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The decay of the para-positronium into two photons is studied in the framework of a composite quan-
tum �eld theoretical approach. This amounts to the evaluation of the electron�positron dressing, the
Weinberg compositeness condition for the positronium, and the triangle-shaped diagram with virtual
electrons circulating in it, leading to the �nal two-photon state. An important role is played by the
positronium�electron�positron vertex, which is linked to the wave function of the para-positronium.
We show how possible choices for the vertex function a�ect the γγ decay rate. Outlooks to other decay
channels and other positronia are presented.
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1. Introduction

Positronium is a bound state of an electron�
positron pair (e−�e+), that arises in the frame-
work of quantum electrodynamics (QED). As such,
it plays an important role in fundamental physics,
being the lightest `element' [1, 2], as well as in
medical physics, mainly due to its applications
in the technique of positron emission tomography
(PET) [1, 3�7]. The ground state of the positro-
nium, known under the name para-positronium
(p-Ps), corresponds to a spin-singlet state described
by the spectroscopic quantum numbers n 2S+1LJ =
1 1S0, or equivalently, by using the relativistic no-
tation as JPC = 0−+, hence being a pseudoscalar
state just like the pion in quantum chromodynamics
(QCD).
The para-positronium is an unstable short-living

state with a mean lifetime of ∼ 0.125 ns. It de-
cays into photons due to the annihilation of its com-
ponents. Charge-conjugation conservation requires
that the decay of p-Ps occurs only into an even num-
ber of photons, with the γγ mode (p−Ps → γγ) be-
ing by far the dominant one. This decay width can
be expressed by (see e.g. [8])

Γ (Ps → nγ)=
1

2J+1
|ψ(0)|2 lim

v→0

[
4vσ(e+e−→nγ)

]
,

(1)

where v and σ are the relative velocity and the an-
nihilation cross-section of e−�e+, respectively, and
where |ψ(0)|2 = m2

eα
3/(8π) is the spatial wave

function at the origin (annihilation part of the am-
plitude). Namely, the ground-state wave function is

ψ(x) = (πa3)−
1
2 e−r/a, where r = |x| and a = 2a0

(twice the Bohr radius of the hydrogen atom). At
the lowest order, it becomes

Γ
(
1S0 → 2γ

)
=

1

2

e4|ψ(x=0)|2

πm4

∞∫
0

d|k1| δ
(
2m−2|k1|

)
|k1|2 =

e4|ψ(x=0)|2

4πm2
=

4πα2

m2
|ψ(x=0)|2 = α5me

2
, (2)

where the last result is the famous Wheeler�Pirenne
formula [9, 10] involving solely the �ne-structure
constant α and the electron mass me. In the frame-
work of QED, higher orders can be systematically
evaluated, see e.g. [11�13] and Table I [9�16] for a
summary.
Here, we intend to study the p-Ps within a com-

posite model that makes use of the composite-
ness condition, originally proposed to describe the
deuteron [17, 18], in a way that resembles the treat-
ment of QCD bound states [19�21]. To this end, we
extend the scalar model described in [22]. The tri-
angle diagram in Fig. 1 leading to the γγ decay is
calculated within this approach. Of course, the aim

699

http://doi.org/10.12693/APhysPolA.146.699
mailto:milena.piotrowska@ujk.edu.pl


M. Piotrowska et al.

TABLE I

Summary of theoretical and experimental results for the decay rate p−Ps → 2γ. The quantity Γ0 = α5me/2 is
the lowest-order (LO) result. The constants A, B, C describe further corrections (NLO � next-to-leading-order,
NNLO � next-to-next-to-leading-order, etc.) and are reported in [12].

Γ (p−Ps → 2γ)

Formula Result [µs−1] Comment Reference

Theory

α5me

2
8032.5028(1) lowest order (LO) [9, 10]

Γ0

{
1 +

α

π

(
π2

4
−5

)}
7985.249

LO+NLO

corrections
[11]

Γ0

{
1 +

α

π

(
π2

4
−5

)
− 2α2 ln(α) +B2γ

(α
π

)2

−3α3

2π
ln2(α) + C

α3

π
ln(α) +D

(α
π

)3 } 7989.6178(2)
LO+NLO+NNLO

corrections
[12�15]

Experiment 7990.9(1.7) [16]

is not to go beyond the precision studies of QED,
but to learn how to deal with the nonperturbative
vertex linking positronium to its constituents [23].
In the following, a detailed discussion of this topic
will be provided.

