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We evaluate numerically the survival probability P (t) for the unstable 2P excited state of the hydrogen
atom that decays into the ground-state 1S by emitting one photon (τ ∼ 1.595 ns), thus extending the
analytic study of Facchi and Pascazio, Phys. Lett. A 241, 139 (1998). To this end, we �rst determine the
analytic expression of the spectral function of the unstable state, which allows for an accurate evaluation
of P (t). As expected, for short and long time scales, P (t) shows deviations from the exponential law:
a `Zeno' region occurs at extremely short times (up to ∼ 0.3 attosec), followed by a longer `anti-Zeno'
domain (up to ∼ 50 attosec); at long times above 125τ the decay law scales as t−4.
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1. Introduction

The fact that the decay law of a given unstable
state, described by the survival probability P (t),
is not simply an exponential function of the type
P (t) = e−t/τ = e−Γt, is well understood theoret-
ically, e.g. [1�3]. In particular, deviations are ex-
pected at short and long times. At very short times,
the quadratic decay law P (t) = 1−t2/τ2Z+... (where
the coe�cient τZ is the so-called Zeno time) is re-
alized, which implies a larger survival probability
than e−t/τ and in turn renders the quantum Zeno
e�ect possible [4], i.e., a slowing down of the decay if
very frequent measurements are performed. Shortly
after this Zeno region, an anti-Zeno domain that
corresponds to a faster decay than e−t/τ usually
(but not necessarily) takes place; here a sequence of
measurements at an appropriate time interval gen-
erates an increased decay rate. At very late times
the decay follows a power law, P (t) ∼ t−β , where
the exponent β > 0 depends on the speci�c sys-
tem. Quite interestingly, a very similar phenomenol-
ogy applies also to relativistic decays, which need
a quantum �eld theoretical (QFT) treatment, see
e.g. [5�7] (the particular case of strong decays, in
which large deviations are expected, is discussed
in [8]).
In general, these deviations occur at very short

and very long times, which makes them very
di�cult to observe in natural systems. At the

experimental level, deviations from the exponential
decay at short times (including both Zeno and anti-
Zeno domains and related e�ects) were con�rmed
in [9, 10] using engineered tunneling of Na atoms
through an optical potential. Deviations at long
times were seen in �uorescence decays of chemical
compounds in [11]. Short- and late-time deviations
were also con�rmed by the analogous system of pho-
tons propagating in waveguide arrays [12]. A type
of `hidden evidence' of the non-exponential decay
law is reported for nuclear beryllium decays in [13].
Indeed, the previous examples show that up to date
deviations could be observed only in speci�c sys-
tems.
In this work, we intend to study a natural and

very basic decay, namely the 2P�1S transition of
the hydrogen atom. When the electron is located
in the 2P orbital, it quickly (τ ∼ 1.595 ns) `jumps
down' to the ground state by emitting one photon.
This decay represents then an optimal test to check
what does it mean `short' and `long' times when
deviations from the exponential decays are consid-
ered. In [14] this system was studied by using ana-
lytic approximations. Here, we are able to determine
numerically P (t) to a very good level of accuracy.
This is possible because the spectral function of the
unstable state is determined analytically.
Our numerical results con�rm in general the out-

comes of [14], but they also show some novel as-
pects: (i) the numerical value of the Zeno-time
τZ agrees very well with the outcome of [14], but
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the quadratic approximation is only valid for much
shorter times (showing that the coe�cient τZ is an
upper limit); (ii) there is an anti-Zeno region that
is much longer than the Zeno one; (iii) the late-time
deviations start even later than the estimated value
in [14].
The article is organized as follows: in Sect. 2 we

recall some general features of the theoretical ap-
proach and show the spectral function of the 2P
state; in Sect. 3 we present the main results of this
work � P (t) deviates form the exponential function
at short and long times; �nally, in Sect. 4 we discuss
conclusions and outlooks.

2. The model and the 2P spectral function

First, we brie�y recall some main properties con-
cerning the decay law, see details in [1]. The results
can be also obtained in the speci�c case of the Lee
(or Lee�Friedrichs) Hamiltonian [2, 15, 16]. This is
a versatile model that implements the continuum of
states and can be also extended to relativistic QFT
cases [5�8, 17].
Let us consider a system controlled by the Hamil-

tonian H describing an unstable system/particle
|S⟩ formed at the time t = 0. The survival proba-
bility P (t) that the state has not decayed yet up to
time t > 0 is given by (see e.g. [1])

P (t) = |A(t)|2 with A(t) = ⟨S|e− iHt|S⟩, (1)

where A(t) is denoted as the survival probability
amplitude. In turn, A(t) can be expressed as the
Fourier transformation of the spectral function
(also called energy distribution) dS(E) of the
unstable state,

A(t) =

∞∫
Eth

dE dS(E) e− iEt, (2)

where Eth is the lowest admissible `threshold'
energy for the decay. The spectral function dS(E)
emerges as the imaginary part of the propagator
GS(E) = [E−M+Π (E)]−1, where M is the
energy/mass of the unstable state and Π (E)
the so-called self-energy (intuitively, describing
processes of the type S → decay product → S).
It takes the explicit form

dS(E) = − 1

π
ℑ[GS(E)] =

1

π

ℑ[Π (E)](
E−M + ℜ[Π (E)]

)2
+
(
ℑ[Π (E)]

)2 , (3)

and is correctly normalized to unity,∫∞
Eth

dE dS(E) = 1.

