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The dynamics of small-magnitude acoustic perturbations in a planar resonator is considered. Fluid
�ow is a�ected by a heating�cooling function, which may disturb its adiabaticity. This concerns open
�ows with an external in�ow of energy and �ows with relaxation of thermodynamic processes, such
as exothermic chemical reaction and excitation of vibrational degrees of freedom of a molecule. These
processes make the �ow acoustically active under some conditions. The heating�cooling function is
supposed to depend on the thermodynamic parameters of the �uid. The dynamics of perturbations in
the volume of a resonator is described analytically by the separation of variables in the wave equation
with an account of proper boundary conditions. Some particular cases of the heating�cooling function
allow us to describe a considerable deviation of the adiabaticity of the �ow analytically.
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1. Introduction

It is well understood that the boundaries of
a vessel over which sound spreads have a key
impact on the distribution of acoustic perturba-
tions in its volume. The spectrum of perturba-
tions becomes discrete in order to match bound-
ary conditions. Physically founded conditions at
the boundaries of a resonator determine the mag-
nitude and phase of the re�ected waves. The at-
tention has mostly been paid to the dynamics of
perturbations in resonators that contain Newtonian
�uids [1�4]. Nonlinearity is important for large-
magnitude perturbations; it has been discussed,
e.g., by Kaner, Rudenko, and Khokhlov [5] and
Rudenko and Soluyan [6]. Waves with discontinu-
ities in the resonators �lled with Newtonian �u-
ids have been considered by Keller [2] and Biwa
and Yazaki [4]. In recent decades, the interest in
acoustically active �ows has been constantly grow-
ing [7�9]. This is connected with the expansion of
the technical applications of open �ows, the quick
development of non-equilibrium molecular physics
due to the laser revolution, and the astrophysi-
cal plasma applications [10]. Finite-magnitude per-
turbations in standing waves in acoustically active
media with losses due to thermal conduction have
been studied by Kumar, Nakariakov, and Moon [11]
using the method of successive approximations.

Special attention is paid to the magnetohydro-
dynamic (MHD) oscillations in the solar atmo-
sphere since they play a key role in plasma heat-
ing and because of the diagnostic potential of these
waves [12]. The standing waves form in the coronal
loops caused by the structuring of plasma across
the magnetic �eld with footpoints as e�ective re-
�ectors. Standing longitudinal oscillations are read-
ily excited by heat deposition or localized variation
of pressure in a volume of the coronal loop. They
are experimentally detected with con�dence by the
Doppler spectrometry [13]. The example considered
by Ofman and Wang [14] refers to the coronal loops
of 400 Mm length. About half of the oscillations
are associated with �ares. As usual, necessary but
not understood physical processes, such as coronal
heating, are included in the model in the general
form that could be determined empirically from ob-
servation [15]. The radiative loss, which is mainly
controlled by the composition of a plasma, also con-
tributes to the heating�cooling function. The con-
clusions, starting from the �rst theoretical studies
(e.g., by Kumar, Nakariakov, and Moon [11]), are
that standing oscillations of slow MHD waves are
highly sensitive to the loss/gain mechanism and re-
veal dramatically variable evolution depending on
the kind of heating�cooling function.
Apart from standing oscillations of slow MHD in

the coronal loops, there are a number of applica-
tions for acoustic oscillations with unspeci�ed in�ow
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of energy and/or internal relaxation processes. The
total �eld of small-magnitude perturbations in the
resonator represents a sum of incident and re�ected
waves that satisfy the boundary conditions. In the
�ow with normal dispersion and attenuation, mag-
nitudes of acoustic perturbations in the resonator
get smaller, but they increase in the acoustically
active regime. In this study, we consider dynam-
ics of small magnitude perturbations of pressure
and velocity in the bounded planar �ow a�ected by
some heating�cooling function exclusively without
account of irreversible damping due to viscosity and
thermal conduction. In the case of a damped �eld
due to loss in energy determined by a loss/gain func-
tion, attenuation di�ers from the Newtonian one
(Sect. 2). This allows the application of the method
of separation of variables to the total �eld in the
volume of a resonator. The analytical description of
standing waves is approximate for small deviation
from adiabaticity and is exact (for weak, medium,
or strong deviation) if the heating�cooling func-
tion depends only on pressure (Sect. 3). Standing
waves in the Newtonian �ow are discussed shortly
in Sect. 4.

