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Photoplethysmography is a non-invasive physical method used for monitoring arterial blood flow in
the subject’s body by measuring the amount of light absorbed or reflected by the pulsatile blood
flow within the vessels. It is commonly used in wearable devices, primarily for pulse measurement.
In ambulatory and clinical practice, it is implemented in pulse oximetry for the estimation of pulse
and blood oxygen saturation levels. However, this method has the potential for a much broader range
of measurements, such as detecting atrial fibrillation episodes. Innovative applications of this field
continue to emerge in the analysis of the cardiovascular system, along with the implementation of new
technological solutions aimed at analyzing and improving signal quality. Thus, we have decided to collect
information on the current advancements in the field of photoplethysmography. Also, the aim of this
mini-review was to bring closer non-obvious applications of photoplethysmography and its development

(2024)

prospects.
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1. Introduction

Photoplethysmography (PPQG) is a non-invasive
physical method used for the measurement and
monitoring of arterial blood flow in the subject’s
body with the application of light. PPG is based on
the measurement of light absorbed or reflected by
the pulsatile blood flow within the vessels. It is used
to assess a range of parameters related to the hu-
man cardiovascular system. It is based on measuring
the intensity of light emitted from a device’s light
source (traditionally light-emitting diode (LED)) af-
ter passing through the patient’s tissue towards the
receiver. PPG devices may be applied in various
places on the patient’s body, like a finger (typically),
wrist, or earlobe. This method is easy to implement
and is increasingly being used not only in clinical
practice, but also in larger market devices, such as
phones (commonly with the use of a flashlight as
the main light source) and smartwatches.

Earlier, red light (wavelength around 645 nm)
was commonly used, but new studies show that the
application of green light (around 530 nm) improves
signal-to-noise ratio values [1]. The difference in
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obtained amplitudes originates in the intensity of
the light source and the molar absorption coef-
ficient of the wavelength, a parameter describing
the absorption of light by blood for a certain
wavelength. This coefficient was parameterized by
Scott Prahl [2] based on studies reported in [3, 4].
PPG technology in clinical or wearable devices re-
quires basic optoelectronic components with a sta-
ble continuous-wave (CW) light source to illumi-
nate the tissue and a photodetector to measure the
small changes in the reflected/absorbed light inten-
sity associated with variations in blood perfusion. In
the commercially available systems, neither photon
distribution time of flight nor phase shift are ana-
lyzed, which might be important, especially in obese
people [5].

The PPG trace has a distinctive shape, as pre-
sented in Fig. 1. The characteristic points marked
in Fig. 1 are described in the literature and are com-
monly used for PPG data analysis [6].

Photoplethysmography is a rapidly developing
field of research, due to the relatively simple imple-
mentation of the PPG method and the wide range
of data that can be obtained from the PPG signal.
The aim of this work was to review articles not older
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than five years to present the main problems in the
development prospects of PPG and to bring closer
typical as well as non-obvious applications of that
method.

2. Methods

2.1. The research

The articles reviewed in this paper were pri-
marily searched in the Institute of Electrical and
Electronics Engineers (IEEE Xplore) database us-
ing keywords such as photoplethysmography, PPG,
atrial fibrillation, algorithm, blood pressure, and
heart.

2.2. Paper selection criteria

The selected articles were published between 2019
and 2024, covering a maximum of the past five
years. The studies described in these articles include
innovative solutions for disease detection and the
examination of physiological parameters, as well as
new techniques for PPG signal recording and qual-
ity improvement.

2.3. Organization

The collected studies have been divided into four
sections describing the improvement of the PPG
in:

e Methods of signal recording,

e Signal quality,
e Possibility of disease detection,
e Examination of physiological parameters.

Some sections also contain thematic subsections to
underline the uniqueness of the problem.
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Example of PPG signal with marked characteristic points, adapted from [6].

3. Analyzed materials

3.1. Methods of signal recording

Photoplethysmography methods are based on
light, the source of which is often the most energy-
consuming part, of the measuring device. This prob-
lem was considered in article [7], where the authors
introduced and tested the NO-LED device based on
the external light source.

The study was conducted with two volunteers,
each undergoing five-minute measurements under
the following conditions:

e Indoors:

— Ceiling lighting,

— Sunlight six meters from the window,
e In direct sunlight,
e In diffuse sunlight.

For each situation, the authors provided the aver-
age light intensity falling on the measurement sys-
tem. The results were compared with a reference
device. The authors consider the results obtained
by the proposed system as “reliable or acceptable”
and highlight the difference in power consumption
between the device using LED and the NO-LED
mode.

Nowadays, it is also common to collect PPG data
using smartphones. Mostly, these devices have at
least one front and one back camera, which can be
used for data gathering. In article [8], the quality
of photoplethysmographic readings obtained using
the front and rear cameras of a smartphone were
compared.

