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The decay of the para-positronium into two photons is studied in the framework of a composite quan-
tum field theoretical approach. This amounts to the evaluation of the electron—positron dressing, the
Weinberg compositeness condition for the positronium, and the triangle-shaped diagram with virtual
electrouns circulating in it, leading to the final two-photon state. An important role is played by the
positronium—electron—positron vertex, which is linked to the wave function of the para-positronium.
‘We show how possible choices for the vertex function affect the v+ decay rate. Outlooks to other decay
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channels and other positronia are presented.
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1. Introduction

Positronium is a bound state of an electron—
positron pair (e”—eT), that arises in the frame-
work of quantum electrodynamics (QED). As such,
it plays an important role in fundamental physics,
being the lightest ‘element’ [1, 2], as well as in
medical physics, mainly due to its applications
in the technique of positron emission tomography
(PET) [1, 3-7]. The ground state of the positro-
nium, known under the name para-positronium
(p-Ps), corresponds to a spin-singlet state described
by the spectroscopic quantum numbers n 25t1L; =
1 1Sy, or equivalently, by using the relativistic no-
tation as J©¢ = 0=, hence being a pseudoscalar
state just like the pion in quantum chromodynamics
(QCD).

The para-positronium is an unstable short-living
state with a mean lifetime of ~ 0.125 ns. It de-
cays into photons due to the annihilation of its com-
ponents. Charge-conjugation conservation requires
that the decay of p-Ps occurs only into an even num-
ber of photons, with the vy mode (p—Ps — v7v) be-
ing by far the dominant one. This decay width can
be expressed by (see e.g. [8])

1

I'(Ps — n’y)—2J+1

()P lim [4vo(ete™—n)]

(1)
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where v and o are the relative velocity and the an-
nihilation cross-section of e~—e*, respectively, and
where [4(0)]? = m2a3/(87) is the spatial wave
function at the origin (annihilation part of the am-
plitude). Namely, the ground-state wave function is
Y(x) = (rad)"2e "/, where r = |z| and a = 2aq
(twice the Bohr radius of the hydrogen atom). At
the lowest order, it becomes

r(*So—29) =
1etfg(@=0))? [
0
etlp(x=0)]?  4ma? Me
Arm?2 = m2 W(x:o)ﬁ = O‘577 (2)

where the last result is the famous Wheeler—Pirenne
formula [9, 10] involving solely the fine-structure
constant o and the electron mass m.. In the frame-
work of QED, higher orders can be systematically
evaluated, see e.g. [11-13] and Table I [9-16] for a
summary.

Here, we intend to study the p-Ps within a com-
posite model that makes use of the composite-
ness condition, originally proposed to describe the
deuteron [17, 18], in a way that resembles the treat-
ment of QCD bound states [19-21]. To this end, we
extend the scalar model described in [22]. The tri-
angle diagram in Fig. 1 leading to the v decay is
calculated within this approach. Of course, the aim
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TABLE I

Summary of theoretical and experimental results for the decay rate p—Ps — 2. The quantity Iy = a®m./2 is
the lowest-order (LO) result. The constants A, B, C' describe further corrections (NLO — next-to-leading-order,
NNLO — next-to-next-to-leading-order, etc.) and are reported in [12].

I'(p—Ps — 2v)
Formula Result [us™] Comment Reference
e ;” 8032.5028(1) | lowest order (LO) | [9, 10]
2 LO+NLO
I {1 +2 (175)} 7985.249 o [11]
m \ 4 corrections
Theory
2 2
F0{1 + % (%75) — 2a%In(a) + Ba, (%)
LO+NLO-+NNLO
" . , 7989.6178(2) N : [12-15]
_90Q 42 a” a corrections
71_ln (a)+C7Tln(a)+D(7T) }
Experiment 7990.9(1.7) [16]
is not to go beyond the precision studies of QED,
but to learn how to deal with the nonperturbative
vertex linking positronium to its constituents [23].
In the following, a detailed discussion of this topic
. . p— Ps
will be provided. o
ph
2. The composite model
Fig. 1. Triangle-shaped diagram for the process

