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Unlike conventional materials, which express functionalities by chemical compositions, nanocrystals
generate and manipulate their functionalities by hierarchical structures. Considering optoelectronics,
it is believed that materials with more regular structural arrangements have a stronger potential for
better performance, while the stochastic structure deteriorates performance by dissipating energy �ow
through irregularity. People have therefore put much e�ort into characterizing structural regularity and
stochasticity for better establishment of structure-functionality correlations. Conventionally, multiple
advanced techniques are used collectively to explore structural details, such as electron microscopy for
morphology, X-ray di�raction for crystallinity, and X-ray scattering for domain structures. With for-
tunate achievement of rich structural information, we, as physicists, ask whether a single and simple
parameter can be provided to quantify the structural regularity and stochasticity. Based on renormal-
ization group theory, structures are formed by competing long-range and short-range interactions; thus,
features across a wide range of scales are correlated. There is a hidden link between structures across dif-
ferent scales, which can be quanti�ed by exploring the overlaps between di�erent renormalization group
layers. This type of quanti�cation is embodied in the concept of complexity. Its value corresponds to the
extent to which a given structure di�ers from itself across varying length scales. With it, we successfully
quantify the structural complexity of nanocrystals hierarchically, and it corresponds positively to the
regularity and stochasticity characterized by other methods. And the trend of complexity obtained by
the novel method correlates well with device performance. Namely, higher complexity corresponds to
deteriorated device performance.
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1. Introduction

Even a single image possesses a tremendous
amount of information. From the perspective of
statistics, an 8-bit gray image with 512 × 512 pix-
els is a collection of 262144 individual pixels, each
of which randomly displays a value ranging from
0 to 255. Thus, an image can be considered an
ensemble of random variables with certain proba-
bilistic properties determined by the measured gray
scale histograms [1, 2]. In the context of picto-
rial representation of data, pixels at di�erent lo-
cations are correlated, and the whole image incor-
porates a tremendous amount of structural details
across a wide range of scales. Taking the crys-
tal as a speci�c example, it includes many struc-
tural details, such as phase separation domain size,
domain shape, crystallite orientation, crystallinity,
etc. [3�5]. From a perceptive intuition perspective,
images with wider variation of structural details
and richer collection of structural features are con-
sidered to be more �complex�. Thus, it should be

possible for an analytical concept of complexity
to be extracted from images and used to compare
structures quantitatively [6, 7]. According to pre-
vious studies, the concept of complexity has been
frequently applied to compare the structures of nat-
ural patterns [8], artistic workpieces [6, 9, 10], and
even human faces [11]. In addition, the signi�cance
of the concept of complexity in the research of mi-
crostructures and morphology is widely acknowl-
edged [12�15]. Intuitively, people frequently remark
that scienti�c images with higher complexity indi-
cate stronger irregularity and stochasticity of mi-
crostructures. Such irregularities further deteriorate
the device performance of materials [16].
However, the quantitative analysis of complex-

ity regarding scienti�c images is relatively sparse,
based on our humble observation. Looking closely
into certain scienti�c research �elds, such as organic
solar cells or perovskite optoelectronics [17�20],
nearly all publications contain some scienti�c im-
ages characterizing the structural features of sam-
ples of interest. However, many of these images were
published as intuitive representations of structural
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properties without their quantitative analysis. This
leads to an awkwardness: although clear compar-
isons with robust guidelines can be acquired for im-
ages with di�erent features (i.e., amorphous vs crys-
talline), only qualitative comparisons with vague re-
marks are usually presented for images with similar
features (i.e., samples with similar levels of crys-
tallinity). For instance, we summarize some mi-
crostructural images taken previously, which are
shown in Fig. S1 in the supplementary informa-
tion [21]. Although we can unambiguously point
out that materials at various volume ratios form
di�erent structural characteristics (PBDB-T/ITIC
�lms with 0% 1,8-diiodooctane (DIO), 0.5% DIO,
and 1% DIO), it is hard for us to quantify them
further. To this end, many non-specialized ordi-
nary words (I humbly believe these should not
be used in scienti�c publications), such as �look
like�, �resemble�, etc., are used. This makes it
di�cult to conduct comparisons between struc-
tures with similar, though not entirely identical,
features.
A well-known concept related to �complex� struc-

