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In this work, Bernoulli�Euler columns, freely supported and loaded by a longitudinal force variable over
time, are considered. The problem of dynamic stability is solved using the mode summation method.
The applied research procedure allows the dynamics of the tested system to be described using the
Mathieu equation. The in�uence of sti�ness distribution in the Bernoulli�Euler beam on the value of
coe�cient b in the Mathieu equation is investigated. Structures are created using deterministic rules
such as substitution rule, generation rule, recursion or in�ation rule. The quasi-periodic structures that
are taken into account are: the Fibonacci chain, the silver Fibonacci chain, the bronze Fibonacci chain,
the octagonal chain, and the dodecagonal chain. The aperiodic structures that are taken into account
are: the Severin chain, the Thue�Morse chain, the copper Fibonacci chain, the nickel Fibonacci chain,
and the circular chain. The results obtained on the basis of numerical tests for structures with variable
sti�ness of the considered columns will be analyzed in order to compare and distinguish the factors
that have the greatest impact on the change of natural frequencies and on the dynamic stability of the
columns under consideration.
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1. Introduction

Many machine elements in mechanical engineer-
ing can be modeled using Bernoulli�Euler beams,
but as slender elements subjected to a time-varying
axial force, they may, under certain circumstances,
be susceptible to the occurrence of parametric res-
onance phenomena, which may ultimately lead to
the destruction of the system. By using appropriate
clamps, it is possible to increase the sti�ness of the
beam locally and thus create a system with variable
sti�ness.
Parametric resonance occurs in many types of

physical phenomena [1�7]. Its analysis is possible
after transforming it into the form of the Mathieu
equation of motion [8�13], which can take stable
and unstable solutions [14].
Investigating the in�uence of aperiodic and quasi-

periodic structures and learning about the in�uence
of these distributions on parameters of great impor-
tance in the safety of structures and devices may
open the possibility of using structures with a non-
periodic order in much more complex solutions used
in industry. Mechanical engineering, as a �eld deal-
ing with the design, manufacture, and operation of
machines and structures, is constantly looking for

new solutions that are safer and more economical in
production. The use of structures with non-periodic
distribution may allow for the shift of dangerous res-
onance frequencies. In the case of promising results
from the study of column systems, it will also be
important to carry out a future analysis of the in-
�uence of structures with more than one dimension.
So far, the aperiodic and quasi-periodic distribu-

tion of segments in columns has not been used in
constructions and machines, and it is assumed that
the in�uence of this distribution on the properties
of the column is signi�cant, especially in situations
where the column is loaded with a periodic force,
where despite a low value of the force, the system
may be damaged due to the e�ect of the parametric
resonance phenomenon.

2. Methodology

The Bernoulli�Euler beam loaded with an axial
compressive force with variable sti�ness for the ex-
emplary XYXYX distribution is shown in Fig. 1.
The constant component of the load is P0, the vari-
able component of the load is S, time is marked
by t, the frequency of the exciting force is ν, the

176

http://doi.org/10.12693/APhysPolA.147.176
mailto:sebastian.garus@pcz.pl


The Dynamic Stability of Quasi-Periodic and Aperiodic Multi-. . .

Fig. 1. Example of a variable sti�ness beam (XYXYX) loaded with an axial compressive force varying in
time.

Young modulus is E, section moment of inertia is J ,
cross-sectional area is A, and the material density
is ρ. The subscripts correspond to the given layer
X or Y .

Using Hamilton's variational principle
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the equation of motion of the column was obtained
in the form

EiJi
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The solution of (4) was assumed as a sum of eigen-
functions in the form

Wi (x, t) =

∞∑
n=1

Wi,n (x)Ti,n (t), (5)

where adopting Ti,1(t) = cos(ωi,1t) and assuming
that the �rst term of the sum is of the greatest im-
portance after separating the variables, allowed to
obtain
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The geometric and natural boundary conditions
were

W1 (0) = WN (l) = 0, (8)

EiJi
d2W1 (0)

dx2
= 0, (9)

EiJi
d2WN (l)

dx2
= 0, (10)

whereas the continuity conditions are de�ned
as

Wi (x) = Wi+1 (x) , (11)

dWi (x)

dx
=

dWi+1 (x)

dx
, (12)
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and

EiJi
d3Wi (x)

dx3
= Ei+1Ji+1

d3Wi+1 (x)

dx3
. (14)

By substituting (7) and its appropriate derivatives
into the conditions of (8)�(14), a system of equa-
tions in the matrix form was obtained for the un-
known constants Ci,j as

[M ] (ω)C = 0, (15)

where [M ] (ω) = [apq], [p, q] = (1, . . . , 4), and

C = [Cij ]
T
, i = 1, . . . , N , j = 1, . . . , 4.

