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Based on the two-band time-dependent Ginzburg—Landau theory, we have studied the electromagnetic
properties of mesoscopic s+ is superconductors with different defect configurations. We have performed
our numerical simulations with the finite element method and give direct evidence of spontaneous
magnetization induced by the isotropic defect in this superconducting system. Additionally, regarding
various impurity numbers, we have investigated the influences of the Ginzburg-Landau parameter s
and defect size on the patterns of spontaneous magnetization distribution. Our theoretical results thus
indicate that the defect characteristics will significantly affect the magnetic properties in multiband
superconductors with time-reversal symmetry breaking.
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1. Introduction

The discovery of the superconducting F-doped
LaFeAsO with T, ~ 26 K has caused a boom in
the scientific research on iron-based superconduc-
tivity [1]. Since then, more than 50 new Fe-based
superconductors with similar basic structures have
been reported, with the critical temperature reach-
ing up to 56 K [2]. These materials share some gen-
eral physical properties, and in all known cases, the
Fermi surface in the paramagnetic tetragonal phase
possesses two concentric hole pockets with dom-
inant d,,/d,, character and two equivalent elec-
tron pockets with respectively d,./ds, and d,./dz,
characters [3]. As the second high-temperature su-
perconductor family, the coexistence of multiband
superconductivity and magnetism makes the iron-
based compounds of great value in the exploration
of the microscopic pairing mechanism and potential
applications in spintronics [4-6].

One of the highly interesting problems in iron-
based superconductors is the exploration of the pos-
sible exotic states with broken time-reversal symme-
try (BTRS). For example, as shown by the numer-
ical analysis of the superconducting gap evolution,
an intermediate s+ is state with the relative phase
of order parameters on two hole pockets different
from 0 or m will occur in the strongly hole-doped
Ba;_,K,;FesAsy compound [7]. Later on, the re-
duced s + is Ginzburg-Landau (GL) theory has
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been derived from the three-band Eilenberger the-
ory and the interband repulsive interactions rele-
vant to the Fe-based superconductors [8]. Then, the
ground state, length scales, and topological excita-
tions have been discussed in detail for this two-band
BTRS model. From the perspective of possible ex-
perimental detections, Maiti et al. [9] pointed out
that the angular dependence of the magnetization
distribution is distinct in various BTRS states, and
the spontaneous magnetization can be treated as a
probe to distinguish different pairing symmetries in
the multiband superconductors [9]. Meanwhile, an-
other scheme based on the nonstationary heating
process and the thermoelectric effect is also sug-
gested to probe the s+ is and s+ id superconduct-
ing states in candidate iron-based materials [10].
In the present paper, we study the electromag-
netic properties of mesoscopic s + is superconduc-
tors with the two-band time-dependent Ginzburg—
Landau (TDGL) theory. Based on the symmetry
consideration of the order parameters, the s + is
state with a single isotropic defect is expected to
exclude the spontaneous magnetization in the bulk
system. With the COMSOL Multiphysics software
and the finite element method, we directly demon-
strate the existence of spontaneous magnetization
induced by the isotropic impurity in this mesoscopic
system. Furthermore, we systematically investigate
the influence of GL parameter x and defect radius
R on the magnetization distribution for various im-
purity numbers. Our numerical results indicate that
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the defect characteristics will significantly affect the
magnetization patterns in the multiband BTRS su-
perconductor.

The paper is organized as follows. In Sect. 2, we
introduce the two-band TDGL theory and apply
this formalism to the BTRS s+ is superconductor.
In Sect. 3, we give the procedure of numerical simu-
lations based on the finite element method. Then, in
Sect. 4, we discuss the spontaneous magnetization
induced by different defect configurations in meso-
scopic s+ is superconductors. Finally, Sect. 5 gives
the conclusion of the paper.

