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The electronic, thermal, and magnetic properties of zigzag bilayer phosphorene nanoribbons are inves-
tigated using the Green's function approach within the tight-binding model. These materials exhibit a
fully reversible metal�to�semiconductor (or insulator) phase transition when subjected to a perpendic-
ular electric �eld. In the absence of interlayer coupling, the band structure of zigzag bilayer phosphorene
nanoribbons features two non-tilted Dirac cones. However, when interlayer coupling is introduced, two
tilted Dirac cones emerge at the crossing points, exhibiting the lack of electron�hole symmetry. Signi�-
cant tuning of the Fermi velocity and e�ective mass is achieved by adjusting the external bias voltage.
At speci�c critical voltages, electron localization behavior is observed. Thermal and magnetic properties
of zigzag bilayer phosphorene nanoribbons are also studied using the continuum model. Both the Pauli
paramagnetic susceptibility and electronic heat capacity of zigzag bilayer phosphorene nanoribbons are
found to be tunable by modifying the ribbon width and applying an electric �eld. The demonstrated
potential for simultaneous control of thermal and magnetic properties through an experimentally fea-
sible electric �eld paves the way for developing novel thermomagnetic devices based on zigzag bilayer
phosphorene nanoribbons. Additionally, the �exibility of band tunability in zigzag bilayer phosphorene
nanoribbons enhances their potential applications in next-generation optoelectronic nanodevices.

topics: zigzag bilayer phosphorene nanoribbon (ZBLPNR), Pauli paramagnetic susceptibility (PPS),
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1. Introduction

The miniaturization of modern electronic de-
vices has been attracting increasing attention in re-
cent years in the development of low-dimensional
materials. Two-dimensional (2D) materials have
garnered enormous interest due to their exotic elec-
tronic properties and potential applications in nano-
electronics, spintronics, and optical materials. Since
its isolation in 2014 [1, 2], phosphorene, the most
stable phosphorus allotrope with a layered struc-
ture, has been the subject of intense study in the
�elds of optoelectronics [3, 4], magneto-optics [5�7],
and thermoelectrics [8].
Within a phosphorene single layer, each phos-

phorus atom forms covalent bonds with three ad-
jacent phosphorus atoms, creating a folded hon-
eycomb lattice. Additionally, each atom possesses
a non-bonding lone pair of electrons, which con-
tributes to the stabilization of the geometric dis-
tortion [9] and facilitates interlayer van der Waals
(vdW) interactions [10, 11]. The puckered crystal
structure of phosphorene, resulting from sp3 hy-
bridization [12�14], leads to strong anisotropy in

the energy dispersion and, consequently, in the ef-
fective mass of the electrons. This anisotropy in�u-
ences the thermal, electrical, and optical properties
of phosphorene, while also providing high sensitiv-
ity in strain engineering [15, 16].
By exploiting quantum con�nement e�ects, the

direct bandgap in phosphorene can be tuned by
varying the number of layers. More e�ectively, it can
also be adjusted by applying an electric �eld and
strain, bridging the gap between graphene and other
2D materials [17�20]. In analogy with graphene
nanoribbons, further reduction in the dimension-
ality of 2D black phosphorus (BP) in the form of
phosphorene nanoribbons (PNRs) compensates for
the lack of a bandgap in the extended 2D material,
which is fundamental to the development of 2D na-
noelectronics [21�27]. In addition to that, compared
to 2D phosphorene sheets, quasi-one-dimensional
phosphorene nanoribbons provide greater tunability
of structural, electrochemical, and electronic prop-
erties [28, 29]. Therefore, insights into the elec-
tronic, magnetic, and thermal properties of PNRs
are critical for designing next-generation magneto-
electric and optoelectronic devices based on phos-
phorene nanoribbons.
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The electronic, optical, and transport properties
of PNRs are heavily in�uenced by quantum con-
�nement and edge morphology [21�27]. Notably, the
presence of topological edge states in BP nanorib-
bons [25, 27] enhances optical absorption [30�32],
o�ering advantages for photocatalytic and energy
applications [30].
The e�ective mass and Fermi velocity, two excel-

lent �rst-order descriptors in real systems, serve as
a convenient measure of the electronic band struc-
ture, characterizing the density of states and elec-
tron transport based on the common free electron
approximation [33]. These two characteristics are
critical parameters in conventional Fermi liquid the-
ory, governing observable quantities in electronic
systems. Various methods, including electron con-
centration modi�cation [34, 35], strain engineer-
ing [36, 37], electric �elds [38], curvature of the
sample [39], periodic potentials [40], substrate mod-
i�cations [41], and placing metallic planes near the
material [42, 43], have been proposed to modulate
these parameters in 2D materials. The Fermi veloc-
ity modulation can control the energy gap [44], the
Fano factor [45], and the spin [46] and valley [47]
transport in graphene. However, the Fermi velocity
can also be used to create electron guides [42, 43]
and bound states [48] in graphene. In recent years,
the potential for designed modi�cations to alter the
e�ective mass and Fermi velocity, which are the
most important transport quantities for the prac-
tical application of nanoribbons, has been explored.
Thus, modifying and tuning these key parameters in
nanoribbons is a pivotal aspect of optimizing their
performance.
However, despite numerous attempts to �nd an

e�ective and e�cient method for modulating the
Fermi velocity and e�ective mass in 2D materials,
this issue remains unresolved in few-layer phospho-
rene nanoribbons. As we will demonstrate in the
next section, this is feasible and can be implemented
since the e�ective mass and Fermi velocity become
�eld-dependent and can therefore be tuned by ad-
justing the external bias voltage.
Motivated by the recent experimental synthesis

