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Thermodynamic parameters of the superconducting state of the LiC6 compound were calculated. Based
on experimental data and results obtained using the density functional theory, the following input pa-
rameters for the e�ective triangular lattice model were adopted: hopping integral t = 355 meV, chemical
potential µ = −4.37 t, Coulomb pseudopotential µ⋆ = 0.01, phonon energy ω0 = 0.052 t, and electron�
phonon interaction energy g0 = 0.00931 t. Calculations allowed us to reproduce the experimental values
of the electron�phonon coupling constant λ = 0.58 ± 0.05 and critical temperature TC = 5.9 K. The
dimensionless thermodynamic ratios were as follows: R∆ = 3.73, RC = 1.71, and RH = 0.16. The ob-
tained R∆, RC , RH values were compared with experimental data and density functional theory. It was
shown that within the framework of the e�ective triangular lattice model, the thermodynamic prop-
erties of the superconducting phase of LiC6 can be correctly reproduced. Additionally, the anisotropic
structure of the electron�phonon coupling function and the anisotropic logarithmic phonon frequency
function were discussed.
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1. Introduction

In 2004, the existence of graphene � a two-
dimensional hexagonal structure of carbon � was
experimentally con�rmed [1, 2]. Extensive research
has shown that it possesses unprecedented physi-
cal properties such as [3] low resistivity, high tensile
strength, high elasticity, nearly 98% transparency,
and high thermal conductivity. Graphene can also
be used as a membrane that does not allow even
helium atoms to pass through.
Theoretical calculations suggest that the

electron�phonon coupling energy for graphene
is relatively high (g ∼ 476 meV) [4], and the
Debye frequency is also high (ωD ∼ 192 meV) [5].
However, the electronic structure of pure graphene
prevents the existence of a superconducting state
due to the zero value of the electronic density
of states at the Fermi level [6]. This fact can be
explained by analyzing the energy spectrum of the
e�ective Hamiltonian of the considered system,
which has the structure of a two-dimensional Dirac
Hamiltonian [3].
Undoubtedly, a signi�cant achievement in the

context of solid-state physics was the indication of
the existence of a superconducting state in lithium-
doped graphene [7]. It was found that the critical
temperature is 5.9 K, and the electron�phonon cou-
pling constant ranges from 0.53 to 0.63 [8].

In the present work, based on experimental data
and density functional theory (DFT) results, we es-
timate the input values of an e�ective model for
the LiC6 compound. Then, within the framework
of this model, we calculate the basic thermody-
namic parameters of the superconducting phase. It
is worth noting that the e�ective triangular lattice
(ETL) model is explicitly anisotropic, which poten-
tially allows for a much more accurate characteriza-
tion of the superconducting state than the isotropic
formalism.

2. Model

The structure of electronic, phonon, and
electron�phonon interactions for the LiC6 com-
pound can be described using the Fröhlich Hamil-
tonian [9]

H =
∑
k

(εk − µ) Ψ †
kτ3Ψk +

∑
q

ωq b
†
qbq

+
∑
kq

gq Ψ
†
k+qτ3Ψkϕq, (1)

where Ψ †
k is the Hermitian conjugate Nambu spinor

Ψ †
k = (c†k↑, c−k↓). The creation operator of an elec-

tronic state with momentum k and spin σ ∈ {↑, ↓}
is denoted by c†kσ. Additionally, ϕq = bq + b†−q,
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Fig. 1. (a) The electronic density of states function with the Fermi level. (b) The phonon density of states
function and the rescaled Eliashberg function of the LiC6 compound obtained using the DFT method [7]. (c)
The electron�phonon density of states function.

where b†q represents the creation operator of a
phonon state with momentum q. The energy µ is
the chemical potential. The electronic dispersion re-
lation for the triangular lattice is given by

εk = −2t

[
cos(kx) + 2 cos

(
kx
2

)
cos

(√
3

2
ky

)]
,

(2)

where the lattice constant is taken as unity. In this
work, we consider electron hopping between near-
est neighbors; t is the hopping energy. The phonon
dispersion relation is

