.

The �rst phase diagrams are illustrated in the
(D/|J |, kT/|J |) plane for q = 3, 4, 5, and 6 when
D = DA = DB , as shown in Fig. 4. The Tt-lines
start at zero temperature for each q and from the

values of D = − q|J|
2 connect to the corresponding

Tc-lines at their tricritical points. The critical tem-
perature increases with D and saturates beyond a
threshold value of D for each q. The temperatures
corresponding to these lines increase with increas-
ing q, which is a well-known behavior. The com-
pensation lines indicate multi-compensation behav-
ior. Speci�cally, when − q

2 < D/|J | ≤ α, where
α = −1.49875,−1.97842,−2.4704, and −2.9629 for

q = 3, 4, 5, and 6, respectively, two compensa-
tion points emerge. Near D/|J | = − q

2 , up to four
compensation points can appear. These di�erent re-
sults con�rm that the system presents tricritical and
compensation phenomena for all q values.

The second phase diagrams (Fig. 5) are plot-
ted in the (DA/|J |, kT ) plane for di�erent values
of DB/|J | and q = 3. For DB/|J | < −1.5, i.e.,
for DB/|J | = −3.0, −2.5, −2.0, −1.75 (Fig. 5a),
the observed critical and tricritical behaviors are
consistent with the trends in Fig. 4. Notably, no
compensation behavior is observed for these values
of DB/|J |. For DB/|J | ≥ −1.5, only second-order
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phase transitions occur. In this range, Tc-lines be-
come nearly parallel to the DA/|J |-axis at ex-
treme values of DA/|J |. These lines originate at
lower temperatures for negative values of DA/|J |
and increase with DA/|J |. Similarly, the transition
temperatures corresponding to these lines increase
with DB/|J |. Compensation behavior appears for
−1.5 ≤ DB/|J | ≤ 1.2125, where a single com-
pensation point is observed when DB/|J | > −1.5.
These lines emerge from their corresponding crit-
ical lines, decrease gradually, and become nearly
linear as DA/|J | increases. For DB/|J | = −1.5,
multi-compensation behavior occurs, as highlighted
in the inset in Fig. 5a. In particular, in the
vicinity of DB/|J | = −1.5, up to four com-
pensation points can appear, indicating reentrant
behavior.
The last phase diagrams (Fig. 6) plotted in the

(DB/|J |, kT/|J |) plane are calculated for di�erent
DA/|J | values and q = 3. As shown in Fig. 6a, for
DA/|J | ≤ 0.0, the �rst-order phase transition lines
originate at zero temperature from a speci�c value
of DB/|J |, then gradually increase and merge with
their corresponding second-order transition line at
tricritical points. This con�rms tricritical behavior
for all DA/|J | ≤ 0.0. When DA/|J | > 0.0 (Fig. 6b),
the system exhibits only the second-order phase
transitions. In this regime, the transition lines orig-
inate around DB/|J | = −7.48 at zero temperature
and increase withDB/|J |. As observed in the insets,
all the compensation lines originate from the same
speci�c value of DB/|J | = −1.5 at zero tempera-
ture for all DA/|J | values, increasing with DB/|J |
and terminating near the critical line. The overall
trends in Figs. 5 and 6 align with previous studies
on mixed spin-(2, 5/2) systems [19, 22].
To further illustrate the system's critical, tricrit-

ical, and reentrant behaviors, the thermal varia-
tions of the sublattice magnetizations for selected
parameter values are presented in Fig. 7a�d. The
system transits from the disordered paramagnetic
phase to an ordered phase before reentering the dis-
ordered paramagnetic phase, with �rst- or second-
order transitions. These �gures con�rm the exis-
tence of critical, tricritical, and reentrant behaviors
in the investigated system.
Finally, the total magnetization |MT | is examined

to distinguish multi-compensation phenomena. As
shown in Fig. 8a�d, one, two, three, or even four
compensation points emerge for speci�c parameter
values. These �ndings are in full agreement with the
phase diagrams presented earlier.

3.4. Hysteresis properties analysis

In this section, we have systematically examined
the hysteresis behavior of the system by analyz-
ing the e�ects of key model parameters, namely the
crystal �eld values and temperature.

Fig. 7. Thermal behaviors of the sublattice mag-
netizations |M5/2|, |M3| and total magnetization
|MT | for several values of crystal �elds DA/|J | and
DB/|J |, as indicated in di�erent panels of the �g-
ure, with q = 3. Here, Tt and Tc indicate �rst-order
and second-order transition temperatures, respec-
tively.