of few-layer phosphorene nanoribbons [24, 29, 49],
we have demonstrated a new avenue to control
the Fermi velocity and e�ective mass of car-
riers in zigzag bilayer phosphorene nanoribbons
(ZBLPNRs). Prior to this, we also obtained the
electronic properties of ZBLPNRs in the pres-
ence of gate voltage. The band gap modulation of
ZBLPNRs by the ribbon width and perpendicular
electric �eld is investigated. We illustrate how one
can isolate the edge state from the bulk contribu-
tion by tuning the external gate potential. Since the
layer number signi�cantly a�ects the physical prop-
erties of 2D black phosphorus multilayers, it is of
both fundamental and practical interest to study
the e�ect of interlayer coupling on these properties.
We explain how interlayer coupling in�uences elec-
tronic structure characterizations, speci�cally the

energy band gap, Fermi velocity, and e�ective mass
of carriers in biased BLPNRs.
Moreover, in the second part of the paper, the in-

terest in studying the thermal and magnetic prop-
erties of low-dimensional materials within scienti�c
and engineering communities [50] compels us to
adopt a comparative perspective to identify both
the orbital magnetic susceptibility and heat capac-
ity (HC) in ZBLPNRs, employing a tight-binding
approach alongside the conventional Green's func-
tion technique. Here, we focus on how the or-
bital magnetic susceptibility and heat capacity in
ZBLPNRs are modi�ed by varying the perpendicu-
lar electric �eld due to changes in the band struc-
ture, which can e�ectively control thermal and mag-
netic properties via an electric �eld. Additionally,
we demonstrate that by altering the width of the
phosphorene ribbons, one can signi�cantly change
both the orbital magnetic susceptibility and heat
capacity of ZBLPNRs.
The remainder of this work is structured as fol-

lows: In Sect. 2, we present a tight-binding model
Hamiltonian for biased bilayer phosphorene and cal-
culate the electronic band structure and density of
states of ZBLPNR under a vertical electric �eld. We
then explain the method used to calculate the or-
bital magnetic susceptibility and heat capacity of
ZBLPNRs, employing the Green's function tech-
nique. Following this, we discuss our numerical re-
sults for the proposed ZBLPNR in the presence of
a perpendicular electric �eld. Finally, in Sect. 3, we
summarize our �ndings.

2. Theory and model

To understand the thermal and magnetic proper-
ties of gated bilayer phosphorene, we �rst consider
its electronic structure. In the following section, we
present a tight-binding (TB) description of the elec-
tronic structure of bilayer phosphorene subjected to
a perpendicular electric �eld.
Since Bernal stacking (also known as AB stack-

ing) is the most energetically stable con�guration
of bilayer phosphorene [51, 52], we examine an
AB-stacked ZBLPNR as illustrated in Fig. 1. The
TB Hamiltonian for electrons, incorporating in-
tralayer and interlayer hoppings between the phos-
phorus atoms in ZBLPNR under a uniform perpen-
dicular electric �eld, is expressed as follows [53�55]

H =
∑
i

Vi c
†
i ci +

∑
i ̸=j

t
∥
ij c

†
i cj +

∑
i̸=j

t⊥ij c
†
i cj . (1)

The �rst term in (1) relates to the sublattice
chemical potential induced by a gate voltage, where
Vi represents the on-site energy at site i. The sec-
ond term accounts for the hopping of nearest neigh-
bors in intralayer interactions among phosphorus
atoms, while the third term describes hopping be-
tween phosphorus atoms in di�erent layers.
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Fig. 1. Schematic illustration of zigzag bilayer
black phosphorus nanoribbon with M = 16 � side
view (panel a) and top view (panel b) � in the
presence of a perpendicular electric �eld E. The
positions of the phosphorus atoms located in the
bottom and top layers are presented by blue and
red circles, respectively. The solid rectangle repre-
sents the unit cell of bulk bilayer phosphorene with
the lattice constants ax and ay, and the dashed rect-
angle denotes the unit cell (u.c.) in the calculation
of the tight-binding model of the nanoribbon.

Further, c†i and cj , respectively, are the creation
and annihilation operators of electrons at sites i and
j, and t∥ij (t

⊥
ij) is the intralayer (interlayer) hopping

energy between sites i and j, and the summation
runs over entire nanoribbon lattice sites.
Here, t1 = −1.21 eV and t2 = 3.18 eV are two

in-plane hopping terms, and t3 = 0.22 eV is the
interlayer hopping term [53] (as shown in Fig. 1).
In the presence of a perpendicular electric �eld, the
four atomic sublayers in BLPNR gain di�erent on-
site potentials, including: V1 = (1/2 + ϵ)V , V2 =
(1/2−ϵ)V , V3 = (−1/2+ϵ)V , and V4 = (−1/2−ϵ)V ,
where V = eE d is the potential energy di�erence
between the top and bottom phosphorene layers,
with e being the elementary charge, E denoting the
electric �eld strength, and d representing the dis-
tance between its sublayers, and ϵ = 0.202 is the
linear scaling factor that accounts for the sublayer
dependence electrostatic potential [56].
It should be noted that for a typical value of

V = 1 eV, a rough estimate obtained using the re-
lation V = eE d (where d = 10.57 Å is the dis-
tance between the outermost layers of the bilayer
(BL) phosphorene structure [52] or in other words,
the interlayer separation of the BL phosphorene),
gives a corresponding electric �eld E as high as
E = 0.09 eV/Å. There have been several theoretical
studies on few-layer phosphorene that have consid-
ered the external electric �elds of this magnitude
or even larger [52�56]. It is known that generating
a huge electric �eld is a big challenge for experi-
ments and probably can be done by ionic gating
and/or polarized interfaces, as proposed in [57]. Of
course, it is interesting that extreme bias voltages

(from −25 to 25 V) have already been used in black
phosphorous thin �lms [58]. It is worth mention-
ing that in the tight-binding Hamiltonian (1), the
screening of the external potential is neglected. If
readers want to learn more about the screening of
the external potential in BLPNRs, we refer to [59].
In Fig. 1, we sketch a BLPNR with zigzag edges.