ωq = ω0

√√√√3− cos (qx)− 2 cos
(qx
2

)
cos

(√
3

2
qy

)
,

(3)

where ω0 denotes the phonon energy. The electron�
phonon interaction function explicitly depends on
the phonon momentum [10]

gq = g0|q|/
√
ωq, (4)

where g0 represents the electron�phonon interaction
energy. Note that gq possesses a structure predicted
by Bloch [11]. The functions εk, ωq, and gq are sym-
metric. Considering their symmetry potentially sim-
pli�es numerical calculations performed at the level
of anisotropic Eliashberg equations [12].

3. Input parameters of the model

The e�ective triangular lattice model has several
input parameters that must be accurately deter-
mined based on experimental data or results ob-
tained using the DFT method [13].
The values of the hopping integral t and the

chemical potential µ were determined in the
work [14]. Based on the DFT results [7], the val-
ues obtained were t = 355 meV and µ = −4.37 t. In
the considered case, the lower and upper bounds of
the electronic band are, respectively, Wd = −1.63 t
and Wu = 7.36 t.
With these data, the electronic density of states

function can be calculated. The formula used
is ρ(ε) = 1

N

∑
k δ(ε−εk), where δ(x) represents

the Dirac distribution approximated by δ(x) =
1
π

a
a2+x2 . In numerical calculations, a = 0.005 t was

adopted.

Figure 1a shows the electronic density of states
for the LiC6 compound and indicates the posi-
tion of the Fermi level (εF). It can be seen that
the characteristic maximum of the function ρ(ε) is
far from εF. As a result, the electronic density of
states at the Fermi level is relatively low, namely
ρ(εF) = 0.043 t−1. This fact is one of the reasons
responsible for the relatively low critical tempera-
ture of the phase transition to the superconducting
state in the LiC6 compound , i.e., TC = 5.9 K [8].
It should be noted that in the analyzed case the ge-
ometry of the crystal lattice of the analyzed system
plays an important role. From the perspective of
expectations related to high values of TC , a square
lattice geometry with a half-�lled conduction band
is signi�cantly more advantageous. This situation
occurs in cuprates [15], where critical temperatures
at least an order of magnitude higher than those ob-
served for the LiC6 compound have been observed
experimentally.

When determining the thermodynamic parame-
ters of the superconducting state of the LiC6 com-
pound, it is necessary to know the value of the
Coulomb pseudopotential (µ⋆). This quantity char-
acterizes the depairing electronic correlations [16].
To estimate it, the empirical formula given by Ben-
nemann and Garland [17] was used, which is

µ⋆ = 0.26
ρ (εF)

1 + ρ (εF)
. (5)

Substituting the obtained value of the electronic
density of states at the Fermi level, we get µ⋆ =
0.011. This result indicates that the electronic cor-
relations unfavorable to the formation of the super-
conducting phase in the LiC6 compound are signi�-
cantly weaker than it would result from the isotropic
Eliashberg equations (µ⋆ = 0.114) [18].

The next parameter that was estimated is the
phonon energy ω0. In this case, ω0 was chosen
so that the maximum of the phonon density of
states, F (ω) = 1

N

∑
q δ(ω − ωq), coincided with

the dominant low-energy maximum of the Eliash-
berg function determined by the DFT method [7].

237



R. Szcz¦±niak

Fig. 2. Isotropic Eliashberg function for the LiC6

superconductor determined within the ETL model.

Fig. 3. Anisotropic Eliashberg function for the
LiC6 superconductor determined within the ETL
model (ω = 0.105 t was assumed).

The applied procedure is illustrated in Fig. 1b. It
should be noted that the remaining part of the
Eliashberg function corresponds to much higher
phonon energy values. This means that these ar-
eas do not contribute signi�cantly to the electron�
phonon coupling constant. This is because the con-
stant is calculated using the integral of the ratio
of the Eliashberg function to the phonon frequency.
As a result of the analysis, ω0 = 0.052 t was ob-
tained. Additionally, in the ETL model the Debye
frequency value is ωD = 0.25 t.