The Lagrangian of our model, describing the
decay (and interaction) of para-positronium (with
mass Mp) into two massless photons, reads
Lint = gpP (@)1 (2)i7°9(2) — eAy(2)d(x)y"¢(2),

3)
where P(z) stands for the pseudoscalar positronium
field, ¥(x) is the electron field, A, is the photon
field, e is the electric charge of the proton, and gp
is the positronium-constituent coupling constant.
Note, there is no direct coupling between p-Ps and
photons; the process p-Ps— 7y is realized through a
triangle-shaped diagram with virtual electrons cir-
culating in it, see Fig. 1.

At this point one needs to specify the kinematics
of the two-body decay illustrated in Fig. 1. As for
the external momenta, one has p* = (Mp,0), ki =
(w,0,0,w), k = (w,0,0, —w), with w = Agp, while
the internal momenta are g1 = £ +¢, ¢ = § — ¢
and finally g3 = § 4 ¢ — k1.

Let us now introduce one of the most important
objects of our model, i.e., the triangle amplitude
I related to the diagram of the process depicted
in Fig. 1, which reads

I i/ d'q/(2m)* F(q.p)
(qf — m2+ie) (g5—m2+ie) (¢§—m2+ie)’

(4)
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1
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p—Ps — 9.

where F(q,p) is the ‘nonlocal’ vertex function pro-
portional to the Fourier transform of the wave func-
tion of the para-positronium. Note, this function is
formally not present in (3), since the latter is local.
It could be however easily included by rendering it
nonlocal, see details in [19-21, 24].

The evaluation of the integral of (4) has been
done in two independent ways. The first one is per-
formed by using the Wick rotation, and the second
one by using the residue theorem. The basics of our
formalism, including the discussion about the con-
vergence of integral of (4), has been presented in the
quantum field theoretical (QFT) scalar toy model
in [22].

The triangle amplitude of (4) can be written as

d*q¢  F(q,p)
I=i A\ LY
! / (27)4 Dy Dy D3’ (5)
where

Dyy= (p/2:|:q)2 —mg +ie =
(MP/Qqu)2 -q° —mg + ie,

Ds = (Mp/2+¢" — k))* — (g — k1)? — m? + ie,
(6)
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p— Ps p— Ps

Fig. 2. Loop diagram of the process p—Ps —
e et — p—Ps.

By setting D; 23 = 0, one gets the corresponding

poles

lefﬁf /p2+q2+m2+157
Poles of Dy : : ‘

R1 = —% —+ p2+q§+mz — 16,

(7)

h

Mo /PR + 10
M VP mE — 1,
(8)
Ly = —/p*+(q=—k:)?+m2 + 6,
Ry = /PP +(q.— k. P2 — i6.
(9)
The resulting decay width into vy within our ap-
proach reads
1 2[k|
2 87 M2

with ‘kll = %Mp

The para-positronium is not an elementary par-
ticle, but an extended object emerging as a bound
state of one electron and one positron. Thus, the
positronium-constituent coupling constant gp en-
tering the Lagrangian in (3) is not a free parameter
of our model and it can be obtained by using the
Weinberg’s compositeness condition [17, 18]

2
Poles of D5 : {

=

2

Poles of D5 : {

212
4778meagpITP ,

FP—)'y'y = (10)

gp = Z”(si]\/fg) (11)

with

E(S) _ _1/ d4q f2(q)2 (_ﬁ+q2_m2) (12)
(27T)4 D1 D2 4 €)’

where X(s) is the loop function depicted in Fig. 2
as a self-energy loop diagram.