ture is hierarchy. Unlike the traditional view in
solid physics, where the structures are comprised
of lattice space across all length scales, the hier-
archical perspective assumes that di�erent spatial
features exist across multiple length scales. For in-
stance, in the study of nanocrystals, it is not enough
to only consider the crystal size and shape. In-
stead, we must take comprehensive consideration
regarding size, shape, orientation of crystals, and
even the space between them. Information is not
located at a single length scale, requiring the joint
application of many characterization tools [22�24].
The canonical way of covering these multi-scale
parameters requires many independent measure-
ments and experiments. For instance, electron mi-
croscopy is used to observe crystallite size and
shape [25], X-ray di�raction is used to quantify
the crystallinity [26], grazing-incidence wide-angle
X-ray scattering is used to determine the crystallite
orientation [27], small-angle X-ray scattering is used
to monitor the polydispersity index of size distri-
bution [28]. We remark that the structural param-
eters across a wide range of length scales probed
by the above techniques are correlated hierarchi-
cally [29]. Although a given technique only provides
�apparent� sensitivity to a limited length scale, hid-
den structural information spanning other length
scales can be inferred by in-depth analysis. A telling
observation lies in electron microscopy images of
nanocrystals. Even though the �apparent� struc-
tural features depicted by the electron microscope
are the morphology of nanocrystals (size and shape
of nanocrystals), other smaller-scale structural de-
tails (crystalline ordering and orientation) can still
be inferred with careful analysis. Herein, the linkage
between structural features across di�erent scales
is addressed by complexity. Higher value indicates
greater di�erence across varying length scales.

In this manuscript, we utilized a multi-scale
method to analyze the complexity of scanning
electron microscope (SEM) images with similar
appearances. It is conducive to compare, di�erenti-
ate, and analyze seemingly similar structures. With
the aid of the renormalization group (RG) trans-
formation, we were able to not only extract the to-
tal complexity of the whole image but also quantify
the partial complexity at each coarse-graining scale.
This enables the approach to identify the speci�c
length scale with dominant complexity [8, 30]. In
addition, we established a connection between this
value and other measurements, such as the scatter-
ing measurements.

2. Methods

Inspired by RG theory, a multistep coarse-
graining method by computing the overlap between
neighboring RG layers was utilized to quantify the
complexity of SEM images. Unlike other methods
based on Fourier transformation [31, 32], image en-
tropy [33], or correlation functions [34], this method
directly probes the similarity between neighboring
length scales by coarse-graining. Our intuitive per-
ception of complexity is as follows: a system with
a low level of complexity should possess similar
characteristic structures at di�erent scales, while
a system with a high level of complexity should
exhibit di�erent structures across di�erent scales.
Taking the salt NaCl as an example, it adopts a
cubic unit cell at the nanoscale and similarly ex-
hibits a cubic shape at the macroscale. Although the
structures at the nanoscale and macroscale are ob-
served by distinctly di�erent equipment (e.g., X-ray
di�raction for nanoscale and optical microscopy for
macroscale), the similarity of the images taken at
the nanoscale and macroscale is obvious [35]. This
type of self-similarity is inversely correlated with
structural complexity. In other words, if the shape
of the unit cell at the nanoscale is known, it can be
anticipated that the macroscopic crystals will also
be formed with the same shape.
Based on the above intuitive perception, a quan-

titative de�nition of structural complexity is given.
Any image can be described by a function f(x),
where x is a position vector, corresponding to the
image pixels, and f(·) is the gray-scale intensity.
For such an image, the RG transformation is ap-
plied, and successively coarse-graining patterns are
generated. In this way, the structural complexity is
calculated as follows,

