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In this paper, we have investigated the stability and population oscillations in a spin�orbit coupled
Bose�Einstein condensate. For the time-independent system parameters, the stability of the steady-state
solutions was analyzed with the linear stability theorem. For the asymmetric case, we demonstrated
that a larger relative energy can enhance macroscopic quantum self-trapping. A larger relative energy
or a stronger population transfer strength can assist or suppress the tunneling rate, depending on the
initial population. Finally, the chaotic parameter regions and the chaotic atomic tunneling between two
periodically driven Bose�Einstein condensates have been investigated. The results reveal that chaos can
notably enhance the tunneling rate. The results could be signi�cant in the quantum transport of the
spin�orbit coupled cold-atom system.
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1. Introduction

The experimental generation of Bose�Einstein
condensation (BEC) [1, 2] has provided us with
a valuable platform for exploring numerous core
phenomena in atomic physics, condensed matter
physics, and quantum optics. Spin�orbit coupling
(SOC) � a concept that describes the subtle in-
teraction between spin and momentum of quantum
particles � plays a crucial role in many condensa-
tion phenomena, such as the spin Hall e�ect [3, 4]
and topological insulators [5]. In addition, it has im-
measurable value in revealing the electronic proper-
ties of materials and promoting the development of
spintronics devices [5]. Of particular note, in 2011,
Spielman's research team successfully achieved SOC
in 87Rb BEC system [6]. This milestone achieve-
ment greatly broadens the boundaries and perspec-
tives of ultracold atoms as a quantum simulation
platform [7�18].
It is noteworthy that BEC, being a many-body

system, operates under the Gross�Pitaevskii (GP)
mean-�eld equation, which serves as a crucial cor-
nerstone for investigating macroscopic quantum
(or semi-classical) chaos. The existence of chaos
in BEC has been established and its chaotic at-
tributes have been extensively examined in numer-
ous studies [19�27]. Researchers are committed to

exploring the chaos phenomena within BEC sys-
tems and understanding its implications on the sys-
tem dynamics. Notably, the investigation of chaos in
transportation of atoms holds considerable practical
application signi�cance. In [28], the authors stud-
ied the impact of chaotic dynamics on the atomic
tunneling between two BECs that are weakly cou-
pled and driven by bichromatic periodic �elds, ad-
vancing the perspective that chaos can substantially
enhance the atomic tunneling rates. Additionally,
in [29], the chaotic transport of matter wave solitons
in a biperiodically driven optical superlattice was
studied, discovering that high chaoticity can sub-
stitute for higher disorder in the Anderson localiza-
tion. Spin�orbit (SO) coupled BEC constitutes an
even more intricate nonlinear system, capable of ex-
hibiting chaotic behavior under speci�c parametric
conditions [30�33]. The emergence of chaos can po-
tentially destabilize the system and culminate in its
collapse. Consequently, the exploration of the pos-
sibility of controlling the behavior of chaos within
a SO coupled BEC systems is imperative and holds
a signi�cant standing in the realm of chaos applica-
tions.

In this paper, we have investigated the stabil-
ity of the steady-states and population oscillations
excited by time-independent system parameters in
a SO coupled BEC. Meanwhile, the chaotic pa-
rameter regions and atomic tunneling between two
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periodically driven BEC have been investigated.
The whole presentation is structured as follows. In
Sect. 2, we introduce a model based on a SO cou-
pled BEC in a single well and use the linear stability
theorem to study the stability of the steady-states.
In Sect. 3, for the asymmetric case, we demonstrate
that a larger relative energy or a stronger popu-
lation transfer strength can assist or suppress the
tunneling rate, depending on the initial population.
In Sect. 4, we numerically show that chaos can sig-
ni�cantly enhance the tunneling rate between two
periodically driven BEC. Finally, Sect. 5 concludes
the paper.