2. Theoretical formalism

The weak-coupling GL free energy functional of
a two-gap superconductor can be written as [9-12]

B2
F=F+F+F+ (1)
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Here, F; is the free energy for each band (i = 1,2)
and Fpo is the interaction free energy; W, repre-
sents the superconducting order parameter and m;
is the effective mass for each band; ~; is the pos-
itive phenomenological constant and -3 describes
the gradient interaction between these two bands.
The coefficient «; is a function of temperature,
while ; is independent of temperature. If the inter-
band interaction is neglected, the functional can be
reduced to two independent single-band problems
with the corresponding critical temperatures T,;
and T,.o. Thus, the parameters «; and o can be ap-
proximately expressed as «;(T) = a0 f(r)t;(T)
af(r)(1—T/T,;). Here we introduce a function
f(r) with +1 or —1 to model the impurity sites,
which will deplete the superconducting state at spe-
cific positions [13]. We also define the covariant
derivative operator IT = (—iAV — 2eA/c) with the
vector potential A and the magnetic field B
V x A.

Typically, the iron pnictides are described by
the three-band model, and the three-band super-
conductivity may exhibit the BTRS s + is state,
which will not be present in single- and two-band
superconductors. But as shown in [8], the reduced
s + is GL functional in (1)-(3) can be derived
from the three-band Eilenberger theory and the in-
terband repulsive interactions relevant to the Fe-
based superconductors. Moreover, the coefficients
of the free energy functional in (1)—(3) obey certain

[(H ) TLW, + c.c.} .
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constraints in the s + is phase. Note that for the
energy to be positively defined, the kinetic terms
should give the relation mjmg—~3 < 0. Also, for the
free energy functional to be bounded from below,
the fourth-order terms in the condensates satisfy
the constraint 3182 — (71 + 72)? > 0. Furthermore,
in the phase where both condensates coexist and
the time-reversal symmetry is spontaneously bro-
ken, the parameters in the ground state demand
the extra conditions a1982 — ago(y1 + 2) > 0 and
az0B1 — a10(71 +72) > 0.

If the superconductor is driven out of equilibrium,
the order parameter should relax back to its equi-
librium value. It is well known that this deviation
of superconducting materials can be conveniently
described by the TDGL theories. The single-band
TDGL equations were first proposed by Schmid [14]
and derived from the microscopic Bardeen—Cooper—
Schrieffer (BCS) theory by Gor’kov and Eliash-
berg [15]. The extension of TDGL equations to the
multi-component superconducting system can be
written as [16-18]

oY; OF oF
_ia =TT —On—Qf, = T (4)
t 0v; ot 0A
where I is the relaxation time of order parame-
ters and o, represents the electrical conductivity of
the normal sample in the two-band case. Therefore,
minimization of the free energy F' with respect to ¥;
and A leads to the following dimensionless TDGL
equations in the zero-electrostatic potential gauge
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with the supercurrent
J, = Re( W TIV) + —LRe( W3 TI0,)
ma

(8)

+ M Re( U TI W, + WTIE).
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Here, we introduce the coherence length &2
h%/(2mya1p), the London penetration depth A2
m102/(47re2 Wg) with ¥y = y/a10/P1, and in this
case, the GL parameter k A/€. The coordi-
nate r is in units of £, the time ¢ is in units of
to = myoy,/(4e*¥¢), I is in units of ayoty, and the
order parameter ¥ is in units of ¥,. We also take
the magnetic field B in units of By = @/ (2r?)
with the flux quantum @y = whe/e and the vector
potential A in units of Ag = By&.
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In order to numerically solve (5)—(7), we need
to specify the appropriate boundary conditions of
the superconducting sample. We use the follow-
ing superconductor—insulator (or vacuum) bound-
ary conditions [19-21]

V¥, n=0, A-n=0 and V x A=H,,

(9)
where n is the outward unit vector normal to the
boundary and the external applied magnetic field
is set as H, = H.z. The first two conditions
only indicate that any current passing through the
interface between a superconducting domain and
vacuum/insulator would be nonphysical. The third
equation represents the continuity of the magnetic
field across the boundary. The partial differential
equations (5)—(7) will be solved numerically for the
mesoscopic geometry in the two-dimensional space.
The initial conditions at ¢t = 0 are taken as |¥;| =1
and A = (0,0) on the xy-plane, corresponding to
the Meissner state and zero magnetic field inside
the superconductor.

3. Finite element method and numerical
simulations

Based on the COMSOL Multiphysics software
platform [22], we will describe the procedure of the
numerical simulations on the TDGL equations in
this section. We first split the order parameters into
the real and imaginary parts, i.e., ¥3 = uy + iug
and ¥y = us + ius. The magnetic potential is also
written in component form as A = (us,ug). In or-
der to implement the boundary conditions, we in-
troduce an auxiliary variable u7(x,y,t) for reasons
that will be explained below. In the procedure of
simulations, we set I1 = 215 = 1, a19p = aog,
and v; = 0. To stabilize the s + is state with a

J

BTRS phase difference between ¥; and Ws, we also
assume 1 = B2 = 2792, my = my/2 = ~3/2 in the
calculations.