2. Small-magnitude perturbations

The starting point of studies are conservation
equations of mass (the continuity equation), mo-
mentum (the second Newtonian law in the absence
of external forces tangential to the surface of the
�uid element), and energy balance of the �uid ele-
ment in the di�erential form
Dρ

Dt
+ ρ∇ ·U = 0,

ρ
DU

Dt
= −∇P,

T
Ds

Dt
=

De

Dt
+ P

Dρ−1

Dt
=

δQ

Dt
= L(P, ρ),

(1)

where P, ρ,U , e, s, T are hydrostatic pressure and
density of the gas, its velocity, internal energy (en-
ergy per unit mass of gas), entropy per unit mass,
and temperature of a �uid element, respectively.
The Del operator is denoted as ∇. The material
derivative D

Dt equals the sum of the partial deriva-
tive with respect to time and the convective term,
i.e.,

D

Dt
=

∂

∂t
+ (U · ∇). (2)

The energy balance takes into account some
heating�cooling function L(P, ρ), which re�ects the
deviation of adiabaticity of the �ow. Actually, it rep-
resents the �rst law of thermodynamics, which con-
�rms that the sum of variations in internal energy
and work of a �uid element along its trajectory in
time Dt equals incoming energy δQ over this tem-
poral domain.

2.1. Perturbations in an ideal gas

The internal energy of an ideal gas depends
only on its temperature. Taking into account the
thermodynamic law for an ideal gas, it equals [6, 9]

e = CV T =
RT

(γ−1)µ
=

P

(γ−1)ρ
, (3)

where R and γ denote the universal gas constant
and the ratio of speci�c heats under constant pres-
sure and constant gas density, i.e., γ = CP /CV .
The molar mass of the gas is denoted by µ. The
approximation of an ideal gas is valid within rea-
sonable accuracy for the majority of gases over a
considerable parameter range around standard tem-
perature and pressure. In general, a gas behaves as
an ideal gas at higher temperature and lower pres-
sure. The model of an ideal gas does not describe
phase transitions, and it fails for heavy gases and
for gases with strong intermolecular interactions,
such as water vapor [9]. The equation of state for an
ideal gas is almost always used in astrophysical ap-
plications related to weakly coupled plasma (solar
corona and atmosphere, interstellar plasma, etc.).
Using the energy balance and the continuity equa-
tion, after some algebraic calculations, we arrive at
the following dynamic equation

De

Dt
+ P

Dρ−1

Dt
=

1

(γ−1)ρ

(
DP

Dt
− γP

ρ

Dρ

Dt

)
=

1

(γ−1)ρ

(
∂P

∂t
+(U · ∇)P+γP (∇ ·U)

)
= L(P, ρ).

(4)

The �rst two equations of (1) together with (4) form
the initial system for unknown �elds, ρ,U , P . In
planar one-dimensional �ow, the velocity �eld has
one component U , and the number of dynamic equa-
tions is reduced from �ve to three. The �ow in terms
of perturbations ρ′ = ρ − ρ0, U, P

′ = P − P0 is de-
scribed by the leading-order equations valid up to
quadratically nonlinear terms

∂ρ′

∂t
+ ρ0

∂U

∂x
= −ρ′

∂U

∂x
− U

∂ρ′

∂x
,

∂U

∂t
+

1

ρ0

∂P ′

∂x
= −U

∂U

∂x
+

ρ′

ρ20

∂P ′

∂x
,

∂P ′

∂t
+ c2ρ0

∂U

∂x
− (γ−1)ρ0 (LPP

′ + Lρρ
′) =

− γP ′ ∂U

∂x
− U

∂P ′

∂x
+ (γ−1)ρ′ (LPP

′ + Lρρ
′)

+(γ−1)ρ0
(
0.5LPPP

′2 + 0.5Lρρρ
′2 + LρP ρ

′P ′) ,
(5)

where partial derivatives LP = ( ∂L∂P )ρ, Lρ = (∂L∂ρ )P ,

LPP = ( ∂
2L

∂P 2 )ρ, Lρρ = (∂
2L

∂ρ2 )P , LρP = ∂2L
∂P∂ρ

are evaluated in the unperturbed state (P0, ρ0).
We refer to constant unperturbed hydrodynamic
perturbations and hence require zero L(P0, ρ0),
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so that L(P, ρ) ≈ LP P ′ + Lρ ρ
′ + 0.5LPPP

