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‘We employ the exact recursion relations to investigate the magnetic properties of a ferrimagnetic Blume—
Capel model composed of mixed spins 5/2 and 3 on the Bethe lattice, considering only nearest-neighbor
interactions. The ground state phase diagrams are constructed in the (Da/q|J|, Dg/q|J|) plane, reveal-
ing multiple possible ground states, multiphase points, and phase boundaries. Temperature-dependent
phase diagrams are systematically derived for various single-ion anisotropies, demonstrating a wide
range of critical phenomena, including first- and second-order phase transitions, tricritical points, com-
pensation temperatures, and reentrant behavior in the absence of a magnetic field. Notably, the system
exhibits up to four distinct compensation temperatures depending on the values of the crystal field pa-
rameters. Additionally, under an applied magnetic field, the system exhibits complex hysteresis behav-
iors, including single, double, and triple hysteresis loops, which emerge for specific parameter regimes.
These findings underscore the intricate interplay between anisotropy, thermal fluctuations, and external
field in governing the magnetic response of mixed-spin ferrimagnetic systems.
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1. Introduction

The study of mixed-spin Ising models [1, 2] has
garnered significant research interest due to their
richer physical properties compared to single-spin
systems. In particular, mixed-spin ferrimagnetic
Ising models [3—6] have been widely investigated as
they provide a powerful framework for understand-
ing ferrimagnetism in insulating materials, which is
essential for both fundamental research and techno-
logical applications [7-11].

Extensive theoretical studies [12-17] have ex-
plored binary systems of the form A,B;_, com-
bining half-integer spins (e.g., 1/2, 3/2, 5/2, 7/2)
with integer spins (e.g., 1, 2, 3). The grow-
ing focus on systems containing at least one
spin greater than 3/2 stems from their ability
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to reveal novel magnetic phenomena. These sys-
tems have been analyzed using various approaches,
including Monte Carlo simulations [1, 3, 18-21],
mean-field theory [5, 6, 22-24], and exact recursion
relations [25-34]. It has been established that crys-
tal field effects on spin sites can significantly mod-
ify magnetic behavior, influencing phase transitions
and critical phenomena such as compensation, hys-
teresis, tricriticality, and reentrant behavior, which
are also strongly dependent on lattice geometry.
The mixed-spin (2,3) configuration naturally
emerges in several magnetic oxides, where tran-
sition metal ions adopt these spin states due to
their electronic structures. A notable example is
cobalt ferrite (CoFe;0y4), where Fe3* (s = 2) and
Co?* (s = 3) interact within a ferrimagnetic spinel
structure, imparting strong magnetic anisotropy
and high coercivity — key properties for spintronic
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applications [35]. Additionally, perovskite oxides
such as LaMng sFeg 503 and NdMng 5Fey 503 ex-
hibit similar spin combinations, where Fe3* (s = 2)
and Mn3* (s =3) modulate ferrimagnetic or an-
tiferromagnetic behavior depending on tempera-
ture and chemical composition [36]. These materials
serve as relevant experimental platforms for testing
theoretical mixed-spin (3, 3) models, validating pre-
dictions related to magnetic ordering, compensation
phenomena, and phase transitions.

Despite their relevance, only a few recent studies
employing mean-field theory have specifically exam-
ined the ferrimagnetic Ising model for the mixed
spin-5/2 and spin-3 [37, 38]. These investigations,
focused on the Blume—Capel model, identified mul-
tiple compensation points in a disordered system for
square and simple cubic lattices, as well as reentrant
phase transitions between ordered phases. However,
to our knowledge, the model has only been ex-
plored within the mean-field theory. Furthermore,
studies on related models have predicted the exis-
tence of tricritical points and multi-hysteresis be-
havior [18, 19], features yet to be documented for
this specific system.

This work advances previous works [37, 38] by
analyzing the effects of two distinct anisotropies
on the phase diagrams and compensation temper-
atures of a mixed-spin (5/2,3) Ising ferrimagnetic
system, employing the exact recursion relations
method [25-34].

The remainder of this paper is structured as fol-
lows: Sect. 2 presents the model and methodological
framework, Sect. 3 discusses the main numerical re-
sults, and Sect. 4 provides the conclusions.