2. Stability analysis of the steady-state

solutions

Consider a SO coupled BEC con�ned in a single-
well potential. The system is governed by the non-
linear Schrödinger equations, as detailed in [33�36],

i
∂Ψj

∂t
=
[
− 1

2

∂2

∂x2
+ V (x) + (−1)jΓ

]
Ψj

−
(
iγ

∂

∂x
−δ̃
)
Ψ3−j +

(
g|Ψj |2 + g12|Ψ3−j |2

)
Ψj ,

(1)

for j = 1, 2. Here, the units of x, t, and probabil-
ity density |Ψj |2 are a⊥, ω−1

⊥ , and a−1
⊥ , respectively,

where a⊥ =
√
ℏ/mω⊥ represents the harmonic os-

cillator length of the transverse trap, following the

conventions in [33]. The parameters δ̃, γ, and Γ de-
note the dimensionless detuning strength, the SO,
and Rabi coupled strengths, respectively. The inter-
action strengths are given by g and g12. We adopt
the separable ansatz Ψj(x, t) = ψj(t)φj(x)(j = 1, 2)
for j = 1, 2, with φj(x) satisfying

∫
dx φ2

j (x) = 1

and
∫
dx φi(x)φj(x) < 1 for i ̸= j. Substituting

Ψj(x, t) into (1) and integrating spatially, we derive
the corresponding nonlinear equations

i
∂ψ1(t)

∂t
=
(
E1 − Γ + U1|ψ1|2 + U12|ψ2|2

)
ψ1

+(κ− i γ̃)ψ2, (2)

i
∂ψ2(t)

∂t
=
(
E2 + Γ + U2|ψ2|2 + U12|ψ1|2

)
ψ2

+(κ+ i γ̃)ψ1. (3)

Here, Ej =
∫
dx φj(x)

[
− 1

2
∂2

∂x2 + V (x)
]
φj(x),

Uj = g
∫
dx φ4

j (x), and U12 = g12
∫
dx φ2

1(x)φ
2
2(x)

denote the zero-point energies, mean-�eld intra-
and inter-species interaction, respectively. The pa-

rameters κ = δ̃
∫
dx φ1(x)φ2(x) and γ̃ =

γ
∫
dx φ1(x)

∂
∂xφ2(x) describe the population trans-

fer and the SOC term, respectively. We consider
ψj(t) =

√
Nj(t) exp[iθj(t)] with Nj(t) = |ψj(t)|2

and θj(t) being the numbers and phases of the
BEC components. We de�ne z(t) = N2(t)−N1(t)

and ϕ(t) = θ2(t)− θ1(t) being, respectively, the rel-
ative population imbalance and phase, and obtain
the coupled equations

ż(t) = −2
√
1−z2

[
κ sin(ϕ)− γ̃ cos(ϕ)

]
, (4)

ϕ̇(t) = ∆E + Λz +
2z√
1−z2

[
γ̃ sin(ϕ) + κ cos(ϕ)

]
,

(5)

where Λ = U1+U2

2 − U12 is the atomic scattering

length and ∆E = E1 − E2 − 2Γ + U1−U2

2 denotes
the energy di�erence. The conserved Hamiltonian
can be obtained as

H = −2
√

1−z2
[
γ̃ sin(ϕ)+κ cos(ϕ)

]
+∆E z+

Λ

2
z2.

(6)

In this section, we use the linear stability theorem
to study the stability of steady-state in the symmet-
ric case (∆E = 0). When (4) and (5) are equal to 0,
we can obtain the steady-state solution of the sys-
tem. With non-zero relative energy, it's complex.
Hence, we simplify by considering ∆E = 0. There-
fore, (4) and (5) can be simpli�ed into the following
form

ż(t) = f1(z, θ) = −2
√
1−z2

[
κ sin(ϕ)−γ̃ cos(ϕ)

]
,

(7)

ϕ̇(t) = f2(z, θ) = Λz+
2z√
1−z2

[
γ̃ sin(ϕ)+κ cos(ϕ)

]
.