The conventional unit cell of a bulk BL phosphorene
(solid-orange rectangle) consists of eight atoms with
the lattice constants ax = 3.3 Å and ay = 4.63 Å in
x (zigzag) and y (armchair) directions, respectively.
Here, the unit cell used in the tight-binding calcu-
lations of the ZBLPNR (dashed rectangle) is also
indicated. The respective unit cell width is ax.
To study the band structure properties provided

by our tight-binding model, we �nd its k-space
forms as
H(k) =

∑
k

ψ†
kHk ψk. (2)

In this ribbon geometry, the electron wave vector
along the x-direction (kx) serves as a good quan-
tum number. Thus, by applying Bloch's theorem
and performing a Fourier transformation along the
x-direction, the k-dependent Hamiltonian of the
nanoribbon can be expressed as follows

Hk = H00 +H01 e
− i kxax +H†

01 e
i kxax , (3)

where H00 is the unit cell (intra-unit cell) Hamil-
tonian and H01 describes the coupling (inter-unit
cell) Hamiltonian between neighboring cells, based
on the real space tight-binding model given by (1).

2.1. Tight-binding model for bilayer phosphorene
nanoribbon

In the tight-binding description of bilayer
black phosphorus, one now has to consider 8
sublattices, which we label A, B, C, and D for
the lower layer and A′, B′, C ′, and D′ for the
upper one (see Fig. 1). Therefore, the Hamil-
tonian for bilayer phosphorene, acting on the
spinors Ψ = [ϕA ϕB ϕD ϕC ϕ′A ϕ′B ϕ′D ϕ′C ]

T, is a
k-dependent eight-dimensional matrix

H(k) =

(
HB(k) HBT(k)

HTB(k) HT(k)

)
, (4)

where HB(T)(k) and HBT(TB)(k) are four-
dimensional matrices that describe intra- and
interlayer hopping matrices within the bottom
and top phosphorene layers. The intra-layer and
inter-layer Hamiltonian matrices in momentum
space can be written, respectively, as
HB(k) = HT(k) =

uA tAB(k) tAD(k) tAC(k)

tAB(k)
∗ uB tAC(k)

∗ tAD(k)

tAD(k) tAC(k) uD tAB(k)

tAC(k)
∗ tAD(k) tAB(k)

∗ uC

 (5)

410



Comprehensive Study of Electronic, Thermal and Magnetic. . .

Fig. 2. The one-dimensional (1D) band structures of the system in Fig. 1 with (a�f) di�erent external electric
potential V , in which kx is the wave vector parallel to the zigzag direction.

(with eigenvectors given by [ϕA ϕB ϕD ϕC ]T, and
uA,B,C,D representing the on-site energies, with the
A�C subscripts denoting the four sublattice labels
shown in Fig. 1) and

HBT(k) =


0 0 tAD′(k) tAC′(k)

0 0 tBD′(k) tBC′(k)

0 0 0 0

0 0 0 0

 , (6)

including the couplings between sites located in two
decoupled layers, i.e., lattice sites A, B, C ′, and D′.
A simple calculation shows that the k-dependent
intra-layer (tAB , tAC , and tAD) and inter-layer
(tAD′ and tAC′) coupling contributions can be found
as
tAB(k) = 2t1 e iky/2 cos

(√
3kx/2

)
tAC(k) = t2 e− iky , tAD(k) = 0, tAD′(k) = 0,

tAC′(k) = 2t3 e− i ky cos
(√

3kx
)
. (7)

By identifying the point group symmetry of
the phosphorene layer (which is an orthorhombic
structure with point group C2h), its 2-band model
Hamiltonian is given by H2 =

∑
k c

†(k)Ĥ2(k)c(k)
with

Ĥ2−band =

(
0 f1 + f2

f∗1 + f∗2 0

)
, (8)

in which f1 = tAB(k) and f2 = tAC(k)), which acts
on the spinors

Ψ =
1

2

(
ϕA + ϕD

ϕB + ϕC

)
. (9)

It is easy to show that the energy spectrum of this
2-band model Hamiltonian reads

E =

√√√√t22 + 4

[
t21 + t1t2 cos

(
3

2
kx

)]
cos

(√
3

2
ky

)
,

(10)
which implies the existence of two Dirac cones at

kx = ± arctan

(√
t22 − 4t21
t2

)
, ky = 0, (11)

in 1D-ZBLPNR, for |t2| > 2|t1|.
We begin by presenting the band structure of

ZBLPNRs. Here, we investigate the evolution of the
band structure of ZBLPNRs under the in�uence of
a perpendicular electric �eld. Some of these calcu-
lations can be found in paper [60], but the analy-
sis we present serves as an important guide for the
subsequent discussion of the thermal and magnetic
properties of ZBLPNR.
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The calculated band structures of ZBLPNRs are
shown in Fig. 2. Interestingly, the ZBLPNR exhibits
two nearly degenerate edge states close to the Fermi
energy EF = 0, which are entirely detached from
the bulk bands. These two edge states are quite
similar to the corresponding modes of the zigzag
monolayer phosphorene nanoribbons [25, 61�64].
Moreover, the band degeneracy is lifted due to
sublattice-symmetry breaking, and a band gap can
be easily created by applying an electric �eld per-
pendicular to the structure. The �exible band tun-
ability of ZBLPNR enhances its potential applica-
tions in next-generation optoelectronic nanodevices.
The properties of the edge states in ZBLPNRs