2. Model and method description

We consider the Blume—-Capel model of a mixed
spin-5/2 and spin-3 Ising ferrimagnetic system de-
fined on the Bethe lattice, as illustrated in Fig. 1.
Its Hamiltonian is given by

H=-J]Y sio;—DasY si—Dpy o}
i J

<i,j>
—h(Zsi +ZO']‘>.
i J

Spin-5/2 can take eigenvalues s; = £5/2, +3/2,
+1/2, while spin-3 can take o; = £3,+2,+1,0. In
(1), D4 and Dp represent the crystal field effects
on spin-5/2 and spin-3 sites, respectively, h denotes
the external magnetic field, and J characterizes the
antiferromagnetic interactions between s; and o;.

The Bethe lattice is structured with a central
spin-5/2, followed by alternating generations of
spin-3 and spin-5/2 sites extending indefinitely, as
shown in Fig. 1. The choice of the central spin,
whether spin-5/2 or spin-3, has no impact on the
system’s physical properties.

(1)
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Fig. 1. Schematic representation of the Bethe lat-
tice with coordination number g = 3, consisting of
two interpenetrating sublattices with spins s = 5/2
and o = 3. Black circles represent spin-5/2 parti-
cles, while red circles correspond to spin-3 particles.

In order to obtain the exact recursion relation
on the Bethe lattice, some detailed calculations are
necessary. However, we direct readers to the previ-
ous works for all the details [25-34] and give only
the final results. Given that oy = 3,42, +1,0, the
partial partition function of the central spin sg can
be calculated as follows

9In(S0) Zexp[ Jsoal—l—DBa%—l—th)}gpm(ol):

(3JSO+9DB+3h) (+3)

+ 85(3J30+9DB_3h)g£1(—3)

+ 65(2J80+4DB+2h)g£l(+2)

+ eﬁ(72Jso+4D372h)gp (_2)

m

+ eﬁ(JSO+DB+h)g£I(+1)

+ st PEh g (1) + g7, (0), 2)
where p = ¢ — 1 and m = n — 1. Since the central
spin sg can take six eigenvalues (+5/2, £3/2, £1/2),

the system has six corresponding partial partition
functions, given by

() -

+ f(F15J/249D5=3h)

P(E157/2+9D5+3h) b (| 3)

n(=3)

4 @B(EBI+4Dp+2h) 9 (+2

+ e;3(15J+4DB—2h 9

(+2)
m(=2)
+ e (i5]/2+D3+h)g (+1)
+ P(F5J/24+Dp—h) 4p (-1)

gh (1) + g5,(0),
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3
on <i§) — B(E97/2+9D5+3h) gp (| 3)
+ eﬁ($9J/2+9DB—3h)g£1(_3)
4 oPEBIHADE+2M) b (1o

4 oP(F3I D5~ 2h)gm 9

(+2)

(—2)
+ eﬁ(:I:BJ/2+DB+h) (+1)
+ IE2ADE=R gp (1) + gP (0),
and

1
m(3) =

+ eB(:F?)J/2+9DB—3h)g£L(_3)

(:|:3J/2+9DB+3h)gfn(_|_3)

+ eﬁ(iJ+4DB+2h)gm(+2)
gim(=2)
(1)

+ PFI2HDE= b (1) + P (0). (5)

In order to identify the recursion relations, we take
any of the partial partition functions and take the
ratio with the rest, chosen to be g, (—1/2). Thus the
recursion relations for spin-5/2 are given as

gn(+3) 1

gn( é) XO

4 e,B(715J/2+9D373h)Y2;D + eﬁ(5J+4DB+2h)Y3p

+ eﬂ($J+4DB 2h)

+ eB(iJ/Q-‘rDB-‘rh)

X, = [ $(15J/2+9Dp +3h) yp
4 eP(~BI+ADE=2M)yP | (B(5]/2+Du+h)y P
+ B(=5I/24Dp=h)yp | 1}7

Qn(—%) 1

gn(_%) B XO
+ 6/8(15J/2+9DB—3h)Y2p + eB(—5J+4Dg+2h)y3p

X, = [65(—15J/2+9DB+3h)Y1p

+ eﬁ(5J+4D372h)Yzlp + eB(fSJ/2+DB+h)Y5p

4 &P(6I/2+Da-h)yp | 1}7

3
gn(+3) _ 1 [95(9.1/2+9DB+3h)Yp
gn(_%) Xo !