(8)

Setting ż = 0 and ϕ̇ = 0, we can obtain the
steady-state solutions of (7) and (8), i.e.,

� for H = −2
√
κ2+γ̃2,

z1 = 0,

ϕ1 = −arccos
(
−κ
/√

κ2+γ̃2
)
,

(9)

� for H = Λ
2+

2(κ2+γ̃2)
Λ ,

z2,3 = ±
√

Λ2−4κ2−4γ̃2

Λ
,

ϕ2,3 = −arccos
(
−κ
/√

κ2+γ̃2
)
.

(10)

According to the linear stability theorem, we seek
perturbed solutions that are near steady-state solu-
tions,

z(t) = zi(t) + ϵ1(t), ϕ(t) = ϕi(t) + ϵ2(t),
(11)

where zi(t), ϕi(t) (for i = 1, 2, 3) represent steady-
state solutions, ϵ1(t) and ϵ2(t) are the �rst-order
perturbed corrections. Substituting the above ex-
pressions into (7) and (8), we can obtain linear equa-
tions as

ϵ̇1 = a11ϵ1 + a12ϵ2, ϵ̇2 = a21ϵ1 + a22ϵ2.
(12)
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Here, aij = ( ∂fi∂xi
)0, where xi represents the state

variable, and the subscript �0� represents the value
at the �xed point. Now we discuss the stabilities of
the three steady-states of (9) and (10).

2.1. Stability of the steady-state (z1, ϕ1)

For the steady-state (z1, ϕ1), we can easily cal-

culate a11 = 0, a22 = 0, a12 = 2
√
κ2+γ̃2, and

a21 = Λ − 2
√
κ2+γ̃2. The coe�cient matrix of the

linearized equation (12) becomes

A =

[
0 2

√
κ2+γ̃2

Λ− 2
√
κ2+γ̃2 0

]
(13)

such that the characteristic equation reads

det(A− λI) =

[
−λ 2

√
κ2+γ̃2

Λ− 2
√
κ2+γ̃2 −λ

]
= 0,

(14)

which implies that λ2 − 2
√
κ2+γ̃2 (Λ − 2

√
κ2+γ̃2)

= 0. This gives the two eigenvalues

λ1 =

√
2
√
κ2+γ̃2(Λ− 2

√
κ2+γ̃2), (15)

λ2 = −
√
2
√
κ2+γ̃2(Λ− 2

√
κ2+γ̃2). (16)

According to the forms of the eigenvalues, there
exist two cases for stabilities:

(i) When Λ > 2
√
κ2+γ̃2, the two eigenvalues

are positive and negative real number, respec-
tively. This means that ε1 and ε2 will tend to
in�nity with increasing time, and the steady-
state solutions (z1, ϕ1) are unstable.

(ii) When Λ ≤ 2
√
κ2+γ̃2, the two eigenvalues

are both pure imaginary numbers. In this
case, the stability of the steady state solutions
(z1, ϕ1) corresponds to a critical case, and the
dynamical bifurcations between the unstable
and stable steady-states will appear.

2.2. Stability of the steady-states (z2,3, ϕ2,3)

For the steady-state (z2,3, ϕ2,3), we can easily cal-
culate a11 = 0, a22 = 0, a12 = 4(κ2+γ̃2)/Λ, and
a21 = Λ[1−Λ2/(4(κ2+γ̃2))]. The coe�cient matrix
of the linearized equation (12) becomes

A =

 0 4(κ2+γ̃2)
Λ

Λ(1− Λ2

4(κ2+γ̃2) ) 0

 , (17)

such that the characteristic equation reads

det(A− λI) =

 −λ 4(κ2+γ̃2)
Λ

Λ(1− Λ2

4(κ2+γ̃2) ) −λ

 = 0,

(18)

Fig. 1. Plot of the tuning-fork bifurcation ob-
tained from (9). The bifurcation point reads
4(κ2+γ̃2)/Λ2 = 1. The solution z1 = 0 plotted by
the solid curve is critically stable, while the one
depicted by the dashed line denotes the unstable
steady-state. The solutions z2 and z3 describe the
stable states.