Indeed, when the imaginary part ℑ[Π (E)] is
known (or modelled in some way), the real part can
be obtained via the dispersion relation,

ℜ[Π (E)] =
1

π
P

∫ ∞

−∞
dE′ ℑ[Π (E′)]

E′−E
. (4)

Fig. 1. Plot of the spectral function of the unsta-
ble state S ≡ 2P for two di�erent ranges of the
vertical axis. As expected, the function is extremely
narrow and peaked.

The decay width function Γ (E) = 2ℑ[Π (E)] takes
the on-shell value Γ (M) = Γ = 2ℑ[Π (M)] = τ−1,
with τ being the lifetime of the unstable state.

We can then move to the speci�c case of the
2P�1S transition. It is important to recall the ex-
plicit formula for the imaginary part of self-energy
function as presented in [14] (see also the original
calculations in [18, 19])

ℑ[Π (E)] = πΛχ
E−Eth

Λ[
1 +

(
E−Eth

Λ

)2]4 ϑ(E−Eth), (5)

where

χ =
2

π

(
2

3

)9

α3 ≃ 6.43509× 10−9,

Λ =
3

2
αme ≃ 5593.41 eV.

(6)

Without loss of generality, the threshold energy Eth

can be set to zero, Eth = 0. Then, the energy of the
state 2P (neglecting hyper�ne splittings) reads

M =
3

8
α2me ≃ 10.2043 eV. (7)

The on-shell physical decay width can be written
down analytically as

Γ =
1

τ
=

3
2

(
2
3

)9
meα

5[
1 +

(
α
4

)2]4 = 4.12582× 10−7 eV, (8)

out of which

τ ≃ 2.42376× 106 eV−1 = 1.59535× 10−9 s. (9)
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Fig. 2. Survival probability at intermediate times
(of the order of τ ∼ 2.42×106 eV−1). In this domain,
the function is basically indistinguishable from the
exponential decay.

The real part of the loop ℜ[Π (E)] can be deter-
mined analytically as

ℜ[Π (E)]

χΛ
− C=−

2E−Eth

Λ ln
(
E−Eth

Λ

)
+ π

(
E−Eth

Λ

)2
2
[
1 +

(
E−Eth

Λ

)2]4
−
2E−Eth

Λ + π
(
E−Eth

Λ

)2
4
[
1 +

(
E−Eth

Λ

)2]3 −
4E−Eth

Λ + 3π
(
E−Eth

Λ

)2
16
[
1 +

(
E−Eth

Λ

)2]2
+

15π − 16E−Eth

Λ

96
[
1 +

(
E−Eth

Λ

)2] , (10)

where the subtraction constant C is chosen such
that ℜ[Π (M)] = 0. The spectral function dS(E)
can be determined by inserting the results from
equations (5) and (10) into (3); its form is shown
in Fig. 1. As expected, dS(E) is an extremely nar-
row function peaked at the energy M . We have nu-
merically veri�ed that it is normalized to 1.
Once the shape of the spectral function is �xed,

the decay law can be determined numerically.

3. Results for P (t)

At intermediate times (of the order of the lifetime
τ), the exponential decay law P (t) = e−t/τ provides
a very good approximation, see Fig. 2.
At short times, by a direct numerical evaluation

of (2), we obtain the results shown in Fig. 3. For
times of the order of 0.01 eV−1 ∼ 10−18 s, deviations
from the exponential law are visible, but this region
is rather of the anti-Zeno type, i.e., an increased
decay rate is realized (see the following discussion).
In order to make the quadratic Zeno-region visi-

ble, one needs to move to even shorter times of the
order of 0.001 eV−1 ∼ 0.6× 10−18 s. In such a time
domain, the decay law can be expressed by

P (t) ≃ 1− 1

2

d2P (t)

dt2

∣∣∣∣
t=0

t2 + · · · = 1− t2

τ2Z
+ . . . .

(11)

Fig. 3. Survival probability P (t) for short times.
In panel (a) we observe an anti-Zeno domain (en-
hanced decay rate). In panel (b) the Zeno domain
is visible, as a direct comparison with (11) shows.

Fig. 4. The ratio of the e�ective decay width over
the exponential one, Γeff(t)/Γ . The red curve cor-
responds to unity.