are fundamentally di�erent from those in other 2D
zigzag nanoribbons. In comparison with ZBLPNR
and monolayer zigzag phosphorene nanoribbon
(ZPNR), in the band structure of the graphene and
silicene nanoribbons, the edge modes merge into
the bulk bands at the two Dirac points. As re-
cently addressed by Ezawa [25], the origin of this
decoupled nature of the �at edge modes is the pres-
ence of two out-of-plane zigzag chains coupled by
a relatively strong hopping parameter. Generally,
the edge states projecting to the outermost atoms
of a ribbon in real space are near the Fermi level
EF [25, 65].
As previously noted in [60, 66], the energy gap in-

creases linearly with the applied electric �eld, while
a band gap, in which a pair of midgap bands is
completely separated from the bulk bands, is consis-
tently observed [67�69]. The position of the midgap
bands in the energy diagram of ZBSNRs can be al-
tered by applying a perpendicular electric �eld. In
the results presented here, the controllable phos-
phorus nanoribbons show promise in modulating
the midgap energy bands for the next generation
of semiconductor electronic devices [67�69].
The band gap energy of ZBSNRs is highly de-

pendent on the applied electric potential, allowing
for the engineering of the electronic properties of
ZBSNRs with desired characteristics through the
adjustment of the external electric �eld. This indi-
cates that a complete and fully reversible metal�
to�semiconductor (or insulator) transition can be
observed by tuning the external electric potential,
which can be readily achieved experimentally.
It is worth mentioning that the tight-binding

model Hamiltonian used in this work to calculate
the band structure of bilayer phosphorene nanorib-
bons is based on the three-parameter tight-binding
approximation, while there is a seminal paper that
analyzes the band structure and electronic trans-
port of black phosphorus nanoribbons using the
�ve-parameter TB approximation [62]. If the read-
ers are interested in learning more about the TB
models of phosphorene nanoribbons, please refer to
the work of Taghizadeh Sisakht et al. [62] for a sys-
tematic study. Our �ndings are in agreement with
the results presented in [62], where it was shown
that semiconducting behavior is predicted for PNRs

and that an insulator�metal transition can be ex-
pected when a transverse electric �eld is applied.
Taghizadeh Sisakht et al. [62] also showed that
in zPNRs, an external transverse electric �eld can
remove the overlap between quasi-�at bands. More-
over, it was also reported that the opposite sign of
the two hopping integrals in the phosphorene TB
model is the cause of the creation of a relativistic
band dispersion along the armchair direction.
However, it is crucial to note that developing and

implementing straightforward methods to modulate
the tight-binding hoppings is essential for enhancing
the performance of 2D electronic devices [70�83].
The tight-binding hoppings can potentially be ad-
justed and understood through variations in lattice
parameters, atomic mass, strain e�ects, pressure,
spin-orbit coupling, and more [70]. This tunability
may broaden the range of optical, mechanical, and
electrical properties of these 2D materials for de-
vice applications [71, 72]. It has been demonstrated
that the strengths of di�erent hopping parameters
can be relatively easily tuned by incorporating ul-
tracold fermionic atoms in optical lattices, using
a dimerization term de�ned by altering the hop-
ping amplitude [73]. By modifying the hopping inte-
grals between atoms, the Dirac cone can be gapped,
transforming it into a 1D topological insulator or a
trivial insulator [73, 74].
Among the tight-binding hopping integrals in

two-dimensional van der Waals heterostructures,
tuning and exploiting interlayer coupling can be ef-
fectively achieved through various means. However,
understanding how to precisely control the local in-
terlayer coupling remains an ongoing challenge that
must be addressed experimentally. A wide array
of methods and applications for tuning interlayer
coupling has been developed. Meng et al. [75, 76]
describe a straightforward method to modulate in-
terlayer coupling by adsorbing single-molecule mag-
nets onto twisted bilayer graphene. They demon-
strated that the magnitude of interlayer coupling
can be enhanced through the adsorption of single-
molecule magnets on twisted bilayer graphene [77].
Furthermore, it has been shown that the magnitude
of interlayer coupling can be adjusted by the local
coverage density of molecular adsorption [77]. Zhu
et al., in a recent study [78], proposed a simple, ef-
�cient, and well-controlled technique to enhance in-
terlayer interaction in heterostructures, where the
interlayer interaction is tuned from weak to strong
coupling via laser irradiation. Moreover, extensive
analysis has been conducted for experimentally con-
trollable interlayer coupling to achieve strong val-
ues in ultracold atom systems [79]. Recently, in a
similar study [79], it was shown that the orbital
susceptibility of T-graphene reveals a diamagnetic�
to�paramagnetic phase transition by tuning the
hopping parameters.
On the other hand, the sign of the interlayer cou-

pling is also signi�cant, as considering a negative or
positive value for hopping energy leads to dramatic
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Fig. 3. (a) The highest valence band (HVB) and
the lowest conduction band (LCB) for ZBLPNR
with M = 16, in the absence of the electric �eld
(V = 0) and with (t3 = 0, red curve) and without
(t3 = 0.22 eV, blue curve) the interlayer coupling.
Panels (b) and (c) show a zoomed view of panel
(a) for the highest and lowest bands near the zero
Fermi energy in the vicinity of the high symmetry
points kx = ±π/2.