′2 +
0.5Lρρρ

′2 + LPρPρ′. Limiting ourselves to consid-
eration of small-magnitude perturbations allows us
to neglect the quadratic terms on the right-hand
sides of (5). This is a reasonable approximation for
small-magnitude �ows with low Mach numbers. The
Mach number is a ratio of the amplitude velocity
to the sound speed. In the planar �ow along axis
x proportional to exp(iωt − ikx) (ω, k designate,
respectively, the frequency and the wave number),
one arrives at the dispersion relation in the frames
of the linear theory [16, 17]

ω2
(
iω−(γ−1)ρ0LP

)
− k2

(
ic2ω−(γ−1)ρ0 Lρ

)
= 0

(6)

with the leading-order solutions corresponding to
two acoustic branches and the entropy non-wave
mode
ω1 = c k− icB, ω2 = −c k− icB,

ωent = i (γ−1)ρ0Lρ/c
2. (7)

In the above expressions, c =
√
γ P0

ρ0
denotes the

sound speed at equilibrium pressure and density,
and B is the decrement/increment coe�cient of the
wave process given as

B =
(γ−1) ρ0

2c3
(c2LP + Lρ). (8)

In the general case of non-zero Lρ, the dispersion re-
lations (7) satisfy (6) with accuracy up to the terms
of order L1

P and L1
ρ. This means that deviation from

adiabaticity is small over the characteristic wave-
length of a perturbation (or during its characteristic
period), |B| ≪ k (|B| ≪ ω/c). Frequency in both
acoustic branches satis�es the algebraic equation

ω2 − c2k2 + 2icBω = 0. (9)

This coincides with (7) and yields a dynamic equa-
tion for any perturbation ϕ in the planar one-
dimensional �ow
∂2ϕ

∂t2
− c2

∂2ϕ

∂x2
− 2cB

∂ϕ

∂t
= 0. (10)

If L is a function of pressure only, ωent = 0, and (9)
and (10) are exact, i.e., they do not represent series
in powers of B and may be applied to moderate and
strong deviations from adiabaticity. In other words,
the dynamic equations for the acoustic and entropy
�elds exactly decouple if Lρ = 0.

2.2. Perturbations in a �uid obeying an arbitrary
caloric equation of state

The conclusions may be readily generalized in the
case of the �uids (including liquids) obeying any
caloric equation of state in the form e(P, ρ), so that
the �rst terms in the Taylor series expansion take
the form

e(P, ρ) ≈ e(P0, ρ0) +

(
∂e

∂P

)
ρ

P ′ +

(
∂e

∂ρ

)
P

ρ′. (11)

In this case, the linear form of the third equation
from (5) reads as follows

∂P ′

∂t
+ c2ρ0

∂U

∂x
=

(
∂e

∂P

)−1

ρ

(LPP
′+Lρρ

′) =

1

T

(
∂s

∂P

)−1

ρ

(LPP
′+Lρρ

′) (12)

with

c2 =

(
∂e

∂P

)−1

ρ

[
P

ρ2
−

(
∂e

∂ρ

)
P

]
=

(
∂P

∂ρ

)
s

. (13)

All partial derivatives with respect to thermody-
namic parameters P and ρ are evaluated in the
equilibrium state (P0, ρ0). In the general case of any
�uid �ow,

ωent = i

(
∂e

∂P

)−1

ρ

Lρ

c2
,

B =
1

2c3

(
∂e

∂P

)−1

ρ

(c2LP+Lρ),
(14)

and the dispersion relation and the dynamic equa-
tion for sound take the forms (9) and (10) with c
and B given by (13) and (14). The van der Waals
gas example refers to the caloric and thermal equa-
tions of state

e =
RT

(γ−1)µ
− ρ

µ2
a,

P

ρ
=

RT

µ

[
1+

ρ

µ

(
b− a

RT

)]
,

(15)

where a and b are the van der Waals constants. That
yields the leading-order expressions [18, 19]

e =
P

(γ−1)ρ
− (γ−2) ρ

(γ−1)µ2
a− P

(γ−1)µ
b,(

∂e

∂P

)
ρ

=
1

(γ−1) ρ
− b

(γ−1)µ
,

(
∂e

∂ρ

)
P

= − P

(γ−1) ρ2
− γ−2

(γ−1)µ2
a,

(16)

and

c2 =
γP0

ρ0
+

(γ − 2) ρ0
µ2

a+
γP0

µ
b,

ωent = i

[
(γ−1)ρ20
γP0

− (γ−1)(γ − 2)ρ40
γ2µ2P 2

0

a

]
Lρ.