2. The composite model

The Lagrangian of our model, describing the
decay (and interaction) of para-positronium (with
mass MP ) into two massless photons, reads

Lint = gPP (x)ψ̄(x)iγ
5ψ(x)− eAµ(x)ψ̄(x)γ

µψ(x),

(3)
where P (x) stands for the pseudoscalar positronium
�eld, ψ(x) is the electron �eld, Aµ is the photon
�eld, e is the electric charge of the proton, and gP
is the positronium-constituent coupling constant.
Note, there is no direct coupling between p-Ps and
photons; the process p-Ps→ γγ is realized through a
triangle-shaped diagram with virtual electrons cir-
culating in it, see Fig. 1.
At this point one needs to specify the kinematics

of the two-body decay illustrated in Fig. 1. As for
the external momenta, one has pµ = (MP ,0), k

µ
1 =

(ω, 0, 0, ω), kµ2 = (ω, 0, 0,−ω), with ω = MP

2 , while
the internal momenta are q1 = p

2 + q, q2 = p
2 − q

and �nally q3 = p
2 + q − k1.

Let us now introduce one of the most important
objects of our model, i.e., the triangle amplitude
I related to the diagram of the process depicted
in Fig. 1, which reads

I = i

∫
d4q/(2π)4 F(q, p)

(q21 −m2
e+iε) (q22−m2

e+iε) (q23−m2
e+iε)

,

(4)

Fig. 1. Triangle-shaped diagram for the process
p−Ps → γγ.

where F(q, p) is the `nonlocal' vertex function pro-
portional to the Fourier transform of the wave func-
tion of the para-positronium. Note, this function is
formally not present in (3), since the latter is local.
It could be however easily included by rendering it
nonlocal, see details in [19�21, 24].
The evaluation of the integral of (4) has been

done in two independent ways. The �rst one is per-
formed by using the Wick rotation, and the second
one by using the residue theorem. The basics of our
formalism, including the discussion about the con-
vergence of integral of (4), has been presented in the
quantum �eld theoretical (QFT) scalar toy model
in [22].
The triangle amplitude of (4) can be written as

I = i

∫
d4q

(2π)4
F(q, p)

D1D2D3
, (5)

where

D1,2 = (p/2± q)
2 −m2

e + iε =(
MP /2± q0

)2 − q2 −m2
e + iε,

D3 =
(
MP /2 + q0 − k01

)2 − (q − k1)
2 −m2

e + iε,

(6)
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Fig. 2. Loop diagram of the process p−Ps →
e−e+ → p−Ps.

By setting D1,2,3 = 0, one gets the corresponding
poles

Poles ofD1 :

{
L1 = −MP

2 −
√
ρ2+q2z+m

2
e + iδ,

R1 = −MP

2 +
√
ρ2+q2z+m

2
e − iδ,

(7)

Poles ofD2 :

{
L2 = MP

2 −
√
ρ2+q2z+m

2
e + iδ,

R2 = MP

2 +
√
ρ2+q2z+m

2
e − iδ,

(8)

Poles of D3 :

{
L3 = −

√
ρ2+(qz−kz)2+m2

e + iδ,

R3 =
√
ρ2+(qz−kz)2+m2

e − iδ.

(9)

The resulting decay width into γγ within our ap-
proach reads

ΓP→γγ =
1

2

2|k1|
8πM2

P

∣∣∣∣4π 8meα gP I
M2

P

4

∣∣∣∣2 , (10)

with |k1| = 1
2MP .

The para-positronium is not an elementary par-
ticle, but an extended object emerging as a bound
state of one electron and one positron. Thus, the
positronium-constituent coupling constant gP en-
tering the Lagrangian in (3) is not a free parameter
of our model and it can be obtained by using the
Weinberg's compositeness condition [17, 18]

gP =

√
1

Σ ′(s=M2
p )

(11)

with

Σ (s) = − i

∫
d4q

(2π)4
F2(q)2

D1D2

(
−p

2

4
+q2−m2

e

)
, (12)

where Σ (s) is the loop function depicted in Fig. 2
as a self-energy loop diagram.
Within our approach the vertex function F(q, p)

turns out to be proportional to the wave function of
the positronium in momentum coordinates, A(q),

F(q, p) = F(q2) ∼ A(q) =

(
1 +

4

α4+m2
e

q2

)−2

.