A non-trivial solution was obtained by equat-
ing the value of the determinant of the M ma-
trix to zero, which enabled the determination of the

natural frequencies ωi for a given load P and the de-
termination of the critical force Pk of the analyzed
system.
In this work, the orthogonality of eigenfunctions

was assumed, and the condition that had to be met
was determined as∑N

i=1

[
ρ∗i

∫ l

0

dx Wi,n (x)Wi,m (x)

]
=

 0, m ̸= n;

γ2
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0
dx W 2

i (x)
]
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(16)

Then, the equation of motion (4) was transformed
into the Mathieu equation, and the following was
obtained
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The obtained equation of motion in the form of the
Mathieu equation (17) can be written as

∂2y (t)

∂t2
+ (a+ b cos(t)) y (t) = 0. (20)

The solution of (20), depending on parameters a
and b, can be stable and unstable. The distribu-
tion of stable and unstable areas of solutions to
the Mathieu equation, depending on parameters a

Fig. 2. Strutt chart describing the stable (white)
and unstable (grey) areas of solutions to the Math-
ieu equation depending on the parameters a and b.

and b, is shown in the Strutt chart in Fig. 2. The
stable areas are marked in white, and non-stable
areas in grey.

In Fig. 2., two points are marked, namely blue in
the area of unstable solutions and red in the area of
stable solutions. By inserting the appropriate values
of coe�cients a and b for the selected points, solu-
tions to (20) in time were obtained by Mathieu's
equation, as shown in Fig. 3. Appropriate solutions
for selected points are marked with corresponding
colors. As can be seen, the solution for the blue
point, located in the unstable region, tends expo-
nentially to in�nity, which means that parametric
resonance occurs for the analyzed parameters, and
the tested system may be destroyed. On the other
hand, the solution for the red point, for parameters
a and b in the area of stable solutions, is periodic,
and there is no parametric resonance.

Fig. 3. Solutions of Mathieu's equations with pa-
rameters a and b selected from the range of stable
(red) and unstable (blue) solutions.
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TABLE I
Analyzed structures.

Type Analyzed structures Symbol n Sti�ness distributions

periodic binary chain CB 5 XYXYXYXYXY

quasi-periodic

Fibonacci chain CF 5 YXYXYYXY

silver Fibonacci chain CSF 4 XXYXXYYYXXY

bronze Fibonacci chain CBF 3 YYYXXXY

octagonal chain CO 3 XYXYXXYXYXXY

dodecagonal chain CD 4 YYYXYYYXYYX

aperiodic

Severin chain CS 3 XYXYYYXY

Thue�Morse chain CTM 3 XYYXYXXY

copper Fibonacci chain CCF 3 YXXYYYXXYXX

nickel Fibonacci chain CNF 2 YXXXYYY

circular chain CC 2 YYXYXXYXYYXYX

3. Analyzed structures

The work will analyze di�erent types of struc-
tures. Structures are created using deterministic
rules such as substitution rule, generation rule, re-
cursion, or in�ation rule. Pattern an speci�es the
sequence that corresponds to the n-th step of the
deterministic rule.

A binary structure is a kind of periodic struc-
ture [15]. For the initial value a0 = XY , where
the parameters X and Y symbolize a given type
of Bernoulli�Euler segment and the superscript de-
notes the number of times the sequence is repeated,
the successive steps are described by the formula

an = (a0)
n
. (21)

The quasi-periodic structures include the Fibonacci
chain [16�19], the silver Fibonacci chain [20],
the bronze Fibonacci chain [20], the octagonal
chain [21, 22], and the dodecagonal chain [21].