+ eﬁ(79J/2+9DBf3h)Y2P + eﬁ(3J+4DB+2h)YéP

X3 =
+ eﬁ(—3J+4DB—2h)Y4p + eﬁ(sJ/2+DB+h)Y5p

+ eﬁ(—3J/2+DB—h)YGp n 1}’

gn(*%) 1

gn(fé) XO
4 oP(9T/2+9Dp =3 yp | eﬁ(—3J+4DB+2h)Y3p

X, = [ B(— 9J/2+9DB+3h)YP

n eB(3J+4Dg—2h)y4p + eB(—3J/2+DB+h)Y5p

+ ePB3I/24+Ds=h)yP | 1}7
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gn(+%) 1
gn(_%) XO
1+ P(-8I/2H9DE=3R)yP | B +DE+2R) YD

X, = { 6(3J/2+9D3+3h)yp

4 eP(-THADE=2h)yp | (B(J/24+Deth)yp

+ P/ De Y 4] (10)

where
Xo = ¢

+ eﬂ(—J+4DB+2h)Y3p + eB(J+4DB—2h)Yzlp

[3(—3J/2+9DB+3h)Y1;D 1 B(3J/2+9D5 —3h)Y2p

+ eﬁ(*]/Q‘FDB‘Fh)YSp + eB(J/2+Dth)Y6p + 1.
(11)
Similarly, we need the recursion relations for the
spin-3, whose partial partition function is defined
as follows

gm(o1) Zexp [ J8201+DAsg+h82)] g2 (s2) =

§(5Jal+25DA/2+5h) (+g)

4 e%(75J61+25DA/275h)g£ (_

)

5
2

)

B
+ez(3]ol+9DA/2+3h)g ( %

-

4 eg(Jal+DA/2+h)g£ (_1_%)

B(—Jo1+D4/2—h) p<7l)
+ ez gy 5 (12)

By applying (12) to the given eigenvalues of s and o,
we obtain

gm(£3) = 62(:|:15J+25DA/2+5h) (+%)

+ eg(—sJal+9DA/2—3h)g

3

)

+e2(3F15]+25DA/2 5h) p( g)
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2
3
2

1e% 8(+£9J49D4/2+3h) (

n o5 (F9T+9D4 /2~ 3h)gr(

)

4 62(:|:3J+DA/2+h) (_1_%)

B(F3J+Da/2—h) p ( 1)
+eZ g?" K (13)

gm(iQ)

4 e,B(JF5J+25DA/475h/2)g£ (_ g)
?(+3)
+ B(F3I+9Da/4=3h/2) gp (_ %)

+ PEI+DA/A+R/2) gp (—i—%)

5(¢5J+25DA/4+5h/2) (_|_§
2

)

4 eP(EBIHIDA/A+3R/2)

B(FJ+Da/4—h/2) p(,;)
+ € g?" 2/ (14)
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s = ey )
4 eBFRrD 250 g (_5)

+ 62(i3J+9DA/2+31«L) (+%)

;)

+e 5($3J49D4/2-3R) p

4 o3 (FIHDa/2=R) gp

g
+e S(£J+Da/2+h) p ( %)
(-4): (15)

G (0) = €7 (33Da/2450) gp ( %)
+62(25DA/2 5h) p T( )

4 o5 9Da/2+3k) gp (
B

1 e5(9Da/2-3h) T(

4 o3 (Da/2Hh) gp (+%)

4 e3(Da/2=h) gp (_%)7 (16)
where r = n — 2. Thus, the recursion relations are
given by scaling the partial partition functions by
gm(0), we get
Y, = gm(+3) 1 [ 2(15.+25D4/2+5h) yP

gm(0) YO !

n o5 (~15J+425D4 /2~ 5h)Xp+ez(9J+9DA/2+3h)Xp

+ o5 (~9J+9D4 /2~ 3h)Xp+62(3J+DA/2+h)Xp

T eg(_3J+DA/2_h):|7 (17)