(17)

3. Standing waves in a one-dimensional

resonator

Let us consider velocity in the form

U(x, t) = X(x)T (t). (18)

Substituting (18) in (10) and separating functions
of di�erent variables, one arrives at

T
′′ − 2cB T

′

c2T
=

X
′′

X
, (19)
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where the apostrophe denotes the derivative of the
function with respect to its variable. Function X is
responsible for the boundary conditions. Zero con-
ditions at the boundaries of a resonator x = 0 and
x = L yield the di�erential equation and corre-
sponding set of solutions

X
′′
n

Xn

= −λ2
n, Xn = C1,n sin(λnx)+C2,n cos(λnx),

(20)

where C1,n, C2,n are constants, and

λn =
nπ

L
, n = 1, 2, . . . (21)

A set of functions Tn is determined by the di�eren-
tial equation

T
′′
n − 2 cB T

′
n + c2 λ2

n Tn = 0 (22)

and depends on the ratio of |B| and λn, i.e., on the
spectrum of initial perturbation

Tn =



ecBt
[
D1,n exp

(√
B2−λ2

n ct
)

+D2,n exp
(
−
√
B2−λ2

n ct
)]
, if |B| > λn,

ecBt
(
D1,n +D2,nt

)
, if |B| = λn,

ecBt
[
D1,n sin

(√
λ2
n−B2 ct

)
+D2,n cos

(√
λ2
n−B2 ct

)]
, if |B| < λn.

(23)

In (23), D1,n, D2,n are constants determined by ini-
tial perturbations. Equations (9) and (10) impose
weak e�ects by the heating�cooling function over
the characteristic wavelength in the general case
Lρ ̸= 0, so that |B| should be smaller than any
λn that contributes to the spectrum. This condi-
tion is satis�ed for all natural n if |B| < π

L . We
start with a discussion of this case and the border-
line case |B| = π

L if the spectrum contains λ1 (see
Sect. 3.1). The most complex case of weak, moder-
ate, and strong damping of di�erent harmonics in
the initial spectrum will be considered in Sect. 3.2.
The dynamics of perturbations depends on the sign
of B. In the case of positive B, the in�ow of en-
ergy ensures acoustical activity, i.e., enlargement of
their magnitudes in time. Negative B corresponds
to damping (di�erent from the Newtonian one).

3.1. Particular cases of dynamics

3.1.1. Case |B| < π
L

This case re�ects weak attenuation/ampli�cation
over the largest wavelength 2L and, hence, over all
possible smaller wavelengths 2L/n that may con-
tribute to the �eld in the resonator. The general
solution satisfying boundary conditions

U(x = 0, t) = U(x = L, t) = 0 (24)

at any time takes the form

U(x, t) = exp(cBt)

∞∑
n=1

[
Mn sin(

√
λ2
n −B2 ct)

+Nn cos(
√
λ2
n −B2 ct)

]
sin(λnx). (25)

The pressure �eld follows from the conservation of
momentum
∂P (x, t)

∂x
= −ρ0

∂U(x, t)

∂t
, (26)

so that

P (x, t) = ecBtρ0c

∞∑
n=1

[(
BMn−Nn

√
λ2
n−B2

)
× sin(

√
λ2
n−B2 ct) +

(
BNn +Mn

√
λ2
n−B2

)
× cos(

√
λ2
n−B2 ct)

]cos(λnx)

λn
. (27)

The particular solution satis�es the initial condi-
tions

U(x, 0) ≡ Ũ(x) =

∞∑
n=1

Nn sin(λnx),

P (x, 0) ≡ P̃ (x) = ρ0c

∞∑
n=1

(BNn+Mn

√
λ2
n−B2)

λn

× cos(λnx). (28)

The coe�cients in the series are determined by the
Fourier transforms of the initial waveforms as

Nn =
2

L

∫ L

0

dz Ũ(z) sin(λnz),

Mn =
2λn

∫ L

0
dz P̃ (z) cos(λnz)

ρ0 cL
√
λ2
n−B2

− BNn√
λ2
n−B2

.
(29)

For example, let us consider the evolution of only
one lowest harmonics with λ1 = π

L . The constants
ensuring maximum velocity U0 and pressure pertur-
bation P0 over the length of a resonator at t = 0 are

N1 = U0, M1 =
πP0

L −B cρ0 U0

cρ0

√
π2

L2 −B2
. (30)

In the dimensionless quantities

X =
x

L
, T =

πct

L
, b =

BL

π
, (31)

the �eld corresponding to P0 = 0 is

U

U0
= exp(bT ) cos(

√
1−b2 T ) sin(πX),

P

ρ0 cU0
= − exp(bT )

sin(
√
1−b2 T )√
1−b2

cos(πX).
(32)

The dynamics of U and P in antinodes (X = 0.5
and X = 0, respectively) for di�erent b are shown
in Fig. 1.

