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The q-deformed statistical mechanics for fermions has been used to investigate the Thomas�Fermi
screening length at �nite temperature. Considering linear response, the calculations have been made in
a weakly nondegenerate regime. The results show that q-deformation has signi�cant e�ects on screening
length at higher temperatures. The results also show that the q-deformation e�ects vanish at zero
temperature limit and that more correction terms of deformation have more e�ects on screening length.
The behavior of screening length is di�erent for di�erent values of q.
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1. Introduction

The Thomas�Fermi model is a semi-classical
model created to investigate many-body e�ects
in quantum systems. It is applicable in met-
als, solid-state physics, atomic physics, and astro-
physics [1, 2]. In spite of its crudity, because of creat-
ing quali�ed views, this model is used in many �elds
of modern physics, some of which are regarded as its
generalization, e.g., Nozari et al. [3] �rstly consid-
ered the quantum gravity e�ects on the condensed
matter physics using Thomas�Fermi (TF) theory
and showed the importance of quantum gravity in
many-body physics. After that, the TF model has
been considered in the generalized uncertainty prin-
ciple context to investigate the minimal length ef-
fects on Thomas�Fermi length in relativistic and
non-relativistic regimes [4, 5]. Also, in order to ob-
tain a modi�ed Thomas Fermi equation, the e�ects
of non-commutative space-time have been consid-
ered in [6].

In this model, brie�y, electrons are considered as
a homogeneous, uniform electron gas with charge
density −n0e, obeying Fermi�Dirac statistics, su-
perimposed on a background of positive charge den-
sity n0e. Considering a point charge Q in a sea of
such electrons, the Thomas�Fermi model leads to
screening in the Coulomb potential ϕ expressed by
the Thomas�Fermi equation [7]

∇2ϕ(r) = 4πe
(
n(r)−n0

)
− 4πQδ(r) . (1)

The Thomas�Fermi screening length, λF , is a char-
acteristic length scale that describes how quickly
the electron density, as well as the associated elec-
trostatic potential, decay away from a charged

object or within a material. It quanti�es the range
over which the electron density screens the electro-
static potential due to the presence of other charged
particles.
On the other hand, it has been found that there

are some classes of systems for which ordinary
quantum statistical mechanics, known as Gibss�
Blotzman statistical mechanics, may not be appro-
priate [8�10], and a kind of extension is needed to
describe these systems. Regarding this issue, two
principal methods have been proposed for inter-
mediate statistics, namely the nonextensive statis-
tics [11] and q-deformed theory [12, 13]. Because of
its possibility to apply in di�erent �elds of physics,
such as anyon physics [14, 15], thermodynamics
of ideal Fermi gas [16�18], and references therein
regarding other �elds of physics, the q-deformed
statistics has attracted great interest last decade.
In this regard, it has been shown that the appli-
cation of q-deformation in fermion systems changes
its thermodynamic properties. The q-deformed al-
gebra emerging from statistical mechanics has also
been used to formulate quantum mechanics, and
the parameter �q� plays the role of experimental �t-
ting [19]. Some applications of this kind of quantum
mechanics deformation can be found in [20].
Upon the foregoing discussion, the e�ect of

q-deformed Fermi�Dirac statistics on the Thomas�
Fermi screening length has been investigated in this
paper. The paper is organized as follows. In the next
section, q-deformed algebra and statistical mechan-
ics are brie�y introduced. Then, this intermediate
statistics is used in the Thomas�Fermi equation to
investigate the e�ect of q-deformation on the screen-
ing length. Finally, results and discussion are pre-
sented.

6

http://doi.org/10.12693/APhysPolA.147.6
mailto:m.mohamadisabet@ilam.ac.ir


Thomas�Fermi Screening Length in q-Deformed. . .

2. The q-deformed algebra and statistical

distribution function for fermions

The symmetric q-deformed fermion algebra is de-
�ned as follows [17][
N̂ , â†

]
= â†, [N̂ , â] = −â, (2)

and

â†â = [N̂ ], â â† = [1− N̂ ], (3)

where â†, â, and N̂ are creation, annihilation, and
number operator, respectively, and the q-basic num-
ber [x] is de�ned as

[x] =
qx − q−x

q − q−1
. (4)

Here, q is the deformation parameter. The Hilbert
space of q-deformed fermions with the basis |n⟩ is
de�ned as [17, 18]

N̂ |n⟩ = n|n⟩,

â |0⟩ = 0,

â+|n⟩ = [1− n]1/2|n+ 1⟩,

â |n⟩ = [n]1/2|n− 1⟩. (5)