(13)

However, simply setting it as equal F(q, p) = A(q)
does not work, because for this naive Ansatz the
value of the decay rate of the process p−Ps → γγ
turns out to be too small by a factor of 2 compared
to the experimental data.

Fig. 3. (a) Dependence of the loop function Σ
on the running square mass of the positronium
s = M2

P . (b) Dependence of coupling constant gP
on s = M2

P . Red dots represent the physical case.

Moreover, at �rst glance it also seems that in (13)
the covariance is broken. This is not necessarily the
case, since we can interpret the vertex function as
resulting from the Lorentz-invariant object [25]

−(pq)2 + p2q2

p2
= q2, (14)

thus in the rest frame of the decaying particle, in
which the four-momentum of the positronium is p =
(
√
s,0), reduces to

F(p, q) = F
(
−(pq)2 + p2q2

p2

)
= FRF (q

2). (15)

As a consequence of this setup, in the rest reference
frame there is no q0 dependence (and no additional
pole) resulting from the vertex function.
Following [23] (see also the scalar model in [22])

let us now consider another possibility for the ver-
tex function, constructed as follows

F(q2) = γ4
(
q2 + γ2

)−1
(16)

with γ2 = m2 − 1
4M

2
P . First, in Fig. 3 we present

the loop function Σ (s=M2
P ) and the coupling con-

stant for this choice. It is visible that with increasing
the variable s the value of the loop function Σ (s)
also increases and reaches a cusp at the threshold
located at the energy 2me. Consequently, the cou-
pling constant gP as a function of s =M2

P decreases
with increasing s and vanishes at the threshold.
In Table II we list the result of the decay width

of the process p−Ps → γγ obtained in our model
by making use of the vertex function of (16).
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TABLE II

Pole contribution to the Γp− Ps → γγ).

Pole(s) contribution Result [µs−1]

Pole 1 7968.15

Pole 1 + pole 2 7995.34

Pole 1 + pole 2+ pole 3 7920.26

It is visible that the result involving the contribu-
tion of all three poles is now closer to the experi-
mental value 7990.9(1.7) µs−1 than the lowest-order
Wheeler�Pirenne result. In this respect, it can be
shown that in the non-relativistic limit, our model
correctly reduces to α5me/2.
Moreover, it is interesting to study the role of

each pole, so in (10) we split I = I1+ I2+ I3, where
Ik arises from the pole Rk. The contribution to the
total decay rate from the �rst pole is by far the
dominant one. Namely, the ratio of the amplitude
contribution of the second pole with respect to the
�rst one is 0.00170446, while the contribution of the
third with respect to the �rst pole is −0.00471415.
Interestingly, the third pole gives a negative contri-
bution to the decay width. This goes in the right
direction, but the contribution is even too strong,
delivering a theoretical result smaller than the
experiment.
Note, the result found in [23] for the same vertex

function is 7952.7 µs−1, the di�erence being due to
the Weinberg compositeness condition implemented
in our approach. Still, we agree with the interpre-
tation that QFT approaches implicitly contain the
resummation of a certain class (but not all) of QED
diagrams, see the discussion in [26].

3. Conclusions

After a brief recall of the theoretical and experi-
mental results on the para-positronium decay rate
into two photons, we introduced a QFT compos-
ite model to describe this decay. Upon evaluating
the triangle diagram with virtual electrons and us-
ing the Weinberg compositeness condition, we cal-
culated the γγ decay width. We showed that the
role of the vertex function is important. The choice
made in [23] delivers quite good results, but further
improvement is needed to make the �nding agree
with the very precise experimental result.
In the future, one should test other choices for

the vertex function, such as the promising co-
variant Ansatz of [27]. In general, the connection
to the bound-state of quarks can also be use-
ful [19, 21, 26, 28]. Also, studies of the decay of ra-
dially excited states of para-positronium into pho-
tons, as well as the decay of ortho-positronium into
three photons, represent an outlook of our model.
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