The period of oscillations in the standing wave
enlarges 1/

√
1− b2 times compared to the case

b = 0. Magnitudes of perturbations increase in
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Fig. 1. The dimensionless perturbations of velocity (a) and pressure (b) as functions of T in antinodes
(X = 0.5 and X = 0, respectively). The case of weak damping and only �rst harmonics in the initial spectrum.

Fig. 2. The dimensionless coordinate X −X0 as a function of X0 and T . Cases b = −0.2 (a), b = 0 (b), and
b = 0.2 (c). All evaluations refer to U0/c = 0.1.

acoustically active �ow with b > 0, remain con-
stant in the neutral case b = 0, and get smaller if
b < 0. The analysis is performed using the Eulerian
variables. The velocity �eld and initial coordinate
X(T = 0) = X0 determine the trajectory, which is
a particular solution to

dX

dT
=

U(X,T )

πc
. (33)

In turn, the trajectory determines acoustic �elds in
the Lagrangian variables. For example, the Eulerian
velocity in the form (32) leads to the separation of
variables X and T in the di�erential equation (33),
and the resulting trajectory

X =
2

π
arctan

(
tan

(
πX0

2

)
exp

(
U0

c
sin(T )

))
.

(34)

The trajectories for di�erent b are shown in Fig. 2.
Once the trajectory is determined, any acoustic

perturbation in the Lagrangian variables takes the
form ϕ(X0, T ) = ϕ(X(X0, T ), T ).

3.1.2. Case |B| = π
L

This particular case corresponds to the moderate
e�ects relating to non-adiabaticity of the lowest har-
monics, if it contributes to the initial spectrum. If

magnitudes of the harmonics with numbers larger
than N are much smaller than magnitudes of all
harmonics with numbers lower than N in the initial
spectrum, the deviation from adiabaticity is weak if
|B| ≤ Nπ

L and the theory is still valid. Let us con-
sider as an example only one lowest harmonics, zero
boundary conditions (24), and B = ± π

L (b = ±1).
The �eld in the resonator is given by

U(x, t) = e±
πct
L (M1 +N1t) sin

(πx
L

)
,

P (x, t) =
ρ0Le±

πct
L

π

(
N1±

πc(M1+N1t)

L

)
cos

(πx
L

)
.

(35)

In particular, coe�cients M1 = U0 and N1 =
π(P0 ∓ cρ0U0)/(Lρ0) ensure maximal initial ve-
locity U0 and pressure P0 over the length of
a resonator. Initial zero perturbation of pressure
yields

M1 = U0, N1 = ∓πcU0

L
. (36)

In dimensionless quantities (31), (35) takes the form

U(X,T )

U0
= exp

(
± T

)
(1∓ T ) sin(πX),

P (X,T )

ρ0cU0
= ∓T exp

(
± T

)
cos(πX).

(37)
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The absolute value of pressure reaches a maximum
at T = 1 if b = −1 and then quickly decreases, in
contrast to velocity, which decreases continuously.
In the case of b = 1, the absolute values of both the
pressure and the velocity increase with time.

3.1.3. Case |B| > π
L

This case can also be applied to |B| > Nπ
L , if

the initial spectrum contains the highest harmonic
number N . For lower harmonics, the ratio of |B|
and the wave number n < N determines the form
of Tn described by (23). Equations (9) and (10) are
assumed to be exact. This means that strong atten-
uation is justi�ed (strictly speaking) if Lρ = 0. The
case of only the lowest harmonics available in the
spectrum, |B| > π

L and boundary conditions (24)
leads to the perturbations in the resonator in the

form

U(X,T ) =
[
M1 e

(b+
√
b2−1)T +N1 e

(b−
√
b2−1)T

]
× sin(πX), (38)

P (X,T ) = cρ0 e
(b−

√
b2−1)T

[
exp

(
2
√
b2−1T

)
×(b+

√
b2−1)M1 + (b−

√
b2−1)N1

]
cos(πX).