Fig. 2. Plot of the classical phase space trajectory
obtained from (4) and (5) with parameters κ = 0.5,
γ̃ = 0.5, and Λ = 2.

which gives the two eigenvalues as

λ1 = 2

√
(κ2+γ̃2)

(
1− Λ2

4(κ2+γ̃2)

)
, (19)

λ2 = −2

√
(κ2+γ̃2)

(
1− Λ2

4(κ2+γ̃2)

)
. (20)

In (10), the population z2,3 being a real quantity
means Λ2 > 4(κ2+γ̃2). Therefore, the two eigenval-
ues are both pure imaginary numbers, which means
that the steady-state solutions (z2,3, ϕ2,3) are sta-
ble. In this case, the stability of the steady-state
solutions (z2,3, ϕ2,3) corresponds to a critical case,
and dynamical bifurcations between unstable and
stable steady-states will appear.
From (9) we plot the bifurcation con�gu-

ration as in Fig. 1. The bifurcation point
reads 4(κ2+γ̃2)/Λ2 = 1. In the parameter re-
gion 4(κ2+γ̃2)/Λ2 > 1, the system is in the
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Fig. 3. (a) The average population as a function of
the population transfer κ between two BEC states
with initial condition z(0) = 0.99 and ϕ(0) = π/4
and parameters ∆E = 0, Λ = 2, γ̃ = 0.5. (b) The
corresponding time evolutions of population z(t) for
the labeled parameter.

critically stable steady-state (z1, ϕ1). In the region
4(κ2+γ̃2)/Λ2 < 1, (z1, ϕ1) is unstable, and the
two new steady-state solutions (z2,3, ϕ2,3) are crit-
ically stable. In Fig. 2, we give the classical phase
space plot for the symmetric case with parameters
κ = 0.5, γ̃ = 0.5 and Λ = 2, where the phase
space consists of closed rings, indicating periodic
or quasi-periodic trajectories. With these parame-
ters in the diagram, f2 and f3 represent the sta-
ble �xed points (centers) (z2, ϕ2) = (−0.71,−2.36)
and (z3, ϕ3) = (0.71,−2.36), respectively, while f1
represents the unstable �xed point (saddle point)
(z1, ϕ1) = (0,−2.36).

3. Population oscillations excited by

time-independent system parameters

We now investigate the dynamic behavior gov-
erned by (4) and (5) with time-independent system
parameters. Starting from this set of equations, we
analyze the e�ects of the parameters on the popu-
lation oscillations with a numerical method. Here,
we use the average population imbalance ⟨z⟩ =
1

400

∫ 400

0
dt z(t) to display the distinct di�erences in

the atomic population oscillations. The nonzero av-
erage value denotes the appearance of macroscopic
quantum self-trapping (MQST).

Fig. 4. The average population as a function of
the relative energy ∆E with the initial condition
(a) z(0) = 0.99, (b) z(0) = 0 and ϕ(0) = π/4 and
the parameters κ = 0.1, γ̃ = 0.5, and Λ = 2. (c�f)
The corresponding time evolutions of the popula-
tion z(t) for labeled initial states and parameters.

In Fig. 3a, we plot the average population im-
balance ⟨z⟩ as a function of the population trans-
fer κ between two BEC states with initial condi-
tion z(0) = 0.99 and ϕ(0) = π/4 and parameters
∆E = 0, Λ = 2, γ̃ = 0.5. The values of the average
population balance are zero for the symmetric case
∆E = 0, so the corresponding MQST does not ap-
pear. In Fig. 3b, we plot the atomic population os-
cillations for the population transfer κ = 0.2, where
periodical features are observed.
Next, we investigate the population oscillations in