The value of the parameter g0 was chosen to
reproduce the experimental value of the electron�
phonon coupling constant, which for LiC6 is
λ = 0.58± 0.05 [8]. The obtained results are pre-
sented in Table I. It can be assumed that the cor-
rect value of the electron�phonon interaction en-
ergy is 0.00931 t, since the corresponding critical
temperature, calculated based on the Allen�Dynes
formula [19], accurately reproduces the experimen-
tally observed critical temperature (TC = 5.9 K [8]).
The full electron�phonon density of states for the
LiC6 compound is shown in Fig. 1c. This quan-
tity was calculated based on the formula P (ω) =
1
N

∑
q δ(ω − gq).

Spectral function of the electron�phonon in-
teraction (Eliashberg function) α2F (k,k′, ω) =
ρ(εF)

∑
q |g (q,k,k′) |2 δ(ω−ωq) was calculated as-

suming g(q,k,k′) ≃ gq. To obtain the isotropic

Fig. 4. Anisotropic electron�phonon coupling
function for the LiC6 superconductor.

TABLE I

The electron�phonon interaction energy g0, the value
of the electron�phonon coupling constant λ, and the
critical temperature TC .

g0 [t] λ TC [K]

0.00922 0.53 5.7

0.00931 0.545 5.9

0.01 0.63 7.8

Eliashberg function (α2F (ω)), the exact Eliashberg
function needs to be averaged over the Fermi sur-
face, thus α2F (ω) = 1

N2

∑
k,k′ wkwk′F (k,k′, ω),

where wk = δ(εk)/ρ(εF). Calculations lead to the
result

α2F (ω) = ρ (εF)
∑
q

g2q δ (ω − ωq) . (6)

Equation (6) represents the Eliashberg function
that can be used to calculate all important thermo-
dynamic quantities characterizing the properties of
the superconducting state in the isotropic approxi-
mation. This is because we know all the input pa-
rameters of the ETL model.

The function α2F (ω) for the LiC6 compound is
plotted in Fig. 2. It can be seen that the dominant
contribution to the electron�phonon coupling con-
stant comes from the maximum located around the
point ω = 0.105 t.

The ETL model for the LiC6 compound allows
for the analysis of the superconducting state's prop-
erties beyond the standard isotropic approxima-
tion. The approach proposed in this work explicitly
takes into account the dependence of the model pa-
rameters on the phonon momentum q. In partic-
ular, we consider the anisotropic Eliashberg func-
tion given by α2Fq (ω) = ρ (εF) g

2
q δ (ω − ωq), the

form of which is shown in Fig. 3. Based on α2Fq(ω),
one can determine the anisotropic electron�phonon
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coupling function (λq) and the anisotropic logarith-

mic frequency (ω
(q)
ln ). These quantities are related to

their isotropic counterparts, as follows λ =
∑

q λq

and ln(ωln) =
∑

q ω
(q)
ln /λ, where

λq = 2ρ (εF)
g2q
ωq

, (7)

ω
(q)
ln = 2ρ (εF)

g2q
ωq ln

(ωq) . (8)

It turns out that the extreme values of the func-
tions λq and ω

(q)
ln occur in the corners of the

�rst Brillouin zone. This situation is illustrated
in Fig. 4.