Y, = gm(—3) 1 [ez( 15J+25DA/2+5h)X;D
gm(o) YO
+ 62(15J+25DA/2 5h)Xp+e§( 9]+9DA/2+3h)X3

+ e§(9J+9DA/2—3h)Xza_1_e2,( 3J+DA/2+h)Xp

n eg(BJ-&-DA/Q—h)}’ (18)

Y, = gm (+2) _ 1 [eB(5J+25DA/4+5h/2)Xp
grn(o) Yo !
 B(=BIH25D4/4=5h/2) X | (S(3I+9Da/4+3h/2) XD

4 @F(=BIHIDA/A=3N/2) XP 4 (B(I+Da/4+h/2) P

n eﬂ(*J+DA/4*h/2)i|, (19)

Y, = gm(_2) 1 [ B(— 5J+25DA/4+5h/2)Xp
gnl(o) }6
+ 65(5J+25DA/475}L/2)X§+eﬂ(73J+9DA/4+3h/2)Xp

+ eﬂ(3J+9DA/4—3h/2)X§+eﬁ(—J+DA/4+h/2)X§

n eﬁ<J+DA/4—h/2)}7 (20)

Vs = Gm(+1) _ i[e§(5J+25DA/2+5h)X{)
gnl(o) Yo

4 o5 (—5J+25Da/2— 5h)Xp+ 62(3J+9DA/2+3h)X3

+ e5(73J+9DA/273h)XéIL7 + eg(J+DA/2+h)X§

n eg(*J+DA/2*h):|’ (21)

Yy = gm(—1) _ 1 [eg(—5J+25DA/2+5h)X{)
gm(O) Yo
+ e2(5J/+25DA/2 5h)Xp_|_ eg(—3J+9DA/2+3h)X§

+ e§(3J+9DA/2—3h)XAZ; + ei(—J-‘rDA/Q-i-h)Xg

+ eg(J-i-DA/Z—h)]’ (22)

where
Yy = e,@(25DA/4+5h/2)X{) + eﬂ(ZsDA/4—5h/2)X§

n eB(QDA/4+3h/2)X?z)) T e,@(QDA/4—3h/2)Xf
+ BDa/H/2) P | B(Da/a=h/2), (23)

After having calculated the recursion relations for
spin-5/2 and spin-3, we are now ready to obtain the
magnetization values by using them. The magneti-
zation for the spin-5/2 atoms can be obtained from

M5/2 - 5/2 Z 80 {SO})
{s0}
Z 3 sgelPasithao) gi(s), (24)
{s0}
where
Zsjo =y, P Pasitheo) gi(sy) (25)
{so}

is the partition function in the case when the cen-
tral site is chosen to be a spin-5/2 site. Thus, for
given values of sg, the magnetization is obtained as

My, = 1|:5e§(25DA/2+5h)X‘1 5e 5(25D /2~ 5h)Xq

4367 (QDA/2+3h)Xq Seg(gDA/Q—:sh)Xg

n eE(DA/Q-Q—h)Xg _ ei(DA/Q—h)}

% [eg(25DA/2+5h)Xq+ 05 (25Da/2— 5h)Xq
+ eg(gDA/2+3h)Xg + e§(9DA/273h)XZ

+e§(DA/2+h)Xq+ez(DA/2 h)} 1. (26)

By analogy to all the calculations given above, the
magnetization values for spin-3 sites may be ob-
tained by picking the central site as spin-3 and re-
peating the whole procedure. However, we do not
repeat them and just give the final result as follows

Mz =23 o0 P({oo}) =
{o0}

Z31 N g M Proitheo) ga (5,), (27)
{00}
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where

Zy ="y P Proithor) gh (o)
{00}

is the partition function in the case the central site is

picked to be a spin-3 site. Finally, the magnetization

is given as

M = [3 oBODs +3h)Y1q _ 365(9D3—3h)y2q

(28)

+ 2eB(4DB+2h)Y3q _ 265(4B—Qh)y4q
+ fPrth)ya eB(DB—h)YGq]
% [65(9D3+3h)qu 1 PODs-3)y

+ eB(4DB+2h)Y3q =+ 6’8(4B_2h)YZI

+ P thyd | fDs=hyd | 1} - (29)

Assuming that the bilinear interaction parame-
ter J between spin-5/2 and spin-3 sites is of anti-
ferromagnetic type, i.e., the nearest neighbors are
aligned antiparallel to each other, the total magne-
tization is given as

1
Mr = 3 (M5/2 + M3)7

which will help us to elucidate the compensation
behaviors of our model.