the asymmetric case (∆E ̸= 0). The average popu-
lation as a function of the relative energy ∆E are
plotted for z(0) = 0.99 in Fig. 4a and for z(0) = 0
in Fig. 4b, with ϕ(0) = π/4 and parameters κ = 0.1,
γ̃ = 0.5, and Λ = 2. When the majority of the
atoms are initially concentrated in one of the com-
ponents z(0) = 0.99, the values of the average
population balance increase with increasing rela-
tive energy, as shown in Fig. 4a, which means that
MQST is enhanced. Comparing Fig. 4c and Fig. 4e,
as the relative energy increases from 0.1 to 2,
the amplitude of the atomic population decreases,
indicating that higher relative energy diminishes
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Fig. 5. The average population as a function of the
population transfer κ between two BEC states with
the initial condition (a) z(0) = 0.99, (b) z(0) = 0
and ϕ(0) = π/4 and the parameters ∆E = 0.5,
γ̃ = 0.5. (c�f) The corresponding time evolutions
of the population z(t) for labeled initial states and
parameters.

population transfer between atoms. When the
atoms are initially evenly distributed between the
two components z(0) = 0, the absolute values of
the average population balance increase with in-
creasing relative energy, as shown in Fig. 4b. This
observation indicates that the MQST e�ect is en-
hanced. Comparing Fig. 4d and Fig. 4f, we note that
when the relative energy increases from 0.1 to 2,
the amplitude of the atomic population balance
increases, suggesting that a larger relative energy
promotes or facilitates population transfer between
atoms.
The average population as a function of the popu-

lation transfer κ is plotted in Fig. 5a for z(0) = 0.99
and in Fig. 5b for z(0) = 0. In Fig. 5a, the values
of the average population balance decrease with the
increase in the population transfer κ, which means
that MQST is suppressed. For the same initial state
z(0) = 0.99 and ϕ(0) = π/4, regular behavior with
periodic population oscillations is shown in Fig. 5c
for κ = 0.1 and in Fig. 5e for κ = 0.8. Clearly, the
results imply that the stronger population trans-
fer can enhance the transfer of atoms between the

two states. In Fig. 5b, for a �xed initial popula-
tion z(0) = 0, the absolute values of the aver-
age population balance decrease with the increase
in the population transfer κ, which means that
MQST is suppressed. The periodic collapses appear
in Fig. 5d and 5f for the labeled parameters. The
amplitude of z(t) in Fig. 5d is greater than that
in Fig. 5f. This illustrates that the stronger pop-
ulation transfer can reduce the transfer of atoms
notably.

4. Parametric excitation of chaotic

population oscillations

If a time-periodical trap potential is considered,
the trap asymmetry ∆E(t) and the tunneling dy-
namics κ(t) are time-dependent. Experimentally,
due to the small oscillation of the laser position and
its intensity, the parameters ∆E(t) and κ(t) can be
written as [37]

∆E(t) = ∆E0 −∆E1 sin(ωt),

κ(t) = −κ1 sin(2ωt). (21)

Then we yield the perturbed Du�ng equation
of z(t)

z̈ =
∂ż

∂z
ż +

∂ż

∂ϕ
ϕ̇+

∂ż

∂k
k̇ =

(
ΛH−4κ(t)2−4γ̃2

)
z

−Λ2

2
z3 + F (t), (22)

F (t) =
(
H−∆E(t) z−3Λ

2
z2− γ̃ z κ̇(t)

κ2(t)+γ̃2

)
∆E(t)

+
2Hγ̃ − 2κ(t) ż − γ̃Λ z2

2(κ2(t) + γ̃2)
κ̇(t). (23)

In this section, we will study the chaotic mo-
tion of the system. Firstly, we consider |κ1| ≪ 1
and |∆E0,1| ≪ 1 and seek the perturbed solution
of (22). The population z and Hamiltonian H can
be expressed as

z = z0 + z1, |z0| ≫ |z1| ∼ |κ1|, |∆E1,0|,
(24)

H = H0 +H1, |H0| ≫ |H1| ∼ |κ1|, |∆E1,0|.
(25)

where z1 andH1 are the �rst-order corrections. Sub-
stituting them into (22) will produce the zero-order
equations

z̈0 =
(
ΛH0 − 4γ̃2

)
z0 −

Λ2

2
z30 , (26)