The eigenvalues of number operator N̂ take only
values 0 and 1, and the Pauli principle is satis-
�ed in q-deformed fermions. The mean value of the
q-deformed occupation number is de�ned by [17, 18]

[fk,q] =
1

Ξ
Tr
{
exp(−βĤ)

[
N̂k

]}
, (6)

where β = 1/(kBT ), Ĥ is the Hamiltonian

Ĥ =
∑
k

(εk − µ) N̂k, (7)

and k is a state label, N̂k and εk are the num-
ber operator and energy associated with state k,
respectively, and µ is the chemical potential. Fol-
lowing [17, 18], the statistical distribution func-
tion of the q-deformed fermions can be derived
as

fk,q =
1

2 ln(q)
ln

(
z−1 exp (βεk) + q

z−1 exp (βεk) + q−1

)
, (8)

where z = exp(βµ) is the fugacity of the system.
One important property of this distribution func-
tion is fk,q = fk,1/q. One can simply prove that
when q = 1, we have the standard Fermi�Dirac dis-
tribution, and the q-deformed fermions are the same
as ordinary fermions,

fk,q =
1

z−1 exp(βεk) + 1
. (9)

According to (8), the total number of particles,
N , and the total energy of the system, U , can be,
respectively, given by

N =
∑
k

1

2 ln(q)
ln

(
z−1 exp (βεk) + q

z−1 exp (βεk) + q−1

)
(10)

and

U =
∑
k

ϵk
2 ln(q)

ln

(
z−1 exp (βεk) + q

z−1 exp (βεk) + q−1

)
. (11)

In the large particle number limit, the sum over k is
replaced by integration, and therefore (10) and (11)
can be rewritten as

N =
g

h3

∫
dpdx

2 ln(q)
ln

(
z−1 exp (βε(p)) + q

z−1 exp (βε(p)) + q−1

)
=

gV

λ3
h3/2(z, q) (12)

and

U=
g

h3

∫
dpdx ε(p)

2 ln(q)
ln

(
z−1 exp (βε(p)) + q

z−1 exp (βε(p)) + q−1

)
=

3

2
kBT

gV

λ3
h5/2(z, q), (13)

where V is the volume, ε(P ) = p2/(2m) and λ is
thermal wavelength,

λ =
h√

2πmkBT
. (14)

In (12) and (13), hn(z, q) is the generalized Fermi
integral of q-fermions

hn(z, q)=
1

Γ(n)

∞∫
0

dx xn−1

2 ln(q)
ln

(
z−1 exp(x) + q

z−1 exp(x) + q−1

)
,

(15)

and Γ(x) =
∫∞
0

dt exp(−t)tx−1 is the gamma func-
tion. It can be found that when q = 1, (15) is just
the standard Fermi integral

hn(z, q) =
1

Γ(n)

∫ ∞

0

dx xn−1

z−1 exp(x) + 1
. (16)

3. Thomas�Fermi screening length in the

q-deformed statistical mechanics

In order to investigate the q-deformation ef-
fects on the Thomas�Fermi screening length,
the fugacity, z = exp(βµ), is considered as
z̃ = exp(β(µ− eϕ)). Therefore, the number density
n in (1) is as follows

n=
g

h3

∫
dp

2 ln(q)
ln

(
e−β(µ−eϕ) exp (βε(p)) + q

e−β(µ−eϕ) exp (βε(p)) + q−1

)
=

g

λ3
h3/2(z̃, q). (17)

Hence, (1) is rewritten as

∇2ϕ(r) = 4πe
g

h3
=∫

dp

2 ln(q)

[
ln

(
eβ(µ−eϕ) exp (βε(p)) + q

e−β(µ−eϕ) exp (βε(p)) + q−1

)

− ln

(
e−β(µ−ε(p)) + q

e−β(µ−ε(p) + q−1)

)]
− 4πQδ(r).

(18)
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Fig. 1. The ratio of α = λq
F /λF for q = 0.1, 0.2,

and 0.3. The dashed curve shows α up to γ1(q) cor-
rections, and the solid curve shows the value up to
O(βµ)−4 because of γ3(q) correction.

Now, using (12), the Thomas�Fermi model takes
the following form

∇2ϕ(r)=
4πe g

h3λ3

[
h3/2(z̃, q)−h3/2(z, q)

]
−4πQδ(r).