Namely, upon expanding the amplitude as

A(t) = 1− it⟨E⟩ − t2

2
⟨E2⟩+ . . . , (12)

one may easily see that P ′(0) = 0 if ⟨E⟩ is �nite.
Moreover, the Zeno coe�cient τZ reads

τZ =

√
1

⟨E2⟩ − ⟨E⟩2
=

1

σE
≃

5.45911 eV−1 = 3.59325× 10−15 s. (13)

It is important to stress that in the present case,
the Zeno time τZ is actually much longer than the
non-exponential region in general and the quadratic
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Fig. 5. Survival probability at long times in log�log form. The red curve corresponds to purely exponential
decay. An interesting feature is given by the fast oscillations close to the turn-over time.

TABLE I

Selected numerical values of the e�ective decay width
in the anti-Zeno domain together with the corre-
sponding times.

Γeff(t)/Γ Time [eV−1] Time [s]

2 0.02130 1.40183× 10−17

1.1 0.06242 4.10857× 10−17

1.01 0.08234 5.41941× 10−17

region in particular. Strictly speaking, the Zeno
time de�ned in (11), being the quadratic coe�cient
of the Taylor expansion of P (t), is not necessarily a
good estimate of the non-exponential domain (but
rather an upper limit of it). To further investigate
the decay rate at short times, we introduce an ef-
fective decay width de�ned as [20, 21]

Γeff(t) = − dP (t)

dt

1

P (t)
. (14)

Namely, for a purely exponential decay, Γeff(t) = Γ
for each t. In turn, Γeff(t) > Γ signalizes an anti-
Zeno domain, while Γeff(t) < Γ � a Zeno one. The
function Γeff(t)/Γ is presented in Fig. 4. It is clear
that for short times an anti-Zeno region is present,
with Γeff(t)/Γ having a maximum at

t ≃ 0.00056 eV−1 = 3.69232× 10−19 s, (15)

at which the decay rate is about 50 times larger than
the one in the exponential domain. The Zeno region
takes place at such short times that it is barely vis-
ible in Fig. 4. It should be noted that quite similar,
although non-identical, results for the decay width
of electric-dipole transitions were obtained in [22].
We summarize in Table I the relevant times con-

cerning the anti-Zeno domain, which show that the
anti-Zeno domain reduces to less than 1% for times
above 54 attosec.

Finally, we brie�y describe the long-time domain.
The pole position for the unstable 2P state is given
by

zpole = M − i
Γ

2
= M − i

2τ
, (16)

out of which the survival probability amplitude can
be obtained by changing the contour of the integral
in (2) in the complex plane, namely it is closed be-
tween (Eth = 0,∞) in the right-lower quadrant, the
pole is picked up, and the vertical axis contribution
must be subtracted, which leads to

A(t) = − 2iℑ[Π (zpole)] e
− izpolet

zpole−M + ℜ[Π (zpole)]− iℑ[Π (zpole)]

− i

∫ ∞

0

dy dS(− iy)e−yt. (17)

While for intermediate times the second term
in (17) can be neglected � thus the decay is ba-
sically exponential, this is not true at long times
where the non-exponential part dominates. Numer-
ical calculations are typically di�cult, so the op-
timal way to treat this problem is to analytically
approximate the integral present in (17). At long
times, only the linear term of the Taylor expansion
of dS(− iz) matters, hence with good precision the
survival amplitude can be approximated by the for-
mula

A(t) = − 2iℑ[Π (zpole)] e
− izpolet

zpole−M + ℜ[Π (zpole)]− iℑ[Π (zpole)]

− χ

M2
t−2. (18)

The corresponding plot can be found in the log�log
plot in Fig. 5, where the transition from exponential
to power law is clearly visible.

It is also possible to estimate the transition time
at which the exponential law breaks down. Upon
choosing the turn-over time as the one at which the
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absolute values of both terms present in expression
(18) are equal, one gets

tturn-over ≃ 3.03297× 108 eV−1 =

1.99634× 10−7 s ≃ 125.1τ, (19)

basically implying that a detection of such long-time
deviations is currently `de facto' impossible for the
2P�1S transition.

4. Conclusions

In this work, we have studied the non-exponential
decay of a quite natural electromagnetic transition
� decay of an electron in the 2P state of the
H-atom into the 1S level via the emission of a pho-
ton. While the quadratic Zeno region occurs at very
short times (∼ 0.3 attosec ≃ 1.88 × 10−10 τ), the
long-time deviations occur at very long times (0.2 µs
≃ 125 τ); both of them seem far from any experi-
mental reach.
After a short Zeno region, there is a some-

what longer anti-Zeno domain (up to 50 attosec ≃
3.1× 10−8 τ). This is in agreement with the general
discussion of [3], according to which the anti-Zeno
domain (and e�ect) are in general easier to obtain.
Indeed, in [23] the anti-Zeno e�ect was proposed as
an explanation of the neutron-decay anomaly [24]
due to the anti-Zeno region (and frequent measure-
ments in the bottle-type experiments).
One can speculate that the detection of the anti-

Zeno e�ect (even if very di�cult) might be possi-
ble by a continuous measurement [25] of the ground
state, in a set-up that would be analogous tho the
optical experiment of [26]. Another interesting ex-
tension is the study of more decay channels, such as
in [7, 27], as well as QFT relativistic systems.
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