In this way, we can transform the TDGL equa-
tions into the general form of partial differential
equations in the COMSOL software package

3uk
Xk:ﬂjkﬁ + zl:ﬁszl = nj. (10)

Here, we have j,k =1,2,;7,1 = 1,2 and (01,02) =
(Ox, 0y). The 7 x 7 matrix pj; and the 7 x 2 column
vector v;; take the form

1 0 0 0 0 0 O]
0 1 0 0O 0 0 0
o o 2 0o 0 0 0
pk=10 0 0 & 0 0 0,
0 0 0 0 1 0 0
0 0 0 0O 0 1 0
0o 0 0 0 0 0 0
[ —Ulx — %ng —Uly — %U3y |
U2y %Uélz —U2y — %U4y
%“11 %udm _%uly - %udy
Viji = —JUe — FUar — gy — Sy
0 K2 (ugy — usy — He)
/{2(u5y — ugy + He) 0
L us Ug

(11)
Note that the subscript x or y denotes the partial
derivative with respect to the corresponding vari-
able here. Meanwhile, the driving force 7); contains
all other terms in the TDGL equations except the
left-hand side of (10), and detailed calculations will
give all the components explicitly as

1 1
m = f(z,y)t1(T)us — 3 (Qu% +2u3 4 ui —ui + 2uf + 2u§) w1 + (Usz + ugy) U2 — = (ug + ug) Us

2

= (Use + Usy) Us + (2u2e + Use) us + (2uzy + Usy) Us — U2UzUy, (12)

2

1 1
ne = f(z,y) t1(T)uz — 3 (2uf + 2u3 — uj + uf + 2u? + 2ug) uz — (usy + uey) w1 — = (Use + Usy) Us

2

1
-5 (ug + ug) Us — (2u1g + ussz) us — (2u1y + uzy) Ug — UIUS U, (13)

1 1 1
ns = f(z,y) t2(T)us — 3 (uf —u3 + 2u3 + 2uf +ud +ud) us — = (ud 4+ ug) ur + = (use + ugy) un

1

2 2

+= (usz + Upy) Us + (Uog + Uaz) Us + (Uzy + Uay) Us — U UL U, (14)

2

2

1 1
na = f (2,9 ta(T)ua — 5 (u3 — uf + 2uf + 2uf +uf + ug) us — 5

1
5 (Use + uy) ur — 5 (u? + ug) us

— = (usy + Uey) Uz — (U1g + Uss) Us — (U1y + Usy) Us — UTULUS, (15)

2
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1
5 =3 [(2U2x + Ugz) ur — (U1 + u3e) ug + (Uz + Uae) uz — (Ure + Use) Ug — (21‘% +2u3 + ug +uj

+2ujuz + 2u2u4)U5} ;

1

776:5

+2uqus + 2u2u4)u6} )

N7 = Usg + U6y + u7.

Now, we can examine the boundary conditions in
this formalism. With the normal vector n = (nq,ns)
and the column vector v;;, the boundary conditions
in (9) can be simply cast into the compact form as

Z ny I/jl = O, (19)
l

which is best suited for the COMSOL Multiphysics
simulations. We also note that from the equation
obtained for (j 7) in (10), our manipulations
will give a trivial solution u; = 0 for this auxil-
iary variable, ensuring the self-consistency of our
formalism.