(30)

3. Discussions of the numerical findings

3.1. Ground-state phase diagrams

The zero-temperature phase diagram, or ground
state phase diagram, is crucial in the study of mag-
netic systems. To construct it, we used the internal
energy per site, defined as

1
(DAsl2 + DBsz).

qlJ|

Considering the eigenvalues of type-s and type-o,
we determine all spin configurations and their cor-
responding energies (Table I). By identifying the
values of Dy and Dp that minimize each config-
uration’s energy, we constructed the ground state
phase diagram in the (D4 /q|J|, Dp/q|J|) planes for
all g. As shown in Fig. 2, this phase diagram re-
veals eleven phase configurations, eight multiphase
points, and several multiphase lines. Our results are
qualitatively comparable to those of [38], despite the
latter being based on a square lattice rather than a
Bethe lattice.

EQ = 805 — (31)

3.2. Thermal behaviors of sublattice
magnetizations

This section presents the thermal variations of the
magnetizations M;/, and Mj of the two sublattices,
aiming to establish a correspondence between these
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0 [(1/2,-3), (3/2,-3)
(5/2,-3)
. 1/2,-1
0.5 | (1/2:-2) ( )
- (3/2,-1)
— (3/2,-2)
2
T-1.5¢
]
a
2 (1/2,0)
-2.5
(5/2,0) >
-3 1 1 1
-1.5 -1 -0.5 0
D/l
Fig. 2. Ground state phase diagram of the model

in the (Da/q|J|,Dg/q|J|) plane. Here, ¢ denotes
the coordination number, i.e., the number of nearest
neighbors.

TABLE I

Energies of the different spin configurations of the
ground state phase diagram for the mixed spin-5/2
and spin-3.

Ground state Energy
(5/2,-3) By =3 — 5(3Da+9Dp)
(5/2,—2) By =5~ 17(3Da+4Dp)
(5/2,-1) Es =3 — ;71(3Da+ Dp)
(5/2,0) By = —5257Da

(3/2,-3) Bs =5 — ;57(3Da+9Dp)
(3/2,-2) Be =5 — i(3Da+4Dp)
(3/2,-1) Br =35~ ;57(§Da+9D5p)
(3/2,0) Bs = —g.157Da

(1/2,-3) By =3 — 51(iDa+9Dp)
(1/2,-2) Bio=1— f5(3Da +4Dg)
(1/2,-1) En = %*ﬁ(%DA*FDB)
(1/2,0) B = —g57Da

magnetizations and the various spin configurations
predicted by the ground-state phase diagram ana-
lyzed in Sect. 3.1.

In Fig. 3, the thermal behaviors of the sublat-
tice magnetizations Ms,, and Mj are presented
for various values of crystal fields, D4 and Dp.
It is evident that the anisotropy plays a cru-
cial role in determining the spin configurations at
kT'/|J| = 0. Specifically, for fixed values of D4/|J|
with Dp/|J| = 0.25 (Fig. 3a), the magnetization
of sublattice B, i.e., M3, adopts a single saturation
value M3 = 3.0, while Mj/, exhibits multiple satu-

ration values, namely %, 1, %, 2, and % Similarly,
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T T
D,/lJ|= 0.25

Dy/J|= 0.25

1 (@

k/|J|

Fig. 3.

T T
D,/IJ|= 0.25

D,/lI= -5

KT/|J|

Thermal behaviors of the sublattice magnetizations M5/, and M3z for various values of crystal field

interactions; (a) the curves displayed when Dg/|J| = 0.25 for selected values of D4/|J| and (b) the curves
displayed with D4 /|J| = 0.25 for selected values of Dg/|J|.