4. Thermodynamic parameters of the

superconducting state

The critical temperature within the Migdal�
Eliashberg model, due to the low value of
the electron�phonon coupling constant (λ =
2
∫ ωD

0
dω α2F (ω)/ω = 0.545), can be estimated us-

ing the Allen�Dynes formula [19]

kBT
AD
C = f1f2

ωln

1.2
exp

(
−1.04 (1+λ)

λ−µ⋆ (1+0.62λ)

)
. (9)

The correction functions f1 and f2 are given by

f1 =
3

√
1+

(
λ

Λ1

) 3
2

,

f2 = 1 +
λ2

λ2+Λ2
2

(√
ω2

ωln
−1

)
,

(10)

where Λ1 = 2.46 (1 + 3.8µ⋆) and Λ2 =
1.82 (1 + 6.3µ⋆)

√
ω2/ωln. The logarithmic phonon

frequency and the second moment of the nor-
malized weight function are respectively ωln =
exp

[
2
λ

∫ ωD

0
dω ln(ω)α2F (ω)/ω

]
= 0.034 t and

ω2 = 2
λ

∫ ωD

0
dω ω α2F (ω) = 0.008 t2. As a result,

we have kBTC = 0.00143 t. Assuming t = 355 meV,
we get TC = 5.9 K. We can also calculate the
dimensionless coe�cients of the superconducting
state

R∆ =
2∆(0)

kBTC
, (11)

RC =
∆C (TC)

CN (TC)
, (12)

RH =
TC CN (TC)

H2
C (0)

, (13)

where∆(0) denotes the value of the order parameter
at zero Kelvin, ∆C(TC) is the value of the speci�c
heat jump at the critical temperature, CN (TC) rep-
resents the value of the normal state heat capacity
at the critical temperature, and HC(0) is the value
of the thermodynamic critical �eld at zero Kelvin.

In Bardeen�Cooper�Schrie�er (BCS) theory, the
parameters R∆, RC , and RH have universal values
of 3.53, 1.43, and 0.168, respectively [20, 21]. This
is not necessarily the case in the Migdal�Eliashberg
theory. Therefore, these quantities should be calcu-
lated using the formulas [22]

R∆ = 3.53

[
1 + 12.5

(
TC

ωln

)2

ln

(
ωln

2TC

)]
, (14)

RC = 1.43

[
1 + 53

(
TC

ωln

)2

ln

(
ωln

3TC

)]
, (15)

RH = 0.168

[
1− 12.2

(
TC

ωln

)2

ln

(
ωln

3TC

)]
. (16)

After performing numerical calculations, we ob-
tain R∆ = 3.73, RC = 1.71, and RH = 0.160.
It turns out that the obtained results closely cor-
respond to the results obtained using the Eliash-
berg function derived from experimental data [8],
namely [R∆]Exp. = 3.58, [RC ]Exp. = 1.51, and

[RH ]Exp. = 0.166. Similar results can also be ob-
tained by taking as a starting point the Eliashberg
function calculated using the DFT method [7], i.e.,
[R∆]DFT = 3.60, [RC ]DFT = 1.54, and [RH ]DFT =
0.165. However, in the considered case the crit-
ical temperature is slightly overestimated TC =
8.1 K [7]. Self-consistent calculations performed at
the level of the Eliashberg equations gave similar re-
sults [23], namely [R∆]DFT = 3.72 ([R∆]Exp. =3.71),

[RC ]DFT = 1.47, and [RH ]DFT = 0.167. Selected
properties of the superconducting state of the com-
pound LiC6 were also analyzed within the isotropic
Eliashberg formalism, which included vertex cor-
rections to the electron�phonon interaction. In the
considered approach, the following result was ob-
tained [18]: [R∆]DFT = 4.57 ([R∆]Exp. = 4.37).

5. Conclusions

In this work, using an e�ective model based on a
triangular lattice, we calculated the basic thermo-
dynamic parameters of the superconducting state
induced in the LiC6 compound. The obtained re-
sults were compared with experimental data and
DFT theory results. We demonstrated that within
the framework of the considered model, it is pos-
sible to correctly reproduce the properties of the
superconducting phase in the LiC6 compound.

It is worth noting that due to its relative simplic-
ity, the ETL model allows for a full anisotropic anal-
ysis of the superconducting state. For this purpose,
it is necessary to numerically solve the appropriate
Eliashberg equations. This issue was analyzed by
us for the case of a square lattice in the work [12].
Currently, we are working on solving the anisotropic
Eliashberg equations for the LiC6 compound.
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