As a powerful computational tool, COMSOL
Multiphysics software can cover a wide range of
scientific and engineering fields and employs the fi-
nite element method to solve the physical govern-
ing equations [23-25]. The starting point for this
method is to subdivide the lattice cell into smaller
subregions, called elements, which are usually cho-
sen to be quadrilaterals or triangles. The second
ingredient in the finite element recipe is to define
a space of piecewise polynomial functions with re-
spect to the subdivision of the lattice cell. The two
most practical choices are continuous piecewise lin-
ear and piecewise quadratic polynomials. The last
ingredient, which is crucial for the efficiency of the
finite element method, is to choose a set of basis
functions that have as small support as possible,
i.e., that are nonvanishing over a small subset of
the lattice cell. In our problem, we select the tri-
angular mesh elements with a total of 1856 trian-
gle units in the grid division. Secondly, we define a
quadratic polynomial function in every subdivision
space and choose the Lagrange shape functions as
the set of discretized basis functions. Finally, we
take the time step At = 10~2t, and treat a simula-
tion as converged when the relative variations of the
order parameters and the vector potential between
two sequential steps are smaller than 1075,

4. Results and discussions

In this section, we will set the external mag-
netic field H, = 0 and discuss the corresponding
spontaneous magnetization induced by the circular

320

[(2u2y + uay) ur — (2ury + uzy) uz + (u2y + uay) uz — (U1y + usy) ug — (2’“? + 2“3 + ug + u?l

(

defects in the mesoscopic s + is superconductor.
Following [13], we have chosen the impurity func-
tion f to take the phenomenological form

N
fr) =11 fa(r) (20)
n=1
with
-1 if |r—ro| <R,
r) = 21
fa(r) { 1 otherwise. (21)
x10-6
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Fig. 1. Spontaneous magnetization induced by a

circular defect with the radius (a) R = 0.2§ or (b)
R = 0.5¢ in the 4£ x 4€ mesoscopic superconductor.
The magnetization only has the component perpen-
dicular to the superconducting plane.
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Fig. 2. Spontaneous magnetization induced by a

circular defect with the radius R = 0.5¢ in (a)
4¢& x 4¢€ or (b) 10€ x 10€ mesoscopic superconductor.
The magnetization only has the component perpen-
dicular to the superconducting plane.

It is easy to see that the impurities are centered
at ron, = (Ton,Yon) With n = 1,2,... N, and the
pinning sites are circular with radius R. According
to the GL functional in (1)—(3), we can prove that
the critical temperature of the multiband supercon-
ductor T, is greater than T.; and T,. We then set
Ta = 09T, Teo = 08T, and T = 0.71, in the
simulations.

To verify the availability of the method, we first
take the impurity number N = 1 and insert this pin-
ning site at the center of the superconducting square
with a size of 4¢ x 4¢. We also set the GL parameter
k = 1 and show the snapshots of the spontaneous
magnetization B, = ug, —us, at t = 103t in Fig. 1.
In Fig. 1a, we can see that our numerical simulation
gives direct evidence of spontaneous magnetization
induced by the isotropic defect with R = 0.2 in
this mesoscopic superconducting system. The max-
imum spontaneous magnetization B]*** associated
with each red (positive) petal is about 3.5x 1075 By,
while the blue (negative) petals give opposite mag-
netic field distributions. Furthermore, we observe
that the obtained pattern complies with the Cy4 ro-
tational symmetry of the square superconducting
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Fig. 3. Spontaneous magnetization induced by (a)

four or (b) eight circular defects with the radius
R = 0.2¢ in the 4£ x 4€ mesoscopic superconductor.
The magnetization only has the component perpen-
dicular to the superconducting plane.

sample. With the increase in the defect size to
R = 0.5¢, as shown in Fig. 1b, the magnetization
distribution extends further away from the pinning
center, and the magnetic field is increased to reach
a maximum value of 4.5 x 1076 B,.

In this aspect, we also discuss the effect of
system size on spontaneous magnetization in the
s + is superconductor. We systematically simulate
the 4¢ x 4¢ and 10¢ x 10¢ superconducting sam-
ples with x = 1 and the pinning radius R = 0.5¢.
The results are plotted in Fig. 2. It can be seen
in Fig. 2 that with the increase in the system size
from 4£ x 4€ to 10 x 10£, the maximum value
of the spontaneous magnetization B}'** decreases
from 4.5 x 10798y to 3.8 x 1079 By. It suggests that
the patterns of spontaneous magnetization arise
from the combined effects of the central impurity
and the sample boundaries.

Furthermore, we also perform simulations on
the spontaneous magnetization induced by multi-
ple circular defects in the BTRS mesoscopic su-
perconductors. For N = 4 and k = 1, we select
the impurity sites at (££,+&) and plot the spon-
taneous magnetization at t = 103¢, in Fig. 3a.
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0.15 0.2 0.25 0.3 0.35 0.4
R
Fig. 4. Variation of the maximum spontaneous

magnetization with (a) the GL parameter s or (b)
the defect radius R for different impurity numbers
in the 4¢ x 4¢ mesoscopic superconductor.