(a) q=3

20
15
10

®) q=4

-2 0 2 4 6
D/|J|

8

0

30

20

10

72 0 2 a4
D/|J|

Fig. 4. Temperature-dependent phase diagrams in the (Dg/|J|,kT/|J|) planes for ¢ = 3, 4, 5, and 6. The
solid and dashed lines refer to the second-order and the first-order phase transition lines, respectively. The
dotted curves represent the compensation temperature lines. The solid circles refer to tricritical points.

for fixed values of Dg/|J| with D,/|J| = 0.25
(Fig. 3b), the magnetization of sublattice A, i.e.,
My, takes a single saturation value Ms,, = 2.5,
while M3 presents several saturation values, namely
1,2,2, 5 and 3.

A direct comparison with the ground-state phase
diagram in Fig. 2 confirms a perfect agreement be-
tween the numerical results and the predicted con-
figurations. Furthermore, in both cases, the abso-
lute values of |M3z| and |Mj /2| decrease smoothly as
temperature increases and eventually vanish at the
critical temperature 7T.. These findings align quali-
tatively with previous studies [23, 24], despite dif-
ferences in spin values.
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3.3. Phase diagrams and magnetic properties

The phase diagrams of this study are plotted
in the (D4/|J|,kT) and (Dg/|J|,kT) planes for
given values of Dp/|J| and D4/|J|, respectively.
They include the second-order transition lines (7¢.),
first-order transition lines (7}) creating the mag-
netizations discontinuities, and compensation lines
(Tcomp) Where sublattice magnetizations cancel out.
The solid and dashed lines in the figures represent
T. and T3, respectively, while the red dotted lines
indicate Ttomp. The tricritical points, where the Tt-
and T}-lines merge, are marked by solid circles.
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k(Tc,Tcomp)/lJl

Fig. 5.

K(T T o omp)/ Yl

0 5 10 15

D,/II

Temperature-dependent phase diagrams in the (Da/|J|, kT /|J|) planes for given values of Dg/|J|, as

indicated on the curves, when ¢ = 3. The solid and dashed lines refer to the second-order and the first-order
phase transition lines, respectively. The dotted curves represent the compensation temperature lines. The solid

circles refer to tricritical points.

0@ (b) 019228
0
10 |- 18 0‘.25
= -
= st s : o3
5 g 5F o A
“ = fol S
b HU [ K
= = I 3 ‘/" '
_:g 0 1 |
R ; -15 -1 05 0
0 ’ 0 | | 1 | |
-6 6 -3 0 3 6
D,/

Fig. 6.

Temperature-dependent phase diagrams in the (Dg/|J|, kT /|J|) planes for given values of D4/|J|, as

indicated on the curves, with ¢ = 3. The solid and dashed lines refer to the second-order and the first-order
phase transition lines, respectively. The dotted curves represent the compensation temperature lines. The solid

circles refer to tricritical points.

The first phase diagrams are illustrated in the
(D/|J|,kT/|J|) plane for ¢ = 3, 4, 5, and 6 when
D = D4y = Dp, as shown in Fig. 4. The T;-lines
start at zero temperature for each q and from the
values of D = —22 connect to the corresponding
Te.-lines at their tricritical points. The critical tem-
perature increases with D and saturates beyond a
threshold value of D for each ¢q. The temperatures
corresponding to these lines increase with increas-
ing ¢, which is a well-known behavior. The com-
pensation lines indicate multi-compensation behav-
ior. Specifically, when —2 < D/|J| < «, where
o = —1.49875, —1.97842, —2.4704, and —2.9629 for
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q = 3, 4, 5, and 6, respectively, two compensa-
tion points emerge. Near D/|J| = —4, up to four
compensation points can appear. These different re-
sults confirm that the system presents tricritical and
compensation phenomena for all ¢ values.

The second phase diagrams (Fig. 5) are plot-
ted in the (D4/|J|,kT) plane for different values
of Dg/|J| and ¢ = 3. For Dg/|J| < —1.5, ie.,
for Dg/|J| = —3.0, —2.5, —2.0, —1.75 (Fig. 5a),
the observed critical and tricritical behaviors are
consistent with the trends in Fig. 4. Notably, no
compensation behavior is observed for these values
of Dg/|J|. For Dg/|J| > —1.5, only second-order
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phase transitions occur. In this range, T.-lines be-
come nearly parallel to the Dj/|J]-axis at ex-
treme values of D,/|J|. These lines originate at
lower temperatures for negative values of D,/|J|
and increase with D 4/|J|. Similarly, the transition
temperatures corresponding to these lines increase
with Dp/|J|. Compensation behavior appears for
—1.5 < Dpg/|J| < 1.2125, where a single com-
pensation point is observed when Dg/|J| > —1.5.
These lines emerge from their corresponding crit-
ical lines, decrease gradually, and become nearly
linear as Da4/|J| increases. For Dpg/|J| = —1.5,
multi-compensation behavior occurs, as highlighted
in the inset in Fig. 5a. In particular, in the
vicinity of Dp/|J| —1.5, up to four com-
pensation points can appear, indicating reentrant
behavior.