(39)
In particular,

M1 =
P0 − (b−

√
b2−1) cU0 ρ0

2cρ0
√
b2−1

,

N1 =
−P0 + (b+

√
b2−1) cU0 ρ0

2cρ0
√
b2−1 (40)

ensure initial maximum velocity U0 and pressure P0

over the length of resonator. In the case of P0 = 0,
the dimensionless solutions are as follows

U(X,T )

U0
=

exp
((
b−

√
b2−1

)
T
) [

b(1− exp(2
√
b2−1T )) +

√
b2−1(1 + exp(2

√
b2−1T ))U0

]
2
√
b2−1

sin(πX),

P (X,T )

ρ0cU0
=

exp
((
b−

√
b2−1

)
T
) (

1− exp
(
2
√
b2−1T

))
2
√
b2−1

cos(πX).
(41)

3.2. Weak, moderate, and strong attenuation of di�erent harmonics of the initial spectrum

If Lρ = 0, we may reasonably consider strong and moderate damping over higher harmonics along with
weak attenuation over lower harmonics of the initial spectrum. Velocity satisfying boundary condition (24)
takes the form

U = U0 exp(bT )

[ n1−1∑
n=1

(
A1,n sin(

√
n2−b2 T ) +A2,n cos(

√
n2−b2 T )

)
sin(nπX) + (C1+C2 T ) sin(n1πX)

+

N∑
n=n1+1

(
D1,n exp(−

√
b2−n2 T ) +D2,n exp(

√
b2−n2 T )

)
sin(nπX)

]
, (42)

if |b| = n1. The corresponding pressure �eld is

P = cρ0U0 exp(bT )

[
n1−1∑
n=1

cos(nπX)

n

(
(bA1,n −

√
n2−b2A2,n) sin(

√
n2−b2 T ) + (A1,n

√
n2−b2 + bA2,n)

× cos(
√
n2−b2 T )

)
+

C2 + b(C1+C2 T )

n1
cos(n1πX) +

N∑
n=n1+1

cos(nπX)

n

(
exp((b−

√
b2−n2)T )

×
(
−
√
b2−n2(D1,n − exp(2

√
b2−n2 T )D2,n

)
+ b

(
D1,n + exp(2

√
b2−n2 T

)
D2,n)

)]
. (43)

If |b| is not equal to some natural n1, the �elds
consist of sums over intervals where |b| < n1 and

|b| > n1. The initial conditions

U(X, 0) ≡ Ũ(X), P (X, 0) ≡ P̃ (X) (44)
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determine the system for unknown coe�cients A1,n,
A2,n, C1, C2, D1,n, D2,n as follows:

� 1 ≤ n < n1,

A2,n = 2

∫ 1

0

dZ
Ũ(Z)

U0
sin(nπZ),

A1,n

√
n2−b2+bA2,n = 2n

∫ 1

0

dZ
P̃ (Z)

cρ0U0
sin(nπZ),

(45)
� n = n1,

C1 = 2

∫ 1

0

dZ
Ũ(Z)

U0
sin(n1πZ),

C2 + bC1 = 2n1

∫ 1

0

dZ
P̃ (Z)

cρ0U0
sin(n1πZ),

(46)
� n1 < n ≤ N ,

D1,n +D2,n = 2

∫ 1

0

dZ
Ũ(Z)

U0
sin(nπZ),

−
√
b2−n2(Kn−D2,n) + b(D1,n+D2,n) =

2n

∫ 1

0

dZ
P̃ (Z)

cρ0U0
sin(nπZ).

(47)

The system (45)�(47) determines the set de�nitely.
The magnitude of perturbations increases if the �ow
is acoustically active (b > 0).

4. Dynamics of perturbations in Newtonian

�ow

Comparative analysis of the small-magnitude
Newtonian �ow in a planar resonator would be in-
teresting. In the case of the Newtonian �ow, dis-
persion relations for acoustic and entropy modes do
not decouple exactly, apart from the case with zero
thermal conduction when the entropy mode is sta-
tionary, ωent = 0. The small-magnitude acoustic
perturbations in the resonator are described by the
approximate equation

∂2ϕ

∂t2
− c2

∂2ϕ

∂x2
− β

∂3ϕ

∂t∂x2
= 0 (48)

valid in the case of weak attenuation, i.e., up to the

terms of order β1 =
(

4µ
3ρ0

+ χ
ρ0

(
1
Cv

− 1
CP

))
, where

µ is the viscosity and χ is the thermal conductivity
of the gas. Equation (48) cannot be solved by the
Fourier method of separation of variables. Consider-
ing that for both acoustic branches, the zero-order

equation reads ∂2ϕ
∂t2 − c2 ∂2ϕ

∂x2 = 0, (48) can be rear-
ranged readily to the approximate equation

∂2ϕ

∂t2
− c2

∂2ϕ

∂x2
− β

c2
∂3ϕ

∂t3
= 0, (49)

which allows for the separation of variables. Associ-
ating φ with velocity and assuming the solution in

the form (18), one arrives at

T
′′ − β

c2T
′′′

c2T
=

X ′′

X
. (50)