The aperiodic structures include the Severin
chain [23, 24], the Thue�Morse chain [25�29], the
copper Fibonacci chain [20], the nickel Fibonacci
chain [20], and the circular chain [30�32].

The deterministic rules for the formation of sub-
sequent structures are presented below.

Sample initial conditions for Fibonacci chains are{
a0 = X

a1 = Y
. (22)

The recursive method of obtaining the Fibonacci
sequence is given by

an+1 = anan−1. (23)

The recursive method of obtaining the silver Fi-
bonacci sequence is

an+1 = ananan−1. (24)

The recursive method of obtaining the bronze Fi-
bonacci sequence is

an+1 = anananan−1. (25)

In the dodecagonal chain, we also assume the ini-
tial conditions presented in (22), while the steps of
creating the structure depend on the parity of the
step number, i.e.,{

an = an−1an−2an−2, n = 2m;

an = an−2an−2an−2an−3, n = 2m+ 1.
(26)

The rule of octagonal chain generation can be rep-
resented as

an+1 = ananan−1, (27)

for initial conditions{
a0 = X,

a1 = XY.
(28)

In order to �nd the distribution in the Severin
structure, the following substitution rule should be
used{

Y → XY,

X → Y Y,
(29)

for the initial value

a0 = Y. (30)

The Thue�Morse chain for the initial conditions
in (28) is also formed based on the substitution rule{

Y → Y X,

X → XY.
(31)

The copper Fibonacci chain can be determined
according to the following substitution rule{

X → Y,

Y → Y XX,
(32)

while the Fibonacci nickel chain was de�ned by{
X → Y,

Y → Y XXX.
(33)

In both cases, the starting value for generating the
chains is

a0 = X. (34)
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TABLE II

Eigenfrequencies and masses of beams with a con-
stant cross-section.

AX 2AX 3AX

A [m2] 0.09 0.18 0.27

M [kg] 2122.2 4244.4 6366.6

ω1

[
rad
s

]
489.31 693.668 849.946

ω2

[
rad
s

]
1961.99 2776.35 3400.7

ω3

[
rad
s

]
4416.45 6247.48 7651.95

ω4

[
rad
s

]
7852.7 11107.1 13603.7

A circular chain can be obtained using a three-
element substitution rule

x → zxz,

y → xzzxz,

z → xyzxz.

(35)

The distribution of the beams in the column is
obtained on the basis of the following identi�cation
rule{

x, y → Y,

z → X,
(36)

for the initial value

a0 = x. (37)

Based on the above rules, subsequent types of
beam distribution in the column are obtained.
Structures with the maximum n-th step of the

deterministic rule were selected for the analysis, so
that the structure meets the assumptions of using
Bernoulli�Euler beams. The beam sti�ness distri-
butions selected for the analysis are summarized in
Table I.

4. Solving the boundary problem

The zero points of the determinants make it
possible to determine the eigenfrequencies of the
analyzed beams. They have been collected in
Tables II�IV and are a solution to the boundary
problem.
The work analyzed Bernoulli�Euler beams with

the sti�ness distribution presented in Table I. The
beam length of 3m was assumed for the calcula-
tions. The length of the beam subsection with n
elements was L/n. The entire column was made of
a homogeneous material � steel (Young's modulus
E = 2.1× 1011 Pa, density ρ = 7.86× 103 kg/m3).
The static part of the load was P = 106 N.
The cross-section of segment X was a square with
a side of 0.3m and area AX . The cross-section
of segment Y was a square whose cross-sectional
area AY = 2AX (Table III) and AY = 3AX

(Table IV).

TABLE III

Masses and eigenfrequencies for the analyzed struc-
tures in the case of a ratio of cross-sections
of AY = 2AX .