Ck =

∣∣∣∣〈fx
k |fx

k+dk

〉
−1

2

(
⟨fx

k |fx
k ⟩+

〈
fx
k+dk|fx

k+dk

〉 )∣∣∣∣ ,
(1)

where ⟨fx|gx⟩ calculates the overlap of two images
described by f(x) and g(x), and k represents the
scale. Note that �overlap� herein does not denote the
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Fig. 1. (a�c) Field emission scanning electron microscopy (FE-SEM) images of (a�c) CsPbBr3, (d�f)
CsPbBrxI3−x, (g�i) CsPbBrxCl3−x at di�erent temperatures [36]. Reproduced with permission from [36].
Copyright 2017 American Chemical Society.

pictorial meaning of overlap among two structures,
but rather a mathematical notion depicting the sim-
ilarity between f(x) and g(x). The calculation of
⟨fx|gx⟩ is simply the sum of the elements in the
matrix obtained from the Hadamard product of two
matrices representing f(x) and g(x). In this con-
text, the Hadamard product involves element-wise
multiplication of the two matrices, followed by sum-
ming all the resulting elements to compute the �nal
value ⟨fx|gx⟩. The subscripts of fx

k and fx
k+dk rep-

resent the coarse-graining scale of RG layers, so fx
k

means the image used the multistep coarse-graining
method at RG layers = k (the coarse-graining scale
= 2k+1). It is natural that Ck is the quanti�cation of
the overlap between a coarse-grained pattern fk(x)
and a bit coarser version fk+dk(x). Speci�cally,
a value of Ck = 0 indicates that coarse-graining
does not cause spatial variation between fk(x) and
fk+dk(x). On the contrary, a value of Ck > 0 sug-
gests that the structures under di�erent levels of
coarse-graining are di�erent and may contribute

to complexity. Summing up the Ck over all
scales, a multiscale structural complexity C can be
obtained,

C =
∑
k

Ck. (2)

3. Results

Considering that we do not have adequate exper-
tise in terms of fabrication and characterization of
nanocrystals, we decided to borrow published data
from prestigious journals. In this manuscript, all of
the SEM images and X-ray scattering images are
quoted from an article published by some in�uen-
tial scholars in the Journal of Physical Chemistry
Letters [35]. Figure 1 is a collection of SEM im-
ages of a series of perovskite nanocrystals, includ-
ing CsPbBr3, CsPbBrxI3−x, and CsPbBrxCl3−x.
This �gure forms a well-organized matrix for com-
parison: along the column direction, perovskite
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Fig. 2. Structural complexity of CsPbBr3, CsPbBrxI3−x, and CsPbBrxCl3−x at 140◦C, 160◦C, and 180◦C,
respectively.

nanocrystals of all components are thermally an-
nealed at successively increasing temperatures of
140◦C (Fig. 1a, d, g), 160◦C (Fig. 1b, e, h), and
180◦C (Fig. 1c, f, i); along the row direction, per-
ovskite nanocrystals annealed at all temperatures
have di�erent compositions, denoted as CsPbBr3
(Fig. 1a, b, c), CsPbBrxI3−x (Fig. 1d, e, f), and
CsPbBrxCl3−x (Fig. 1g, h, i). Visual inspection
of Fig. 1 reveals that although the morphology
of all compositions annealed at di�erent temper-
atures can be easily di�erentiated along the row
direction, the di�erences among samples with dif-
ferent compositions annealed at the identical tem-
perature are di�cult to de�ne or measure. More
speci�cally, although we can say that the three sam-
ples � CsPbBr3, CsPbBrxI3−x, and CsPbBrxCl3−x

� produce crystals progressively larger in size and
sharper in shape, it is hard to tell the quantita-
tive di�erence between these samples annealed at
identical temperature as a function of composi-
tion. This type of confusion about how to compare
structures with similar features makes us wonder
whether there is any parameter that can be used
for a more quantitative analysis or not. We resort to
the concept of complexity with the aim of structural
quanti�cation. Herein, we utilize the above-devised
multi-length scale complexity measure to analyze
the SEM images and try to establish a quantitative
comparison.