H0 = −2
√
1−z20 γ̃ sin(ϕ) +

Λ

2
z20 , (27)

and the �rst-order equations

z̈1 =
(
ΛH0 − 4γ̃2

)
z1 −

3Λ2

2
z20z1 + ϵ, (28)
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H1 =

∫
dt
[
−∆E1ω cos(ωt)z0+

2κ1ω

γ̃
cos(2ωt)ż0

]
,

(29)

ϵ = ∆E
(
H0−

3Λ

2
z20

)
+ ΛH1z0 +

2κ1ω

γ̃
sin(2ωt)

×
(
H0−

Λ

2
z20

)
, (30)

where ϵ and H0 are the perturbation function
and a conserved constant Hamiltonian, respec-
tively [25, 38, 39]. The homoclinic solution of the
zero-order equation (26) is as follow

z0(t) =
2
√
H̃

Λ
sech(ξ), ξ =

√
H̃ t+ c,

H̃ =
(
ΛH0 − 4γ̃2

)
,

c = Ar sech

(
Λz0(t0)

2
√
H̃

)
−
√
H̃ t0,

(31)

where the constant c depends on the initial popula-
tion z(t0) and the system parameters with constant

H̃ > 0. We take the initial time t0 = 0 and ob-
tain linearly independent solutions of the �rst-order
equation (28) with ϵ = 0

h =
dz0
dt

= −2H̃

Λ
sech(ξ) tanh(ξ), (32)

f = h

∫
dt h−2 =

Λ

8H̃3/2
sech(ξ) tanh(ξ)

×
[
4 coth(ξ)− sinh(2ξ)− 6ξ

]
. (33)

Then we have the general solution of the �rst-order
equation (27) [40�42]

z1 = f

∫ x

A

dx (h ϵ)− h

∫ x

B

dx (f ϵ). (34)

Here, the constants A and B are determined by the
initial conditions. Obviously, when time t → ∞,
we have f → ∞ corresponding to the unbounded
general solution (34). The necessary-su�cient con-
dition for the bounded solution (34) is [25, 40�42]

I± = lim
t→±∞

∫ x

A

dt hϵ = 0, (35)

which gives the Melnikov chaos criterion [43]

M(c) = I+ − I− =

∫ +∞

−∞
dt (hϵ) =

D1 cos

(
c ω√
H̃

)
+ κ1D2 sin

(
2c ω√
H̃

)
= 0, (36)

D1 = −
2π∆E1ω

(
H̃−ΛH0+ω

2
)
sech

(
πω

2
√

H̃

)
Λ2

,
(37)

D2 = −
8π ω2

(
H̃−3ΛH0+4ω2

)
sech

(
πω√
H̃

)
3Λ2γ̃

, (38)

Fig. 6. Boundaries between regular and chaotic re-
gions for di�erent SOC strengths: (a) γ̃ = 0.6, (b)
γ̃ = 0.4, and (c) γ̃ = 0.2. Areas marked by A are
chaotic regions and areas marked by B are regular
regions. The other parameters are taken as Λ = 3,
∆E1 = 0.2, and H0 = 1.

indicating the appearance of Melinokov chaos.
To give the boundaries between di�erent re-

gions, we can obtain from (36) sin(c ω/
√
H̃) =

−D1/(2κ1D2). Due to | sin(c ω/
√
H̃)| ≤ 1, we ob-

tain the chaotic region in the parameter space

κ1 ≥
∣∣∣∣ D1

2D2

∣∣∣∣ . (39)

In Fig. 6, from (39) we plot the chaos-dependent
parameter regions on the plane (κ1, ω) for di�erent
SOC strengths: (a) γ̃ = 0.6, (b) γ̃ = 0.4, and (c)
γ̃ = 0.2. The other parameters are taken as Λ = 3,
∆E1 = 0.2, and H0 = 1. The areas marked by A
are chaotic regions and the areas marked by B are
regular regions. Obviously, the value of the SOC
strength is inversely proportional to the size of the
chaotic region.
Next, in order to study the parametric excitation