The last phase diagrams (Fig. 6) plotted in the
(Dg/|J|,kET/|J]) plane are calculated for different
D 4/|J| values and g = 3. As shown in Fig. 6a, for
D4/|J| < 0.0, the first-order phase transition lines
originate at zero temperature from a specific value
of Dp/|J|, then gradually increase and merge with
their corresponding second-order transition line at
tricritical points. This confirms tricritical behavior
for all D4/|J| < 0.0. When D4/|J| > 0.0 (Fig. 6b),
the system exhibits only the second-order phase
transitions. In this regime, the transition lines orig-
inate around Dp/|J| = —7.48 at zero temperature
and increase with Dg/|J|. As observed in the insets,
all the compensation lines originate from the same
specific value of Dg/|J| = —1.5 at zero tempera-
ture for all D4/|J| values, increasing with Dpg/|J]|
and terminating near the critical line. The overall
trends in Figs. 5 and 6 align with previous studies
on mixed spin-(2,5/2) systems [19, 22].

To further illustrate the system’s critical, tricrit-
ical, and reentrant behaviors, the thermal varia-
tions of the sublattice magnetizations for selected
parameter values are presented in Fig. 7Ta-d. The
system transits from the disordered paramagnetic
phase to an ordered phase before reentering the dis-
ordered paramagnetic phase, with first- or second-
order transitions. These figures confirm the exis-
tence of critical, tricritical, and reentrant behaviors
in the investigated system.

Finally, the total magnetization | M| is examined
to distinguish multi-compensation phenomena. As
shown in Fig. 8a—d, one, two, three, or even four
compensation points emerge for specific parameter
values. These findings are in full agreement with the
phase diagrams presented earlier.

3.4. Hysteresis properties analysis

In this section, we have systematically examined
the hysteresis behavior of the system by analyz-
ing the effects of key model parameters, namely the
crystal field values and temperature.
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Fig. 7. Thermal behaviors of the sublattice mag-

netizations |Ms /o], |M3| and total magnetization
| M| for several values of crystal fields D4 /|J| and
Dg/|J|, as indicated in different panels of the fig-
ure, with ¢ = 3. Here, T} and 7. indicate first-order
and second-order transition temperatures, respec-
tively.

First, we investigate the influence of tempera-
ture on the hysteresis behavior while keeping one
of the crystal fields fixed at a specific value and
setting the others to zero, i.e., for Dy/|J| = 0.0
and Dp/|J| = —1.2, as shown in Fig. 9a—f. The
result reveals a multi-hysteresis behavior charac-
terized by a gradual reduction in the number of
hysteresis loops as the temperature increases. For
kET/|J] < 2.5 (Fig. 9a), the system exhibits three
hysteresis loops — a central loop connected to two
lateral loops. As temperature increases within the
range of 2.5 < kT/|J| < 5.0 (Fig. 9b—d), the cen-
tral loop vanishes, leaving only two narrow loops
near zero magnetic field. A further temperature
increase reduces the number of loops to one in
the range of 5.0 < kT/|J| < 5.6 (Fig. 9e). Fi-
nally, at kT/|J| = 5.6 (see Fig. 9f), all hystere-
sis loops disappear as this temperature exceeds
the critical temperature kT./|J| =~ 5.58, beyond
which the system transitions into the paramagnetic
phase. By altering the action of the crystal fields
on the sublattice sites, i.e., for Dy/|J] = —1.2 and
Dg/|J] = 0.0 (Fig. 10a—f), similar hysteresis be-
haviors are observed. However, in this case, a sin-
gle loop appears, whose size and width progres-
sively decrease with increasing temperature before
disappearing.