Figure 1 presents a collection of SEM images of
nanocrystals. People often rely on human cognitive
abilities to conclude that the structures in Fig.1c, f, i
are more complex than those in Fig. 1a, d, g. This
type of observation is on the subjective side and
only helps to make a qualitative comparison: (i)
the nanocrystals in Fig. 1c, f, i are characterized
by a broader range of size distributions; (ii) the

shape of nanocrystals in Fig. 1c, f, i changes more
obviously. Although this conclusion is straightfor-
ward and correct, no quantitative comparison has
been made, such as how much more �complex�
the structures in Fig. 1c, f, i are than those in
Fig. 1a, d, g. To address this, we need to �nd a
robust de�nition of complexity, which should for-
mulate the following requirements: (i) it should ag-
gregate information about di�erent length scales;
(ii) it should be analytically de�ned, rather than
relying on subjective intuition; (iii) it must pro-
vide numerical results, capable of distinguishing
closely similar structures. Thus, structural complex-
ity is calculated based on the technique introduced
in Sect. 2.

Figure 2 plots the structural complexity of di�er-
ent images from Fig. 1. It is noteworthy that for all
three compositions, the samples annealed at 180◦C
exhibit signi�cantly higher structural complexity
than their counterparts annealed at lower temper-
atures. This seems surprising in the sense that if
the structural complexity is the highest for 180◦C,
the corresponding regularity should be the low-
est. However, this would contradict the observa-
tion that samples processed at 180◦C exhibit well-
de�ned crystal morphology and signi�cantly larger
crystal sizes compared to those processed at lower
temperatures. This seemingly contradictory conclu-
sion is reasonable, as structural complexity is a com-
prehensive concept that accounts for structural ir-
regularities across multiple length scales. Although
the samples annealed at 180◦C exhibit sharper mor-
phologies and well-de�ned crystal sizes, suggesting
a higher degree of regularity, they also possess crys-
tal boundaries and polydispersity, which conversely
enhances the overall complexity. More insights will
be given in Sect. 4.
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Fig. 3. Grazing-incidence wide-angle X-ray scattering (GIWAXS) images measured from self-assemblies of
spin-coated (a�c) CsPbBr3, (d�f) CsPbBrxI3−x, and (g�i) CsPbBrxCl3−x nanocrystals synthesized at di�erent
reaction temperatures [36]. Reproduced with permission from [36]. Copyright 2017 American Chemical Society.

To make things more interesting, the value of
complexity is not only correlated with the SEM
images, but also with the structural information
obtained by other complementary techniques. Ac-
cording to the original literature, the authors also
investigated these samples using X-ray scattering
and di�raction methods, where the former describes
the mesoscale structure and the latter depicts the
nanoscale structure. Herein, we further explore its
connection with the scattering method. By utiliz-
ing grazing-incidence wide-angle X-ray scattering
(GIWAXS), it is found that the nanocrystals in
samples annealed at higher temperatures arrange
themselves in a more randomly oriented way. As
seen in the last column in Fig. 3, 180◦C sam-
ples all display di�raction rings without much pref-
erential orientation, whereas stronger orientation
preferences are observed at lower temperatures.
In addition to intuitive perception, the calculated

structural complexity derived from the SEM im-
age is consistent with GIWAXS results, where
180◦C samples exhibit signi�cantly higher complex-
ity than those annealed at lower temperatures. This
consistency between complexity from SEM images
and GIWAXS observations further proves the appli-
cability of this novel idea of structural complexity
in the understanding of structures.
The comparison of structural complexity pre-

sented above is conducted on the whole image
without distinguishing the length scale dependence.
Considering that the numerical calculation of com-
plexity is based on the renormalization group (RG)
transformation between coarse-grained images, the
value of partial complexity of each RG layer also
provides meaningful implications about the contri-
bution to the overall complexity from each individ-
ual length scale (see (1)). In other words, it is possi-
ble to identify which level of coarse-grained images
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dominates the overall structural complexity by eval-
uating the partial complexity at each level of length
scale. In practice, if the plot of Ck vs k is drawn,
people should be able to tell which length scale is
the one with the most complexity by �nding the
maximum of Ck. By de�nition, the characteristic
length scale corresponding to the k-th step with
maximum Ck is the length scale at which the image
possesses the most dominant structural features.
To prove the above idea, the relationships be-