Zero boundary conditions at x = 0 and x = L yield
a set of λn and Xn (see (20)�(21)). A set of func-
tions Tn is determined by the di�erential equation

T
′′
n − β

c2
T

′′′
n + c2λ2

nTn = 0. (51)

The approximate solution to it, i.e.,

Tn = e−λ2
nβt/2

[
D1,n sin(λnc t)+D2,n cos(λnc t)

]
,

(52)

is valid for β ≪ c/λn for all characteristic wave-
lengths λn available in the initial spectrum. The
temporal behavior (23) is signi�cantly di�erent
from the one determined by (52). Velocity in the
resonator takes the form

U(x, t) =

n1∑
n=1

e−λ2
nβt/2 sin(λnx)

×
(
Mn sin(λnct) +Nn cos(λnct)

)
, (53)

if n1 is the largest natural quantity that satis�es
the relation n1 ≪ cL/πβ. The pressure �eld follows
from the conservation of momentum, so that

P (x, t) = −ρ0
2

n1∑
n=1

e−λ2
nβt/2 cos(λnx)[

sin(λnct)(βλnMn+2cNn)

+ cos(λnct)(βλnNn−2cMn)
]
. (54)

The set of coe�cients Mn, Nn may be determined
from the initial conditions for velocity and pressure.
The description of the relatively large magnitude

�eld in the resonator requires taking nonlinear ef-
fects into consideration and using special mathe-
matical methods demanding the periodicity of os-
cillations [6]. The second-order solution, which con-
cerns slow-standing MHD waves in coronal thermal
conducting magnetic loops, can be found in [15]. It
overlaps with the one derived by Kaner, Rudenko,
and Khokhlov [5]. The authors of [5, 15] concluded
that the leading-order nonlinear standing wave is a
sum of two identical nonlinear waves propagating
in opposite directions. The evolution of each wave
is governed by the Burgers equation. The velocity
in the resonator represents a sum of two parts, U1

and U2, satisfying equations

∂U1

∂x
+

1

c

∂U1

∂t
− γ + 1

2c2
U1

∂U1

∂t
− β

c2
∂2U1

∂t2
= 0,

∂U2

∂x
− 1

c

∂U2

∂t
− γ + 1

2c2
U2

∂U2

∂t
− β

c2
∂2U2

∂t2
= 0,

(55)

which are readily rearranged into the linear dif-
fusion equations by the Hopf�Cole transformation
and can be solved analytically. The Newtonian at-
tenuation always leads to a decrease in wave energy
and a decrease in the perturbation magnitudes.
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5. Conclusions

The case of the impact of the heating�cooling
function imposes a separation of variables and an
analytical solution. The dynamics of perturbations
in a �ow with the Newtonian attenuation considered
in Sect. 4 resembles that in the �ow with weak devi-
ation from adiabaticity supported by the heating�
cooling function (Sect. 3.1.1), but with important
additional remarks. Magnitudes of acoustic pertur-
bations never increase in the Newtonian �ow but
may increase due to the impact of the heating�
cooling function. Equation (49) is approximately
valid for weak attenuation of all wavelengths avail-
able in the spectrum (even if dynamic equations for
the entropy and sound modes decouple exactly in
the case of χ = 0), while (10) is precise in the
case of decoupling (if Lρ = 0) and imposes exact
analytical solution for medium and strong devia-
tion from adiabaticity as well. As an example of
the heating�cooling function L(P ), we may men-
tion the heating of a high-temperature atomic as-
trophysical plasma by coronal current dissipation
(L ∼ P ) and heating by Alfvén mode/mode con-
version (L ∼ P 7/6) [20, 21]. The details of heating�
cooling mechanisms are continuously updated fol-
lowing novel calculations of atomic data and tran-
sition rates. That makes authors treat a loss/gain
function as a free parameter and discuss only possi-
ble regimes and seismological applications. Most as-
trophysical applications refer to plasma as an ideal
gas, with the exception of planetary and stellar in-
teriors. This concerns weakly coupled plasmas such
as the solar corona, solar atmosphere, interstellar
gas, and thermonuclear reactor plasma. Standing
waves in plasma are very di�cult to describe the-
oretically due to many factors, such as the com-
plex geometry of a loop, nonlinear e�ects, thermal
conduction of plasma, variable background param-
eters [22�24], and the coexistence of slow and fast
magnetosound modes. Ruderman [15] made use of
the model of dynamics of thermoconducting gas in
a one-dimensional resonator and concluded that for
realistic coronal loop parameters, the non-linearity
e�ect must be taken into account only when the
Mach number of the initial velocity perturbation is
su�ciently large, of the order of or larger than 0.2.
In astrophysical applications, thermal conduction is
insigni�cant. Also, the huge lengths of astrophysi-
cal loops (dozens of Mm) make the thermal damp-
ing insigni�cant for fundamental harmonics. In cold
loops with a temperature below 1 MK, the damping
due to thermal conduction is very weak. In the ab-
sence of thermal conduction and nonlinear e�ects,
the theoretical conclusions of this study may be ap-
plied to plasma applications.
In acoustically active �ows, the magnitudes of