Within our approach the vertex function F(q, p)
turns out to be proportional to the wave function of
the positronium in momentum coordinates, A(q),

4 L\
bt attmz? '
‘ (13)

However, simply setting it as equal F(q,p) = A(q)
does not work, because for this naive Ansatz the
value of the decay rate of the process p—Ps — v
turns out to be too small by a factor of 2 compared
to the experimental data.

Flq,p) = F(q®) ~ A(q)
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Fig. 3. (a) Dependence of the loop function X
on the running square mass of the positronium
s = M3. (b) Dependence of coupling constant gp
on s = M32. Red dots represent the physical case.

Moreover, at first glance it also seems that in (13)
the covariance is broken. This is not necessarily the
case, since we can interpret the vertex function as
resulting from the Lorentz-invariant object [25]

—(pg)* +p°¢?
P2
thus in the rest frame of the decaying particle, in

which the four-momentum of the positronium is p =
(v/s,0), reduces to

Flpra) f(W)szFm?). (15)

P2
As a consequence of this setup, in the rest reference
frame there is no ¢° dependence (and no additional
pole) resulting from the vertex function.

Following [23] (see also the scalar model in [22])
let us now consider another possibility for the ver-
tex function, constructed as follows
Fl@®) =+ (a*+7) "
with 42 = m? — 1 M}. First, in Fig. 3 we present
the loop function X' (s=M3%) and the coupling con-
stant for this choice. It is visible that with increasing
the variable s the value of the loop function X(s)
also increases and reaches a cusp at the threshold
located at the energy 2m.. Consequently, the cou-
pling constant gp as a function of s = M3 decreases
with increasing s and vanishes at the threshold.

In Table IT we list the result of the decay width
of the process p—Ps — 7 obtained in our model
by making use of the vertex function of (16).

=q°, (14)

(16)
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TABLE II
Pole contribution to the I'p — Ps — ).

Pole(s) contribution Result [us™!]
Pole 1 7968.15
Pole 1 + pole 2 7995.34
Pole 1 + pole 2+ pole 3 7920.26

It is visible that the result involving the contribu-
tion of all three poles is now closer to the experi-
mental value 7990.9(1.7) us~—! than the lowest-order
Wheeler—Pirenne result. In this respect, it can be
shown that in the non-relativistic limit, our model
correctly reduces to a®m, /2.

Moreover, it is interesting to study the role of
each pole, so in (10) we split I = I + I + I5, where
I}, arises from the pole Ry. The contribution to the
total decay rate from the first pole is by far the
dominant one. Namely, the ratio of the amplitude
contribution of the second pole with respect to the
first one is 0.00170446, while the contribution of the
third with respect to the first pole is —0.00471415.
Interestingly, the third pole gives a negative contri-
bution to the decay width. This goes in the right
direction, but the contribution is even too strong,
delivering a theoretical result smaller than the
experiment,.

Note, the result found in [23] for the same vertex
function is 7952.7 us~!, the difference being due to
the Weinberg compositeness condition implemented
in our approach. Still, we agree with the interpre-
tation that QFT approaches implicitly contain the
resummation of a certain class (but not all) of QED
diagrams, see the discussion in [26].

3. Conclusions

After a brief recall of the theoretical and experi-
mental results on the para-positronium decay rate
into two photons, we introduced a QFT compos-
ite model to describe this decay. Upon evaluating
the triangle diagram with virtual electrons and us-
ing the Weinberg compositeness condition, we cal-
culated the vy decay width. We showed that the
role of the vertex function is important. The choice
made in [23] delivers quite good results, but further
improvement is needed to make the finding agree
with the very precise experimental result.

In the future, one should test other choices for
the vertex function, such as the promising co-
variant Ansatz of [27]. In general, the connection
to the bound-state of quarks can also be use-
ful [19, 21, 26, 28]. Also, studies of the decay of ra-
dially excited states of para-positronium into pho-
tons, as well as the decay of ortho-positronium into
three photons, represent an outlook of our model.
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