tween Ck and k are plotted and displayed in Fig. 4.
Looking closely at the sample of CsPbBr3 at dif-
ferent temperatures, it is found that the sample an-
nealed at 180◦C shows the maximum at k = 4, while
its counterpart annealed at 140◦C shows the max-
imum at k = 2. This indicates that CsPbBr3 an-
nealed at 140◦C exhibits the dominant structural
features at a length scale of 8.464 nm, while the
dominant features increase in size to 33.856 nm
at 180◦C. The actual length scale value above is con-
verted from the coarse-graining scale at k by the re-
lation according to which the length scale is equal to
the coarse-graining scale (2k+1) times the length of
one pixel. For example, if the coarse-graining scale
equals 8 at k = 2, the length scale is 8.464 nm
(8 pixel ×1.058 nm/pixel), where 1.058 nm/pixel
is the calibration standard for the SEM image. Be-
sides, to further prove the suitability of this novel
method, we compared the dominant structural scale
obtained with power spectral density (PSD) calcu-
lated by the Fourier transformation and used the
Lorentz correction method to accurately determine
the peak position of PSD. As seen in Fig. S2 in sup-
plementary information [21], the dominant struc-
tural scales identi�ed by PSD are 12.5 nm and
44.8 nm (calculated by d = 2π

q ), consistent with

the results from structural complexity. Note that
there exists a 20�30% o�set toward shorter length
due to the fact that the partial complexity method
generates discrete values without enough resolution.
The same trend can be observed for samples with
other compositions. Note that CsPbBr3 at 160◦C
exhibits bizarre behavior, where complexity sud-
denly increases at k = 6 due to the impact of large
cracking features.

4. Discussion

With the preceding investigation and discussion,
it becomes clear that structural complexity can
serve as a sensitive probe for quantifying the reg-
ularity and stochasticity of nanocrystals. With its
aid, super�cial perceptive intuition can be cor-
rected, and structural information from di�erent
tools can be bridged. Inspired by the above study
regarding nanocrystal SEM data, we humbly believe
that structural complexity is a more general ap-
proach to quantifying irregularity than crystallinity,
since the latter tends to focus on the local situation

Fig. 4. Partial complexity Ck of di�erent samples
on RG transformation step k. The value of Ck is
normalized to unity for easier comparison. Uncer-
tainty is less than 10%.

of each crystal, without much account for the space
among them. These parameters, including crystal
size, size polydispersity, and crystal shapes, are all
interrelated with structural complexity and signi�-
cantly in�uence its value. Intuitively, samples with
wider size polydispersity and wider shape variation
are considered more �complex�. Also, with the anal-
ysis of partial structural complexity as a function
of length scale, the degree of contribution to the to-
tal complexity from each individual length scale can
also be delineated, and a clearer picture regarding
hierarchical structure can be obtained. The hierar-
chical structure changes at di�erent coarse-graining
scales are shown in Figs. S3 and S4 of the supple-
mentary information [21].
It should be recognized that the structural com-

plexity discussed in this manuscript is not the only
type of complexity. Besides structural complexity,
we extend our investigation toward entropic com-
plexity and Kolmogorov complexity, which have
intrinsic connections, but with a clear di�erence.
Simply put, entropic complexity utilizes Shannon
entropy to calculate the value of complexity and
characterizes the degree of randomness rather than
irregularity [7, 37]. If you do not understand the dif-
ference between randomness and irregularity, imag-
ine the case of white noise. A picture of white
noise possesses the highest level of entropic com-
plexity but with the lowest structural complex-
ity, suggesting the most random but at the same
time regular structure (i.e., any localized areas show
the same level of randomness). With this achieve-
ment, we move further to test whether other types
of complexity as a function of length scale can
also generate inspiring information about regular-
ity and stochasticity in the hope of bringing a novel
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TABLE I
Structural complexity, entropic complexity, and compression ratio of di�erent samples.