(19)

In the weakly nondegenerate case, i.e., |βµ̃| =
|β(µ−eϕ)| ≫ 1 as well as |βµ| ≫ 1, the general-
ized Fermi integral (of q-fermions) can be written
as

hn(z, q) =
(ln(z))n

Γ(n)
+ 1 + n(n−1)

π2

6
γ1(q)

1

(ln(z))2

+n(n−1)(n−2)(n−3)
7π4

360
γ3(q)

1

(ln(z))4
+ · · · ,

(20)

where

γn(q) =

∫∞
0

dx
xn

2 ln(q)
ln

(
exp(x) + q

exp(x) + q−1

)
∫∞
0

dx
xn

exp(x) + 1

, (21)

and it can be proven that γn(q) > 1 when q ̸= 1
and γn(q) = 1 for q = 1.

Substituting the expansion of (21) to (19) leads
to
∇2ϕ(r) =

4πe
g

h3λ3

[(
(ln(z̃))n

Γ(n)
+1+n(n−1)

π2

6
γ1(q)

1

(ln(z̃))2

+n(n−1)(n−2)(n−3)
7π4

360
γ3(q)

1

(ln(z̃))4
+ · · ·

)

−
(
(ln(z))n

Γ(n)
+ 1 + n(n−1)

π2

6
γ1(q)

1

(ln(z))2

+n(n−1)(n−2)(n−3)
7π4

360
γ3(q)

1

(ln(z))4
+ . . .

)]
−4πQδ(r), (22)

where ln(z̃) = β(µ− eϕ).

Fig. 2. The ratio of α = λq
F /λF for q = 0.4 (black

curves) and q = 0.6 (red curves). The solid (dashed)
curves are related to γ3(q) (γ1(q)) corrections.

Let us assume that the charge produces only a
linear response, meaning that |eϕ/µ| ≪ 1. One can
therefore expand di�erent powers of ln(z̃) up to
linear terms of ϕ in (22). This leads to

∇2ϕ(r) =
3

2

[
λ
(q)
F

]−2

ϕ− 4πQδ(r), (23)

whose solution is

ϕ =
Q

r
exp

(
−
√

3

2

r

λ
(q)
F

)
, (24)

where[
λ
(q)
F

]−2

=
4πn0e

2(βµ)3/2
(
1− 1

3ϑ
q
1(βµ)− 5

3ϑ
q
2(βµ)

)
µ

,

(25)

where λF
(q) is the modi�ed Fermi length. Here, we

have

n0 = 1
3π2

(
2mµ
ℏ2

) 3
2 ,

ϑq
1(βµ) =

π2

8 γ1(q)β
−2µ−2,

ϑq
2(βµ) =

7π4

960 γ3(q)β
−4µ−4. (26)

In order to investigate the q-deformation e�ects on
the Thomas�Fermi screening length, the quantity of
α is de�ned as

α =
λq
F

λF
=

√
1− 1

3
π2

8 (βµ)−2

1− 1
3ϑ

q
1(βµ)− 5

3ϑ
q
2(βµ)

, (27)

where λF is the screening length for the ordinary
fermions [7].

In Fig. 1, α has been plotted for values of q =
0.2, 0.3, and 0.4. In this �gure, the solid curves con-
sider the O( µ

kBT )
−2 related to the γ1(q) term, and

dashed curves show the O( µ
kBT )

−4 related to the

γ3(q) correction. Figure 2 is the same as Fig. 1,
but higher values of q are considered. As it is clear
from these �gures, the q-deformation has more ef-
fects on the screening length at higher tempera-
tures, and decreasing temperature decreases the ef-
fect of q-statistics. On the other hand, one can
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see that considering γ3(q) corrections is signi�cant
at lower temperatures and decreases the e�ects of
q-deformation.
As an interesting result, our calculations also

show that, at higher temperatures, the behav-
ior of q-screening length in the Thomas�Fermi
model is di�erent for various values of q, namely
q-deformation leads to an increase in screening
length (α > 1) at q ≲ 0.3. The results also show
that the q-deformed screening length is smaller than
the ordinary one at higher values of q (for q > 0.3,
α < 1), and it is clear from the �gures that the
ratio of q-screening length and ordinary one tends
to 1 at su�ciently low temperatures. This means
that all q-corrections therefore vanish at zero tem-
perature. It should be mentioned that q > 1 values
were not considered here because of the symmetry
property of the q-deformed distribution function,
fk,q = fk,q−1 .

4. Conclusions

The Thomas�Fermi screening length has been in-
vestigated using q-deformed statistics. The calcu-
lations have been made based on the q-deformed
generalized Fermi integral at �nite temperature.
We found that the screening length of q-fermions
is greater than that of ordinary fermions for some
values of the deformation parameter. Some other
values of q, on the other hand, decrease the screen-
ing length. The results show that deformation ef-
fects vanish at zero temperature limit. It has been
found that considering higher correction terms of
q-deformation, along with temperature dependence,
leads to more e�ects on q-screening.
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