of chaotic atomic population oscillations, we plot
the average population as a function of the driv-
ing frequency ω with parameters κ1 = 0.2, γ̃ = 0.6,
∆E0 = 0.2, ∆E1 = 0.2, Λ = 3 and initial conditions
z(0) = 0.99, ϕ(0) = π/4. In Fig. 7a, for κ1 = 0.2, as
we vary the driving frequency and make the system
pass through the chaotic region and regular ones,
smaller values of the average atomic population ap-
pear for the parameters located in the chaotic region
of Fig. 6a, denoting the suppressed MQST. Chaotic
behavior in Fig. 7b with irregular population oscil-
lations appears for the driving frequency ω = 1.5
located in the chaotic region of Fig. 6a, and obvi-
ous chaos-enhanced population transfer can also be
identi�ed by the greater amplitudes of population
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Fig. 7. (a) The average population as a function of
the driving frequency ω with parameters κ1 = 0.2,
γ̃ = 0.6, ∆E0 = 0.2, ∆E1 = 0.2, Λ = 3 and initial
conditions z(0) = 0.99, ϕ(0) = π/4. (b�c) The cor-
responding time evolutions of the population z(t)
for labeled parameters. The other parameters are
the same as those in Fig. 5a.

balance. The regular behavior with periodic popu-
lation oscillation is shown in Fig. 7c for the driving
frequency ω = 6 located in the regular parameter
region. Obviously, the non-zero time-averaged value
of the population denotes the presence of MQST.
With these numerical results, we demonstrate that
the atomic tunneling is enhanced notably owing to
the presence of chaos.

5. Conclusions

In this paper, we have investigated the stability
and population oscillations excited by the system
parameters in a SO coupled BEC. Firstly, the stabil-
ities of the steady state solutions were analyzed with
the linear stability theorem and a typical tuning-
fork bifurcation of the steady-state relative popu-
lation was found, which is shown in Fig. 1. Then,
we studied the population oscillations excited by
time-independent system parameters. We numeri-
cally found that when ∆E = 0 and the initial con-
ditions z(0) = 0.99 and ϕ(0) = π/4 are selected,
MQST does not appear. For the asymmetric case,
we observe that the amplitude of z(t) shows an
energy-dependent behavior that varies with initial
conditions: (i) When atoms are initially evenly dis-
tributed (z(0) = 0), the amplitude increases with
energy, suggesting enhanced inter-component atom
transfer; (ii) Conversely, when most atoms initially
occupy one component (z(0) = 0.99), the amplitude

decreases with increasing energy, indicating sup-
pressed transfer. In addition, when the initial con-
dition z(0) = 0.99 is selected, the stronger popu-
lation transfer can enhance the transfer of atoms
between the two states. While for the initial con-
dition z(0) = 0, the stronger population transfer
can notably reduce the transfer of atoms. Finally,
we analytically obtained the chaotic perturbed so-
lution and numerically plot the chaotic parameter
regions by using the Melnikov chaos criterion. We
found that stronger SOC strength can reduce the
size of the chaotic regions. The e�ects of chaotic dy-
namics on MQST have been studied. It is revealed
that chaos can signi�cantly enhance the tunneling
rate. The results could be signi�cant in the quan-
tum transport of the SO coupled cold-atom system.
It is also known that the parametric excitation

of chaotic population oscillations via square-wave
driving in the dissipative regime was reported in
Section IV in [44], while our work is centered on
chaotic population oscillations in the nondissipa-
tive regime. The key di�erence with the mentioned
paper is that we obtained chaotic parameter re-
gions and chaotic atomic tunneling between two pe-
riodically driven BEC, where the trap asymmetry
∆E(t) and the tunneling dynamics κ(t) are time-
dependent. We obtained boundaries between reg-
ular and chaotic regions and found that a larger
SOC strength can reduce the size of the chaotic
regions. Our �ndings o�er potential applications
in precise quantum manipulation and chaos-based
quantum technologies. A natural direction is to ex-
tend the present analysis to quantum droplets by
taking into account the Lee�Huang�Yang (LHY)
corrections [45�50].
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