Parameter

CsPbBr3 CsPbBrxI3−x CsPbBrxCl3−x

Fig. 1a Fig. 1b Fig. 1c Fig. 1d Fig. 1e Fig. 1f Fig. 1g Fig. 1h Fig. 1i

−140◦C −160◦C −180◦C −140◦C −160◦C −180◦C −140◦C −160◦C −180◦C

structure complexity 0.00696 0.01357 0.02147 0.00914 0.00816 0.03775 0.00989 0.01818 0.0376

entropic complexity 6.2439 7.4599 6.6767 6.6881 6.3810 7.3347 6.5370 6.3935 7.0344

compression ratio 0.5911 0.5857 0.5387 0.6032 0.5633 0.6539 0.6298 0.5229 0.5732

Fig. 5. Comparison of structural complexity, en-
tropic complexity, and compression ratio of di�erent
samples.

perspective for researchers investigating multi-
length scale phenomena. Before diving into this en-
deavor, we have to realize that there exist many
de�nitions of complexity, most of which have a com-
mon weakness: the intuitive feeling of �complex�
versus �simple� is a subjective decision made by hu-
mans, and many de�nitions are based on qualitative
description, rather than quantitative equation. To
this end, we decided to explore only entropic com-
plexity and Kolmogorov complexity, since these two
can be de�ned by tidy equations and quanti�ed nu-
merically without �observer-dependence�. Entropic
complexity was initially quanti�ed by Shannon and
thereafter called Shannon entropy as an alternative
name [7, 37]. The mathematical de�nition is

H = −
∑
x

pxlog2(px), (3)

where px is the probability distribution of pixel in-
tensity x in the investigated image. The resultant
entropic complexity of all images from Fig. 1 is sum-
marized in Table I.

It should be acknowledged that the maximum
of entropic complexity occurs for a system with
equal numerical distribution of each pixel intensity,
namely white noise, and the value reaches 8 [38].
Table I shows that the measured entropic complex-
ity values for the images in Fig. 1 range from
6.2 to 7.5, implying that the structures investi-
gated in our study are not random but have de-
tectable features. Kolmogorov complexity is de�ned
as the length of the shortest computer program
that outputs the information depicting the given
structure [14]. This concept is usually di�cult to
quantify, but the calculation becomes practical for
images. Herein, we utilized the compression ratio
to inversely represent Kolmogorov complexity, de-
�ned as the �le size of the compressed image divided
by the size of the original �le, using the LZMA2
compression method [39]. The compression ratio is
obtained and also tabulated in Table I. It should
be mentioned that white noise is characterized as a
value of 1 in terms of Kolmogorov complexity due
to the fact that no spatial correlation can be es-
tablished and therefore no meaningful compression
algorithm can take e�ect. For comparison, the re-
sultant values in our study span from 0.52 to 0.66,
i.e., are considerably lower than 1. This clearly in-
dicates that the structures of samples in Fig. 1 are
far from being random because of certain regularity,
thus making the compression algorithm e�ective. To
be clearer, the comparisons of all three complexity
measures are summarized and plotted in Fig. 5. An
evident correlation can be seen between structural
complexity and entropic complexity. On the other
hand, the trend of Kolmogorov complexity evolves
in quite a di�erent manner. This observation def-
initely indicates that structural and entropic com-
plexities are more physically correlated than Kol-
mogorov complexity.

The above discussions about entropic and Kol-
mogorov complexity are only applied to the original
images without RG transformation, thereby deliv-
ering no information regarding hierarchy. We fur-
ther calculated the entropic and Kolmogorov com-
plexity as a function of the RG layer using the
coarse-graining method. It has been found that the
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Fig. 6. Variation of entropic complexity of three
samples with the coarse-graining scales at 140◦C
and 180◦C: (a) CsPbBr3, (b) CsPbBrxI3−x, and (c)
CsPbBrxCl3−x. Uncertainty is less than 8%.