di�erences in physical characteristics [81, 82]. For
instance, a negative hopping case results in an
insulator-like self-energy, while positive hopping
leads to metallic behavior [83]. Thus, the sign of
the hopping integral plays a crucial role in deter-
mining its electronic and magnetic properties. So,
given the signi�cance of the varying interlayer cou-
pling in vdW-coupled 2D materials, it is essential to
investigate the evolution of interlayer coupling in bi-
layer phosphorene nanoribbons. As will be demon-
strated, the interlayer interaction can substantially
alter both the electronic and magnetic properties of
ZBLPNRs.
However, to explore the occurrence of Dirac

cones in the electronic band structure of the sys-
tem, in Fig. 3 we show the highest valence band
(HVB) and lowest conduction band (LCB) near
the Fermi energy (EF = 0) for a ZBLPNR. In
Fig. 3a, the HVB and LCB for the ZBLPNR with
M = 16 are shown in the absence of the electric
�eld (V = 0), with (t3 = 0, red curve) and without

Fig. 4. Energy gap of bilayer phosphorene
nanoribbons with widths M = 12 and 24 as a
function of the interlayer hopping parameter t3 for
various bias voltage V .

(t3 = 0.22 eV, blue curve) the interlayer coupling.
Panels (b) and (c) show a zoomed view of panel (a)
for the highest and lowest bands near zero Fermi
energy in the vicinity of the high symmetry points
kx = ±π/2. As depicted in Fig. 3b and c, the band
structure of ZBLPNR exhibits two Dirac cones at
zero Fermi energy. These gapless edge states in
ZBLPNRs arise from the original edge states. It
is important to note that in the presence of t3
(see Fig. 3b), the low-energy band structure of a
ZBLPNR has two tilted Dirac cones, while in the
absence of t3 (see Fig. 3c), the two Dirac cones
are non-tilted. Besides, the bands above and be-
low the Fermi level are not symmetric even near
the Dirac point � there is no electron�hole sym-
metry in the band structures for both limits of t3.
We �nd that as t3 is increased, the Dirac cones
become more tilted, while, as it is decreased, the
Dirac cones become less tilted and shift continu-
ously to the point kx = ±3π/2, and �nally dis-
appear. Moreover, near the zero Fermi energy, the
bands above and below the Fermi level are not
symmetric, which leads to particle�hole asymmetry.
The tilted Dirac cone electronic structure is similar
to that of 8-Pmmn borophene [84] and graphene
under uniaxial strain [85].
It is instructive to study the changes in the band

structure of the 1D ZBLPNRs, especially the energy
gap of the ZBLPNRs, by changing the interlayer
hopping in a continuous manner, with t1 and t2 be-
ing �xed. Figure 4 shows the energy gap Eg of the
ZBLPNRs with widthsM = 12 and 24 as a function
of the interlayer coupling t3. As can be seen, for a
�xed potential, the energy gap decreases as the in-
terlayer coupling increases. However, including the
interaction term (considering the van der Waals in-
teraction between layers), the energy gap decreases
linearly with increasing interlayer coupling.
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Here, we study the in�uence of �nite-size e�ects
on the electronic band structure of BLPNRs by
plotting the density of states (DOS). The electronic
density of states at energy E can be calculated by
means of tracing over the imaginary part of Green's
function G(k, E) as follows

D(E) = − 1

πNc

M∑
α=1

∑
k

Im [Gαα(k, E)] , (12)

where, based on the Hamiltonian H, the Green's
function matrix G(k, E) would be given by aM×M
matrix as G(k, E) = (E −H + iη)−1, where η is a
positive in�nitesimal number.
Figure 5 displays the calculated DOS for a

ZBLPNR with M = 12 (panel (a)) and a ZBLPNR
with M = 16 (panel (b)) for various electric poten-
tials. When the applied gate voltage is zero (V = 0),
the DOS shows a sharp peak around zero energy
corresponding to zero-edge states compared to bulk
states (see insets). Similar to the ZPNR [86], when
the applied gate voltage is zero, the local density of
states (LDOS) shows a sharp peak around zero en-
ergy corresponding to edge states compared to bulk
states.
As it is well known, the electrons are con�ned

to a discrete set of energy levels along the x−axis.
This produces a set of one-dimensional subbands
and what are known as van Hove singularities in the
density of states for a ZBLPNR, which is an impor-
tant characteristic of 1D in�nitely periodic systems
in the density of states at band extrema.

2.2. Tuning the Fermi velocity and e�ective mass
in bilayer phosphorene nanoribbons via an

external electric �eld

Here, we show that the primary transport char-
acteristics of mobile charge carriers, referred to
as carrier Fermi velocity and e�ective mass in bi-
layer phosphorene nanoribbons, can be e�ectively
tuned by an electric �eld. Numerous semiconduc-
tor physics models (both semi-classical and quan-
tum) are based on the band structure de�ned by
the e�ective mass parameter [87, 88]. The e�ective
mass calculations derived from the band structure
represent the most e�ective method for accurately
predicting the optical and transport properties of
semiconductors. In this regard, experiments indi-
cate that, in addition to e�ective mass, Fermi ve-
locity also plays a crucial role in electronic trans-
port, and by manipulating it, one can control
the transport characteristics in semiconductor de-
vices [89]. Furthermore, the potential to modify
the Fermi velocity and e�ective masses of electrons
and holes signi�cantly impacts quantum transport
measurements [87, 88].
The relationship between band dispersion and

charge carrier mobility is formalized through the
calculation of e�ective mass, which, along with