Structure
Mass

[kg]

ω1[
rad
s

] ω2[
rad
s

] ω3[
rad
s

] ω4[
rad
s

]
CO 3006.45 495.934 2006.63 4536.59 8144.36

CBF 3334.89 504.527 2323.38 5155.31 9217.69

CNF 3334.89 504.527 2323.38 5155.31 9217.69

CC 3264.92 506.472 2091.86 4656.70 8474.36

CB 3183.30 506.816 2041.17 4636.70 8333.05

CTM 3183.30 510.553 2145.29 4884.37 8404.50

CSF 3086.84 519.744 2035.48 4754.92 8895.47

CCF 3086.84 519.744 2035.48 4754.92 8895.47

CF 3448.58 526.402 2099.11 4581.79 9427.40

CD 3665.62 558.788 2198.29 5864.27 9593.03

CS 3448.58 560.652 2096.59 5236.24 9149.87

TABLE IV

Masses and eigenfrequencies for the analyzed struc-
tures in the case of a ratio of cross-sections
of AY = 3AX .

Structure
Mass

[kg]

ω1[
rad
s

] ω2[
rad
s

] ω3[
rad
s

] ω4[
rad
s

]
CO 3890.7 456.905 1861.16 4274.27 7797.62

CB 4244.4 466.429 1888.58 4334.26 7903.39

CC 4407.65 467.138 1958.18 4347.93 8187.17

CTM 4244.4 473.571 2092.12 4809.06 8031.88

CBF 4547.57 476.649 2408.47 5756.94 9574.73

CNF 4547.57 476.649 2408.47 5756.94 9574.73

CSF 4051.47 484.051 1922.85 4624.73 9466.69

CCF 4051.47 484.051 1922.85 4624.73 9466.69

CF 4774.95 490.732 1977.79 4326.51 10031.8

CD 5209.04 536.033 2097.72 6480.60 10277.1

CS 4774.95 540.113 1974.61 5442.22 9668.61

First, the eigenfrequencies and masses of beams
with a constant cross-section were determined
(Table II). Along with the increase in the cross-
section A [m2], the beam masses m [kg] increased
proportionally. Subsequent natural frequencies ωi

[ rads ] also increased.
Tables III and IV show the determined beam

masses and eigenfrequencies for the ratio of
AY = 2AX and AY = 3AX cross-sections, respec-
tively. These tables are sorted according to the in-
creasing value of the �rst eigenfrequency ω1. The
lowest values of all eigenfrequencies were charac-
terized by the quasi-periodic octagonal chain CO,
which also had the lowest mass. The structures
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TABLE V
Determined values of critical force and coe�cient b (for a = 1) for the analyzed structures.

Type Analyzed structures Symbol
PC × 106 [N] b× 10−8

AY = 2AX AY = 3AX AY = 2AX AY = 3AX

periodic binary chain CB 247 278 8.567 10.508

quasi-periodic

Fibonacci chain CF 280 327 5.757 6.806

silver Fibonacci chain CSF 260 295 9.882 12.029

bronze Fibonacci chain CBF 207 217 4.511 4.723

octagonal chain CO 221 240 10.885 13.093

dodecagonal chain CD 344 440 6.951 7.969

aperiodic

Severin chain CS 337 422 5.984 7.079

Thue�Morse chain CTM 242 268 6.746 8.153

copper Fibonacci chain CCF 260 295 9.889 12.045

nickel Fibonacci chain CNF 207 217 4.509 4.721

circular chain CC 242 270 10.452 12.576

of CBF and CNF sti�ness distribution, as well as
CSF and CCF, were respectively symmetric to each
other, which resulted in exactly the same values of
masses and eigenfrequencies.
In the CF and CS structures, despite the identical

mass of the beams, there were clear di�erences in
the values of eigenfrequencies; only the values of the
second eigenfrequency were similar in both analyzed
cases. Identical masses were also found in CB and
CTM structures, but in this case, none of the eigen-
frequencies were close to each other. Increasing the
cross-sections, and thus the mass, for the structures
from Table IV in relation to the data from Table III
resulted in a decrease in the value of the �rst natu-
ral frequency, which is contrary to the relationship
resulting from the increase in the cross-section of
the beams from Table II. Despite the same or higher
masses of selected structures from Table IV, the val-
ues of the �rst natural frequencies were signi�cantly
lower in relation to the beam with a constant 2AX

cross-section from Table II.