Kolmogorov complexity of all images rapidly re-
duces as a function of the RG layer, leaving the
straightforward comparison of Kolmogorov com-
plexity at transformed layers impossible (see sup-
plementary information [21] for detailed data in
Table S1). Therefore, we only focus on RG layer de-
pendence of entropic complexity in the main text.
Figure 6a, b, and c delineate the trends of entropic
complexity as a function of coarse-graining scale
for CsPbBr3, CsPbBrxI3−x, and CsPbBrxCl3−x, re-
spectively. Clearly, the samples annealed at 180◦C
exhibit a signi�cantly faster decay rate than those
annealed at 140◦C. This observation indicates that
the 180◦C samples are more �complex� than others

due to the fact that they are less similar to them-
selves across multiple length scales, which is con-
sistent with the conclusion drawn from structural
complexity.
Partial entropic complexity exhibits the same

trend with the increase in coarse-graining scale,
which means that although the sample compari-
son is possible, the coarse-graining-dependent en-
tropic complexity is rendered incapable of delineat-
ing spatial correlation among samples. On the other
hand, Kolmogorov complexity is similar to entropic
complexity, but with a comprehensive considera-
tion of both intensity and spatial correlation. Kol-
mogorov complexity in our manuscript is calculated
based on a compression algorithm that looks for re-
dundant intensity modes and repeating spatial pat-
terns. This enables Kolmogorov complexity to quan-
tify the state of regularity and stochasticity of both
natural scenes and man-made structures. A typi-
cal example is crystal and glass. The well-arranged
structure of the crystal is quite ordered and deliv-
ers a lower compression ratio, equal to 0.005729. In
contrast, the randomly arranged structure of glass
does not leave much convenience for the algorithm
to carry on e�ective compression, and the compres-
sion ratio is equal to 0.026852 (see Fig. S5 in sup-
plementary information [21]).

5. Conclusions

This manuscript stresses that regularity and
stochasticity are important parameters for under-
standing the microstructure of nanomaterials. The
extent of stochasticity is quanti�ed by the value of
structural complexity. With the discovery of struc-
tural complexity, we achieve the goal of understand-
ing the intuitive perception of �complex� and �sim-
ple� in a quantitative manner. We are now able
to explore the connection between di�erent length
scales with the help of the RG layering method, even
without the knowledge of the driving force forming
hierarchy. Another bene�t of structural complexity
originates from partial structural complexity, which
allows us to distinguish which length scale is the ma-
jor contributor to the total structural complexity.
With its aid, we can successfully pinpoint the dom-
inant length scale, which is bene�cial for compre-
hending the structure of the material. In addition,
the entropic complexity and Kolmogorov complex-
ity are compared with the structural complexity.
Through the examples in this manuscript, it is sug-
gested that entropic complexity is more relevant to
structural complexity than Kolmogorov complexity.
Overall, three types of complexity are foreseen to
work together, helping to gain more insights regard-
ing complex structures.
See supplementary information [21] for: (i) im-

ages of atomic force microscopy (AFM) heights
of PBDB-T/ITIC �lms with 0% DIO, 0.5% DIO,
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1% DIO, (ii) power spectral density (PSD) calcu-
lated by Fourier-transformation and Lorentz cor-
rection of PSD for sample CsPbBr3 at −140◦C and
sample CsPbBr3 at −180◦C, (iii) images of the sam-
ple CsPbBr3 at −140◦C at the di�erent coarse-
graining scales, (iv) images of the sample CsPbBr3
at −180◦C at the di�erent coarse-graining scales,
(v) table of entropic complexity and compression ra-
tio of di�erent samples as the coarse-graining scale
changes, (vi) representation of crystal structure and
glass structure, partial complexity Ck and partial
Kolmogorov complexity of crystal and glass as a
function of coarse-graining scale.
The data that support the �ndings of this study

are available from the corresponding author upon
reasonable request.
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