We observe that B, generated around each pin-
ning position exhibits the identical configuration
and its maximum value at red or blue petal is
7.0 x 1076B,. For N = 8, we take the pinning sites
at (£1.2¢,+0.5¢) and (£0.5¢, +1.2€), respectively,
and plot the spontaneous magnetization in Fig. 3b.
In Fig. 3b, it is shown that with the increase
in the impurity number, we can obtain different
patterns of spontaneous magnetization distribution
and BM?* raises to about 1.0 x 107° By under such
conditions.

Meanwhile, we also calculate the maximum spon-
taneous magnetization as a function of the GL pa-
rameter x and the defect radius R for the im-
purity number N = 1,4 8, as mentioned above.
It can be seen in Fig. 4a that for R = 0.2, BJ***
decreases sharply as k increases, and then the three
curves converge to the value of zero when & is suffi-
ciently large. We observe that similar to the single-
band case [26], a larger GL parameter x generally
produces a stronger superconducting order param-
eter or a weaker spontaneous magnetization inten-
sity. Our numerical data also indicate that within
a relatively broad range of k, a larger number of
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S e N W

Fig. 5. Spontaneous magnetization induced by
(a) triangular or (b) quadrilateral defect in the
4€ x 4€ mesoscopic superconductor. The magneti-
zation only has the component perpendicular to the
superconducting plane.

defects always results in greater BY'**. Figure 4b
shows the spontaneous magnetization with respect
to the defect radius R for k = 1. It is easy to see that
B}#* grows with the increase in R, and this trend
becomes more apparent for a higher defect number
due to the decrease in the effective superconducting
area of the material.

For a typical single-band superconductor, the GL
parameter x is an effective phenomenological pa-
rameter that can be used to distinguish between
type-I and type-II superconductors. When we cross
the boundary at x = 1/4/2, it may induce a tran-
sition from the Meissner state to the Abrikosov
vortex phase in the external magnetic field, and
therefore, a dramatic change in magnetic behav-
iors in the superconductor. However, we study the
impurity-induced spontaneous magnetization in the
multiband superconducting system here. The su-
percurrent and local spontaneous magnetization are
generated by the BTRS s + is state. In the whole
range of k, the superconductor will remain in this
state with the algebraic sum of the magnetic field
strength B, in the entire mesoscopic sample equal
to zero. Since neither an applied magnetic field nor
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a phase transition exists in this process, the B}'**
will not show an abrupt variation in this BTRS
system.

At this point, we would also like to discuss the
effect of triangular and quadrilateral defect con-
figurations on spontaneous magnetization. Both of
these impurities have a side length of ¢ and are
placed at the center of 4£ x 4¢ mesoscopic super-
conducting systems. We select the vertex coordi-
nates of the triangular impurity at (0.5¢,v/3£/6)
and (0,—+/3¢/3), and the quadrilateral ones at
(£0.5¢, £0.5¢). We also take the impurity function
f(r) = —1 inside the defects and f(r) = 1 other-
wise. The numerical results with the GL parameter
k = 1 are plotted at t = 103ty in Fig. 5. It can be
seen from Fig. 5 that the maximum values of the
spontaneous magnetization B are 4.2 x 1076 By
and 4.6 x 107%By for the triangular and quadrilat-
eral defects, respectively. For the triangular impu-
rity, we observe the magnetic petals with different
sizes, while in the quadrilateral case, the Cy symme-
try is still preserved and the magnetic distribution
is similar to the circular one.

5. Conclusions

Based on the two-band TDGL theory, we have
investigated the electromagnetic characteristics of
mesoscopic s + is superconductors with different
defect configurations. We have performed the nu-
merical simulations with the finite element method
and given direct evidence of spontaneous magneti-
zation induced by the isotropic defect in this su-
perconducting system. We have also explored the
impacts of GL parameter x and defect size on the
spontaneous magnetization distribution within this
multiband BTRS superconductor. Our theoretical
results demonstrate that boundary current effects
can arise in the superconducting states that are nei-
ther topological nor chiral according to the modern
classification.
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