Next, we analyze the cases where one of the
crystal fields, D4 or Dp, is fixed and the other
varies. In Fig. 11a—f, we present the hysteresis loops
of the total magnetization at the constant tem-
perature kT'/|J| 0.5 and Dy/|J] = —1.0 for
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Fig. 8. Thermal behaviors of the total magnetization |Mr| for various values of crystal fields D /|J| and

Dg/|J| or D/|J| = Da/|J| = Dg/|J|, as indicated in different panels, with ¢ = 3. The model shows one, two,
three, or four compensation temperatures indicated with Tj.
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Fig. 9. Hysteresis properties of the model for

Da/|J| = 0.0, Dg/|J| = —1.2, and given values
of the temperature indicated in different panels of
the figure.

different values of Dg/|.J|. When Dg/|J| > —0.3, a
single hysteresis loop is observed (Fig. 11a). How-
ever, for Dp/|J| < —0.3, a multi-hysteresis be-
havior emerges; the number of hysteresis loops
changes from three to two and then to one be-
fore disappearing as the system enters the param-
agnetic phase (Fig. 11b—f). In Fig. 12a—f, plotted
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Fig. 10. Hysteresis properties of the model for
Da/|J| = —1.2, Dg/|J| = 0.0, and given values
of the temperature indicated in different panels of
the figure.

for Dg/|J| = —1.0 and selected values of D4/|J|,
the observed hysteresis behaviors differ from those
in Fig. 11. Specifically, a multi-hysteresis behav-
ior with three loops appears when D,/|J| > —1.0
(Fig. 12a-b), while for D 4/|J| < —1.0, a single loop
is observed, whose size and width gradually decrease
(Fig. 12c).
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Fig. 11. Hysteresis properties of the model for

kT/|J| = 0.5, Da/|J| = —1, and given values of
Dg/|J]| indicated in different panels of the figure.
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Fig. 12. Hysteresis properties of the model for

kT/|J| = 0.5, Dg/|J| = —1, and given values of
D,/|J| indicated in different panels of the figure.

Finally, we investigate the influence of a uniform
crystal field on the hysteresis behavior at a fixed
temperature value kT/|J| = 2.0 (Fig. 13a—f). As
shown in the figure, the uniform crystal field sig-
nificantly impacts the hysteresis behavior — when
D/|J| > —0.5, a single hysteresis loop is observed,
whereas for —1 < D/|J| < —0.5, three loops ap-
pear. For D/|J| < —1.0, the system reverts to a
single hysteresis loop before it vanishes as D/|J|
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Fig. 13. Hysteresis properties of the model for

kT/|J| = 2.0 and given values of D/|J| indicated
in different panels of the figure.

decreases further. The hysteresis behavior observed
in our model is consistent with previous findings
reported in [19].

4. Conclusions

In this investigation, we employed the exact re-
cursion relations approach to study the magnetic
properties of a mixed spin-5/2 and spin-3 ferrimag-
netic Ising system on the Bethe lattice. Our com-
prehensive analysis of thermal variations of magne-
tizations and phase transitions has led to the con-
struction of complex magnetic phase diagrams. The
key phenomena identified include first- and second-
order phase transitions, tricritical points, multiple
compensation points, and reentrant behavior.

Furthermore, we examined the system’s response
to an external magnetic field, revealing complex
hysteresis phenomena, including multi-loop hys-
teresis cycles. Our findings are in perfect agree-
ment with existing literature, particularly with [22],
which studied a similar spin model with spin-5/2
and spin-2 on a square lattice using the mean-
field approximation. However, our study differs
from [37, 38] in two significant ways: (i) the use
of Bethe lattice, in contrast to the lattice structures
considered in those works, and (ii) the adoption of
an exact recursive approach, which allows for a more
detailed exploration of additional system features,
such as the observed multi-compensation behavior.

To further advance this study, we intend to ex-
plore the impact of next-nearest-neighbor interac-
tions on the magnetic properties revealed herein.
This investigation will be conducted using both
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the recursion relations method and Monte Carlo
simulations, the latter being among the most re-
liable techniques for analyzing complex magnetic
systems.
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