First, we investigate the in�uence of tempera-
ture on the hysteresis behavior while keeping one
of the crystal �elds �xed at a speci�c value and
setting the others to zero, i.e., for DA/|J | = 0.0
and DB/|J | = −1.2, as shown in Fig. 9a�f. The
result reveals a multi-hysteresis behavior charac-
terized by a gradual reduction in the number of
hysteresis loops as the temperature increases. For
kT/|J | < 2.5 (Fig. 9a), the system exhibits three
hysteresis loops � a central loop connected to two
lateral loops. As temperature increases within the
range of 2.5 ≤ kT/|J | < 5.0 (Fig. 9b�d), the cen-
tral loop vanishes, leaving only two narrow loops
near zero magnetic �eld. A further temperature
increase reduces the number of loops to one in
the range of 5.0 ≤ kT/|J | < 5.6 (Fig. 9e). Fi-
nally, at kT/|J | = 5.6 (see Fig. 9f), all hystere-
sis loops disappear as this temperature exceeds
the critical temperature kTc/|J | ≃ 5.58, beyond
which the system transitions into the paramagnetic
phase. By altering the action of the crystal �elds
on the sublattice sites, i.e., for DA/|J | = −1.2 and
DB/|J | = 0.0 (Fig. 10a�f), similar hysteresis be-
haviors are observed. However, in this case, a sin-
gle loop appears, whose size and width progres-
sively decrease with increasing temperature before
disappearing.
Next, we analyze the cases where one of the

crystal �elds, DA or DB , is �xed and the other
varies. In Fig. 11a�f, we present the hysteresis loops
of the total magnetization at the constant tem-
perature kT/|J | = 0.5 and DA/|J | = −1.0 for
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Fig. 8. Thermal behaviors of the total magnetization |MT | for various values of crystal �elds DA/|J | and
DB/|J | or D/|J | = DA/|J | = DB/|J |, as indicated in di�erent panels, with q = 3. The model shows one, two,
three, or four compensation temperatures indicated with Tk.

Fig. 9. Hysteresis properties of the model for
DA/|J | = 0.0, DB/|J | = −1.2, and given values
of the temperature indicated in di�erent panels of
the �gure.

di�erent values of DB/|J |. When DB/|J | > −0.3, a
single hysteresis loop is observed (Fig. 11a). How-
ever, for DB/|J | ≤ −0.3, a multi-hysteresis be-
havior emerges; the number of hysteresis loops
changes from three to two and then to one be-
fore disappearing as the system enters the param-
agnetic phase (Fig. 11b�f). In Fig. 12a�f, plotted

Fig. 10. Hysteresis properties of the model for
DA/|J | = −1.2, DB/|J | = 0.0, and given values
of the temperature indicated in di�erent panels of
the �gure.

for DB/|J | = −1.0 and selected values of DA/|J |,
the observed hysteresis behaviors di�er from those
in Fig. 11. Speci�cally, a multi-hysteresis behav-
ior with three loops appears when DA/|J | ≥ −1.0
(Fig. 12a�b), while for DA/|J | < −1.0, a single loop
is observed, whose size and width gradually decrease
(Fig. 12c�f).
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Fig. 11. Hysteresis properties of the model for
kT/|J | = 0.5, DA/|J | = −1, and given values of
DB/|J | indicated in di�erent panels of the �gure.

Fig. 12. Hysteresis properties of the model for
kT/|J | = 0.5, DB/|J | = −1, and given values of
DA/|J | indicated in di�erent panels of the �gure.

Finally, we investigate the in�uence of a uniform
crystal �eld on the hysteresis behavior at a �xed
temperature value kT/|J | = 2.0 (Fig. 13a�f). As
shown in the �gure, the uniform crystal �eld sig-
ni�cantly impacts the hysteresis behavior � when
D/|J | > −0.5, a single hysteresis loop is observed,
whereas for −1 ≤ D/|J | ≤ −0.5, three loops ap-
pear. For D/|J | < −1.0, the system reverts to a
single hysteresis loop before it vanishes as D/|J |

Fig. 13. Hysteresis properties of the model for
kT/|J | = 2.0 and given values of D/|J | indicated
in di�erent panels of the �gure.

decreases further. The hysteresis behavior observed
in our model is consistent with previous �ndings
reported in [19].

4. Conclusions

In this investigation, we employed the exact re-
cursion relations approach to study the magnetic
properties of a mixed spin-5/2 and spin-3 ferrimag-
netic Ising system on the Bethe lattice. Our com-
prehensive analysis of thermal variations of magne-
tizations and phase transitions has led to the con-
struction of complex magnetic phase diagrams. The
key phenomena identi�ed include �rst- and second-
order phase transitions, tricritical points, multiple
compensation points, and reentrant behavior.
Furthermore, we examined the system's response

to an external magnetic �eld, revealing complex
hysteresis phenomena, including multi-loop hys-
teresis cycles. Our �ndings are in perfect agree-
ment with existing literature, particularly with [22],
which studied a similar spin model with spin-5/2
and spin-2 on a square lattice using the mean-
�eld approximation. However, our study di�ers
from [37, 38] in two signi�cant ways: (i) the use
of Bethe lattice, in contrast to the lattice structures
considered in those works, and (ii) the adoption of
an exact recursive approach, which allows for a more
detailed exploration of additional system features,
such as the observed multi-compensation behavior.
To further advance this study, we intend to ex-

plore the impact of next-nearest-neighbor interac-
tions on the magnetic properties revealed herein.
This investigation will be conducted using both
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the recursion relations method and Monte Carlo
simulations, the latter being among the most re-
liable techniques for analyzing complex magnetic
systems.
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