perturbations grow and, starting from a certain
point, get too large to be described within the
framework of the linear theory. Viscous, thermal,

and nonlinear damping oppose the growth of mag-
nitudes in real �ows. Temporal decay of harmon-
ics in the course of the Newtonian attenuation de-
pends on the number of harmonics (proportional to
exp(−λ2

nβt/2)), while the impact of the heating�
cooling function leads to the various decay or
growth of all harmonics magnitudes depending on
the ratio of |B| and λn in accordance to (23). The
frequency of harmonics does not depend on the
Newtonian attenuation. The ratio of |B| and λn also
determines periodic or aperiodic behavior of indi-
vidual harmonics (see (23)). The idea comes to mind
to evaluate B by varying the length of a resonator
L based on this peculiarity in temporal behavior.
For example, if |B| = π/L, perturbations over the
length of a resonator vary as (C1+C2t) exp(cBt)
(Sect. 3.1.2). Estimations may be done at the early
stage of evolution, even in the case of strong acous-
tic activity. The small-magnitude perturbations in a
resonator with some loss/gain of energy may be de-
scribed analytically. They are determined by the ini-
tial spectrum and heating�cooling function. Bound-
ary conditions and two initial conditions determine
the �eld at any moment de�nitely. Apart from stan-
dard initial conditions U(x, 0) and ∂U

∂t (x, 0), the ini-
tial conditions U(x, 0) and P (x, 0) (see (28)) are
used. Optionally, both kinds of initial conditions
may be used since they are equivalent.
This study concerns perturbations in a resonator

in the presence of some loss/gain of energy. It would
not hurt to mention some examples of �ows apart
from astrophysical applications, namely �ows of
gases with excited vibrational degrees of freedom
of molecules and �ows of gases with chemical reac-
tions. The �rst example relates to a gas with energy
pumping into the vibrational degrees of freedom of
the molecules [8, 9]. The parameter responsible for
the deviation of adiabaticity, i.e.,

B = − (γ−1)2T

2c3

(
Cv

τV
+

ε−εeq
τ2V

dτ

dT

)
, (56)

is evaluated at unperturbed pressure and tempera-
ture of a gas, Cv = dεeq/dT designates the equi-
librium speci�c heat at constant volume (εeq is
the equilibrium value of vibrational energy, ε), and
τV denotes the vibrational relaxation time. The
non-equilibrium excitation is in principle possible
due to negative dτV /dT . In (56), B is the decre-
ment (or increment, if positive) of acoustic magni-
tudes in the high-frequency oscillations if ωτV ≫ 1,
where ω designates the characteristic frequency of
sound.
In the case of gases in which an exothermic chem-

ical reaction occurs [25, 26],

B =
Q(γ−1)

(
Qρ + (γ−1)QT

)
2c2m

(57)

is a quantity evaluated at unperturbed pressure,
temperature, and mass fraction Y of the reagent
A∗ in the A∗ → B∗ exothermic reactions. Here, Q
is the heat produced in the chemical reaction, and
m is the mass of the molecule. The dimensionless
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quantities QT and Qρ are determined by means of
partial derivatives of Q with respect to temperature
and density of the mixture, respectively, as

QT =
T

Q

(
∂Q

∂T

)
and Qρ =

ρ

Q

(
∂Q

∂ρ

)
. (58)

The characteristic time of chemical reaction is

τC =
HmY0

Q0QY
, (59)

where H is the reaction enthalpy per unit mass
of reagent A∗, QY = Y

Q (∂Q∂Y ). Equation (57) is

valid in the course of the high-frequency excitations
if ω τC ≫ 1. The isobaric entropy mode may be
present in both examples and have a weak impact
on the total �eld and boundary conditions in the
resonator [27, 28].
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