Fig. 5. Densities of states (DOS) calculated for (a)
ZBLPNR with M = 12 and (b) ZBLPNR with
M = 16. For better clarity, DOSs around zero en-
ergy (E = 0) are shown in the insets.

scattering time, τ , can be utilized to estimate
charge carrier mobility µ = e τ/m∗, determined
using the constant relaxation time approximation
(CRTA). Consequently, when combined with the
carrier density n, the electrical conductivity be-
comes σ = n e2τ/m∗. In the free electron model, the
electronic and optical properties typically describe
charge carriers as possessing an e�ective mass m∗

and a relaxation time τ . To understand the afore-
mentioned features, we rely on the intuition based
on the Drude formula with an e�ective mass ten-
sor σ ∼ 1/m∗. Thus, calculating the e�ective mass
from band structure calculations is vital for accu-
rately predicting transport.
Its values, however, known from scienti�c liter-

ature for a given semiconductor material, usually
di�er considerably from one another. Experimen-
tally, the e�ective masses are usually determined
by cyclotron resonance, electro-re�ectance measure-
ments, or from analysis of transport data or trans-
port measurements [89].
There are a number of algebraic de�nitions for

the e�ective mass that can be used to calculate it
from the band dispersion relation E(k), which can
be obtained, for example, from ab initio electronic
structure calculations. The in�uence of the applied
electric �eld on the e�ective masses of carriers is
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investigated using the conventional de�nition of ef-
fective mass, which we will refer to as the curvature
e�ective mass. It can be derived alternatively from
Newton's second law [90, 91] by discretizing the sec-
ond time derivative by the second-order derivative
of energy with respect to wavevector
1

m∗ =
1

ℏ2
∂2E

∂k2
. (13)

Furthermore, given the band structure described
previously, the carrier velocity is calculated by
taking the derivative of energy over the wave
vector

v(k) =
1

ℏ
∂E

∂k
. (14)

However, it was noted that the e�ective mass ob-
tained from a particular band structure depends
on the approach used to numerically evaluate (13).
To compute the derivatives to an arbitrary or-
der of accuracy, one can use a particular conven-
tional scheme, i.e., the �nite-di�erence derivative
approximation. A �nite di�erence can be central,
forward, or backward. In this regard, the �rst
derivative with a third-order accuracy and the sec-
ond derivative with a second-order accuracy are as
follows [92]

f ′(x0) ≈
1

h

[
−11

6
f(x0)+3f(x1)−

3

2
f(x2)+

1

3
f(x3)

]
+O(h3),

f ′′(x0) ≈
1

h2

[
2f(x0)− 5f(x1) + 4f(x2)− f(x3)

]
+O(h2), (15)

in the forward �nite di�erence approximation,
where h represents a uniform grid spacing between
each �nite di�erence interval, with xn = x0 + nh.
In low-energy physics, we are often interested in

the dispersion of eigenstates close to the conduc-
tion or valence band extremum. Figure 6 shows the
evolution of the electron velocity in the highest va-
lence band and the lowest conduction band near
the Fermi energy for ZBLPNRs with M = 16 in
the �rst Brillouin zone, with and without the in-
terlayer hopping parameter t3. Panel (a) shows the
results for zero electric �eld (V = 0), and panel (b)
for nonzero electric �eld (V = 0.5 eV). As can be
seen, in the absence of the electric �eld and with
t3 being zero or nonzero, the carrier velocity is
zero in a wide region of the �rst Brillouin zone,
which gives rise to localized electronic states in the
ZBLPNRs.
We next consider how carrier reciprocal e�ective

mass is varied in the �rst Brillouin zone of the recip-
rocal lattice in 1D ZBLPNRs. Figure 7 shows the
carrier reciprocal e�ective mass in the HVB and
LCB near the Fermi energy for the ZBLPNRs with
M = 16 as a function of k between 0 and π/ax with
and without the interlayer hopping t3. Note that we
calculate the e�ective mass and velocity of the car-
riers at the band edges, i.e., the conduction band

Fig. 6. The electron velocity in the highest va-
lence band and the lowest conduction band near
the Fermi energy for ZBLPNRs with M = 16 in the
�rst Brillouin zone, with and without the interlayer
hopping parameter t3. Panel (a) shows the result
for zero electric �eld (V = 0), and panel (b) for
nonzero electric �eld (V = 0.5 eV).

minimum (CBM) and the valence band maximum
(VBM). Panel (a) shows the results for zero elec-
tric �eld (V = 0), and panel (b) for nonzero electric
�eld (V = 0.5 eV).
For a better insight into the carrier dynamics in

the Brillouin zone of momentum space, we focus on
the e�ective mass and velocity of carriers (Figs. 6b
and 7b) simultaneously. For the conduction band
(CB) electrons (two solid green curves in Figs. 6b
and 7b), if an electron, initially at rest at k = π/ax,
is accelerated by an electric �eld, it will move to
higher values of k and will become heavier and heav-
ier, reaching in�nity at k = π/4ax. For even higher
values of k, the e�ective mass becomes negative,
heralding the advent of a new particle � the hole.
The sign of the e�ective mass also changes as the
carrier charges pass through the point k = 3π/4ax.
It is worth pointing out that the qualitative trend
of the reciprocal e�ective mass is similar to those
obtained for the carrier velocity (see Fig. 6), i.e., in
the absence of electric �eld, regardless of whether
t3 is zero or not, reciprocal e�ective mass is zero in
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Fig. 7. The carrier reciprocal e�ective mass in the
highest valence band and lowest conduction band
near the Fermi energy for ZBLPNRs with M = 16
in the �rst Brillouin zone, with and without the in-
terlayer hopping parameter, t3. Panel (a) shows the
result for zero electric �eld (V = 0), and panel (b)
for nonzero electric �eld (V = 0.5 eV).