5. Analysis of the critical force and dynamic

stability of beams

In Table V, the determined values of the critical
force PC for the analyzed periodic, quasi-periodic,
and aperiodic distributions of the Bernoulli�Euler
beam sti�ness and the coe�cient b from the equa-
tion of motion in the form of the Mathieu equation
(for coe�cient a equal to 1) are presented.
For sti�ness distributions where AY = 2AX ,

the minimum values of the critical force were
207× 106 N for the bronze Fibonacci chain and
nickel Fibonacci chain (these are the same struc-
tures, but di�erently oriented in relation to the
time-varying force). Similarly, for AY = 3AX , the
same structures were characterized by the lowest
values of the critical force. However, the highest
value of the critical force was characterized by the

dodecagonal chain structure, which for AY = 3AX

was 440× 106 N and was more than twice as high
as the minimum value, while for AY = 2AX , it was
344× 106 N. For all the analyzed structures, the
critical force had a higher value when AY = 3AX .
The higher the value of the coe�cient b of the

Mathieu equation, the more unstable the system is
for larger frequency ranges of the excitation force.
As part of the research, it was shown that the
bronze Fibonacci chain and nickel Fibonacci chain
structures showing the lowest critical force values
were also characterized by greater dynamic stabil-
ity. However, the relationship between the critical
force and dynamic stability has not been shown.
The most unstable structure of the sti�ness dis-
tribution was the octagonal chain, whose critical
strength did not di�er much from the most stable
structures. The heaviest of the analyzed Bernoulie�
Euler beams with the dodecagonal chain sti�ness
distribution structure, despite the highest values of
the critical force, did not show extreme values of
the coe�cient b of the Mathieu equation.

6. Conclusions

In the research, the properties of Bernoulie�Euler
beams with variable sti�ness, which were subjected
to an axial force varying in time, were analyzed.
Eleven sti�ness distributions were analyzed, divided
into three groups: periodic (binary chain), quasi-
periodic (Fibonacci chain, silver Fibonacci chain,
bronze Fibonacci chain, octagonal chain, dodecago-
nal chain), and aperiodic (Severin chain, Thue�
Morse chain, copper Fibonacci chain, nickel Fi-
bonacci chain, circular chain).
The carried out research allowed us to deter-

mine the sti�ness distributions for the analyzed
structures, and the adopted solution for the ob-
tained equation of motion inserted into the natural
and geometric boundary conditions and continuity
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conditions allowed us to determine the eigenfre-
quencies. By inserting one for the �rst integration
constant of the �rst shape function, the remain-
ing integration constants were obtained, and the
shape functions for the considered beams were de-
termined. By determining the zeros of the determi-
nant of the matrixM for the successive values of the
force, P�ω diagrams were developed, and on their
basis, the values of the critical force of the analyzed
structures were determined. Using the integrals of
the shape function, parameters a and b of the Math-
ieu equation were determined, on the basis of which
the dynamic stability of the considered beams was
analyzed.
The conducted tests showed that increasing the

sti�ness of a structure element increased its crit-
ical force, but there was no relationship between
the critical force and the stability of the structure.
The sti�ness distribution signi�cantly a�ected the
shape functions. The structures of the bronze Fi-
bonacci chain and nickel Fibonacci chain, which
had the same distribution for the considered gen-
eration number, turned out to be the most stable.
The next most stable structures were the Fibonacci
chain within quasi-periodic structures and the Sev-
erin chain within aperiodic structures. The least
static was the quasi-periodic octagonal chain struc-
ture. On the other hand, the periodic structure was
not characterized by high dynamic stability within
the analyzed structures.
The tests carried out showed a signi�cant in�u-

ence of the sti�ness distribution on the dynamic sta-
bility and the lack of a clear correlation between
the dynamic stability and the mass or critical force
in the analyzed beams. The lack of simple corre-
lations and the high possibility of sti�ness distri-
butions (large space of possible states) suggest the
need to use heuristic algorithms (e.g., genetic algo-
rithm) to determine the distribution with the most
optimal parameters (minimization of the coe�cient
b of the Mathieu equation) in order to increase the
dynamic stability of the considered beams.
The obtained results indicate that local increases

in the sti�ness of the beam (e.g., in the form of
clamps) signi�cantly a�ect the nature of natural vi-
brations. This phenomenon can greatly a�ect the
occurrence of parametric resonance, and the appro-
priate use of structural elements that increase sti�-
ness can lead to increased safety of the structure.
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