a wide region of the �rst Brillouin zone (1st BZ).
As a result, we can say, according to the electrical
conductivity relation σ = ne2τ/m∗, that in a wide
region of the 1st BZ (near the center of the Brillouin
zone), the carriers are localized.
To make it more intuitive, we plot the reciprocal

e�ective mass (panel (a)) and velocity of carriers
(panel (b)) in the HVB and LCB near the Fermi
energy for a ZBLPNR with widths M = 16 as a
function of the bias voltage. The results are pre-
sented in Fig. 8. It is seen that both the Fermi ve-
locity and the reciprocal mass are �eld-dependent,
and therefore, they can be tuned by adjusting an
external bias voltage. At certain critical bias volt-
ages (Vc ∼ ±0.015 eV for reciprocal mass and
Vc ∼ ±0.015 eV for velocity), regardless of whether
t3 is zero or not, the band edge reciprocal mass and
carrier velocity become zero, i.e., the electrons ex-
hibit a localization behavior. For voltages away from
the critical bias voltage, both the valence band (VB)
and conduction band (CB) show a �nite curvature

Fig. 8. Reciprocal e�ective mass (a) and veloc-
ity of carriers (b) in the highest valence band and
lowest conduction band near the Fermi energy of
ZBLPNRs with widths M = 16 as a function of the
bias voltage.

(�nite e�ective mass), allowing the movement of
carriers whenever an electric �eld is applied. How-
ever, the critical voltage is the same for both the
CBM and VBM, thus, the CBM and VBM wave-
functions are both fully localized over the two lay-
ers. Interestingly, for the conduction-band electrons
(n-doped sample) or VB holes (p-doped sample) in
the limit of zero reciprocal mass (in�nite e�ective
mass), the carriers dwelling on that band will be
immobile leads to the localization of carriers trans-
porting electrical current, something like Ander-
son localization of electronic states, but not due to
disorder and Coulomb e�ects on localized charged
states. On the other hand, a more important re-
sult is the transition from massive (zero velocity)
to massless (nonzero velocity) Dirac fermions and
vice versa, in the critical bias voltage under a ver-
tical electric �eld.
It is well known that the Fermi velocity and/or

e�ective mass tunability are distinguishing features
of nanoribbons (NRs) that make them particularly
promising for many applications. Our approach is a
new venue to control both the Fermi velocity and
the e�ective mass of carriers simultaneously in the
ZBLPNRs, which is experimentally feasible. Our
calculations are in good agreement with the the-
oretical report of e�ective masses in black phospho-
rus [93].
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Fig. 9. Heat capacity of a ZBLPNR with M = 12 (a), M = 24 (b), and M = 48 (c) in terms of temperature
for several values of electric potential V = 0, 1, 2 eV, in the absence (t3 = 0) and presence (t3 = 0.22 eV) of
interlayer hopping parameter.

2.3. The orbital magnetic susceptibility and heat
capacity in ZBLPNRs

Here, we discuss an important component of mag-
netic susceptibility � the Pauli paramagnetic sus-
ceptibility χP . The magnetic moment by the Zee-
man e�ect is
M = µB (n↑ − n↓) , (16)

where µB is the Bohr magneton and n↑ (n↓) means
the electron density with up-spin (down-spin). The
electron density at arbitrary temperature for each
spin is given by

nσ =
1

π

∫
1stBZ

dk
∑
n

1

1 + eβ(ϵn,k−σµBH)
, (17)

where ϵn,k is the sublattice component of the un-
perturbed eigenvalue, with Bloch momentum k and
band index n, where σ(=↑, ↓) means spin index.
Therefore, the Pauli susceptibility χP per site is
given by

χP = lim
T→0

∂M
∂H

=
β µ2

B

πNe

∑
n

∫
dk

cosh (βϵn,k)
, (18)

where β = 1/(kBT ).
For a BLPNR subjected to an electric �eld, the

paramagnetic susceptibility (PPS) and heat capac-
ity (HC) are calculated [94, 95] by energy integrals

C(T ) =

∞∫
−∞

dϵ ϵ D(ϵ)
∂f(ϵ, T )

∂T
, (19)

χ(T ) = −
∞∫

−∞

dϵ D(ϵ)
∂f(ϵ, T )

∂ϵ
, (20)

in which D(ϵ) represents the DOS of electrons and
f(ϵ, T ) = 1/[1 + eβ(ϵ−µ)] is the Fermi distribu-
tion function with the chemical potential µ and
β = 1/kBT .
We numerically calculated the �nite temperature

Pauli susceptibility and electronic heat capacity
of zigzag bilayer phosphorene ribbons using these

equations up to room temperature and higher. Us-
ing (19), (20), and (12), the electronic HC and PPS
of the BLPNRs would be calculated, leading to our
desired result

C(T ) = − 1

4πNcT

×
∑
α

∑
k

Im

 ∞∫
−∞

dϵ
ϵ2 eϵ/T(

1 + eϵ/T
)2Gαα(k, ϵ)

 ,
(21)

χ(T ) = − 1

4πNcT

×
∑
α

∑
µ

∑
k

Im

 ∞∫
−∞

dϵ
eϵ/T(

1 + eϵ/T
)2Gαα(k, ϵ)

 .
(22)

First of all, it is expected that the Pauli suscepti-
bility and heat capacity of zigzag ribbons might be
sensitive to temperature. Figure 9 represents tem-
perature dependent on the heat capacity of the sys-
tem, namely a ZBLPNR with M = 12 (panel (a)),
M = 24 (panel (b)), and M = 48 (panel (c)) in
terms of temperature for several values of exter-
nal electric potential V = 0, 1, 2 eV, in the ab-
sence (t3 = 0) and presence (t3 = 0.22 eV) of inter-
layer hopping. It illustrates that all classes exhibit
the same behavior with respect to the temperature.
The e�ect of the interlayer hopping term t3 is also
shown. The temperature dependence of the PPS
and HC of the ribbons shows that both the PPS
and HC increase dramatically with increasing tem-
perature at low temperatures, and after reaching a
maximum value, they decrease to a minimum value
and remain unchanged at high temperatures, rep-
resenting a known behavior [95]. Also, it can be ob-
served that PPS increases with the increasing width
of the phosphorene ribbons. This thermally assisted
electric �eld control of magnetism opens promising
possibilities for thermomagnetic applications based
on ZBLPNRs.
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Fig. 10. Heat capacity of a ZBLPNR withM = 12
for four �nite temperatures T/t2 = 0.1, 0.5, 1, 3, as
a function of the electric potential.

Fig. 11. The width dependence of the HC for
ZBLPNRs for several values of electric potential
V = 0, 1, 2, 5, 10 eV with T = t2.

Furthermore, we explore the tunability of both
the PPS and HC using a perpendicular electric �eld
(see Fig. 10). This, in turn, creates the possibility of
engineering both the thermal and magnetic proper-
ties by tuning an electrical agent through an elec-
tric potential di�erence. As shown in Fig. 10, the
quenching of the heat capacity occurs at and below
a certain electric potential (V = ±1.25 eV). This
complete suppression of both the PPS and HC us-
ing an electric �eld is another fascinating feature
of the devices based on the ZBLPNRs that opens
a new way for appealing novel magnetic and ther-
mal control schemes in future low-power-consuming
thermomagnetic and spintronic devices. It should
be noted that all of these trends are qualitatively
established for the case of HC (results for PPS are
not shown here).

We further investigate the e�ect of the nanorib-
bon width on the HC of ZBLPNRs. The width de-
pendence of the HC at T = t2 for ZBLPNRs, for
several values of external electric potential V = 0,
1, 2, 5, 10 eV, is shown in Fig. 11. It is clearly seen
that HC increases with increasing width of the rib-
bon. Here again we note that all of these trends are
qualitatively established for the case of HC (results
for PPS are not shown here).

3. Conclusions

The tight-binding model and Green's function
technique have been utilized in order to investi-
gate the electronic, thermal, and magnetic prop-
erties of zigzag bilayer phosphorene nanoribbons
(ZBLPNRs). A band gap is consistently observed
in the energy diagram of ZBLPNRs, characterized
by a pair of midgap bands that are completely de-
tached from the bulk bands. The position of the
midgap bands can be shifted by applying a perpen-
dicular electric �eld. This suggests promising po-
tential for modulating the midgap energy bands in
zigzag phosphorene nanoribbons for the next gen-
eration of semiconductor devices.
The band gap energy of ZBLPNRs depends

strongly on the applied electric potential, allow-
ing for the engineering of their electronic proper-
ties with desirable characteristics through tuning
the external electric �eld. This leads to a complete
and fully reversible metal�to�semiconductor (or in-
sulator) transition that can be readily achieved ex-
perimentally. The �exibility of band tunability in
ZBLPNRs enhances their potential applications in
next-generation optoelectronic nanodevices.
We have also explained the e�ect of interlayer

hopping on the electronic characteristics, speci�-
cally the energy band gap, Fermi velocity, and e�ec-
tive mass of carriers in biased bilayer phosphorene
nanoribbons. In the presence of interlayer hopping,
the low-energy band structure of a ZBLPNR takes
the form of two tilted Dirac cones, while in its ab-
sence, the two Dirac cones are non-tilted. Moreover,
the bands above and below the Fermi level are not
symmetric, meaning there is no electron�hole sym-
metry in the band structures for both limits of the
interlayer coupling. Both the Fermi velocity and the
reciprocal e�ective mass become �eld-dependent,
which allows them to be tuned by adjusting the ex-
ternal bias voltage. At certain critical bias voltages,
the band edge reciprocal masses and carrier veloc-
ities become zero, indicating that the electrons ex-
hibit localization behavior. This phenomenon rep-
resents a transition from massive to massless Dirac
fermions and vice versa.
Next, we have focused on how the Pauli para-

magnetic susceptibility (PPS) and electronic heat
capacity (HC) in ZBLPNRs are modi�ed by chang-
ing the perpendicular electric �eld due to the shift
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in the band structure. The temperature dependence
of the PPS and HC of the ribbons shows that both
PPS and HC increase dramatically with rising tem-
perature at lower temperatures, reaching a max-
imum value before declining to a minimum and
remaining constant at high temperatures, which
re�ects a known behavior. Additionally, both PPS
and HC increase with increasing ribbon width. A
quenching e�ect on PPS and HC is observed at and
below a certain electric �eld. This approach presents
a novel method for simultaneously controlling both
the Fermi velocity and e�ective mass of carriers in
ZBLPNRs, which is experimentally feasible. In ad-
dition, the ability to control thermal and magnetic
properties with an electric �eld opens up possibili-
ties for thermomagnetic and thermomagnetic appli-
cations based on biased ZBLPNRs.
The data that support the �ndings of the study

are available from the corresponding authors upon
reasonable request.
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