The study involved the simultaneous collec-
tion and comparison of measurements from three
sources:

e Front camera (finger illuminated by the phone
screen),

e Rear camera,

e Reference device.
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As aresult of the experiment, the authors concluded
that using the front camera of the phone allows
for greater control over the emitted light, which in
turn can improve the quality of the obtained sig-
nal. Additionally, new possibilities were identified,
such as using the screen to detect the presence and
movements of the subject’s finger, which could be
used, for example, to assess the quality of the mea-
surement.

3.2. Signal quality improvement

The common problem with PPG signals is the
elimination of motion artifacts and noise generated
by other sources. In article [9], the authors described
a method for removing motion artifacts in PPG
signals based on a one-dimensional convolutional
neural network and single-cycle wave analysis. The
dataset used in the experiment consisted of 240 cor-
rect and 220 incorrect cycles of normal sinus rhythm
(NSR) and atrial fibrillation (AF). The training-to-
testing data ratio was 4:1.

The quality control model achieved results of area
under the curve (AUC) and accuracy = 98%, sensi-
tivity = 99%, and specificity and precision = 97%.
By removing the disturbed cycles detected by the
model, the authors claimed to by able to improve
the detection of atrial fibrillation in PPG signals
from 85.5% to 95.5%.

3.3. Possibility of disease detection
3.3.1. Coronary heart disease (CHD)

PPG signals have a wide range of applications
in disease detection. Most of them are associated
with heart disfunction. In article [10], the authors
focused on detecting coronary heart disease (CHD)
with a PPG signal. The paper presents a review
of the literature on CHD detection using PPG, as
well as a discussion and comparison of the effec-
tiveness of three types of algorithms: RR interval-
based, heart rate variability (HRV) feature-based,
and time-domain feature-based.

The algorithms were tested using data collected
from a group of 58 individuals — 28 with CHD and
30 healthy controls. As a result of the experiment,
it was determined that the HRV feature-based algo-
rithm demonstrated the best performance, with an
accuracy of 94%, sensitivity of 100%, and specificity
of 91%.

3.3.2. Diabetes prediction

Not only heart disfunctions can be detected using
PPG signal. In article [11], the authors described
a convolutional neural network they developed and
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tested for detecting diabetes based on scalograms
generated from PPG signals. The model was trained
and tested using data collected from 808 patients
(224 in test group). The achieved accuracy was 76%,
and the AUC was 83%. The authors also suggest
that deep learning techniques may be more effec-
tive than traditional machine learning due to the
presence of motion artifacts.

3.3.3. Atrial fibrillation (AF)

The most common type of arrhythmia is atrial
fibrillation (AF). We focused on three original stud-
ies describing AF detection.

In article [12], the authors presented a program
for detecting atrial fibrillation (AF) in PPG signals
using variational mode decomposition with vari-
ables. The program was tested using the publicly
available MIMIC PERform AF database [13], which
contains data collected from 35 individuals (19 with
AF and 16 healthy). The achieved accuracy, sensi-
tivity, and specificity were approximately 99%. The
authors also demonstrated that the developed sys-
tem enables real-time analysis.

The authors of the second study [14] proposed
different a approach describing the detection of AF
using short segments of PPG signals (= 15 s). The
method was based on extracting musical features
from the signal. The authors developed two com-
puter algorithms: the first, written using the clas-
sical approach, achieved an accuracy of 89%, while
the second one, based on machine learning, achieved
an accuracy of 95%. The effectiveness was validated
using the MIMIC PERform [13] dataset. The ad-
vantages of this approach include the short length
of the signal segments analyzed.

In the third article [15], the authors again
proposed detecting atrial fibrillation (AF) using
short segments of PPG signals (=~ 15 s). This
time, the program was based on a deep convolu-
tional neural network. The program was tested us-
ing the MIMIC database. Three different network
models were applied, with the highest accuracy
reaching 99%.

~
~

3.4. Hypertension

The possibility of detecting hypertension with
PPG signals was analyzed in another study [16].
The authors presented a convolutional neural net-
work that categorizes the level of hypertension
based on predicted blood pressure and a range of pa-
tient parameters derived from the PPG signal. The
algorithm was trained and tested using a dataset of
657 PPG recordings from a group of 219 patients.
The achieved accuracy, sensitivity, and specificity of
the results were at approximately 95%.
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3.5. Examination of physiological parameters

3.5.1. General health condition

The popularity of commercially available PPG-
based wearable devices demonstrates a demand for
continuous monitoring of physiological parameters,
which stimulates research on extracting additional
information regarding general health and well-being
from PPG. The authors of [17] compared two tech-
niques for extracting information from the PPG sig-
nal, namely fiducial point analysis and symmetric
projection attractor reconstruction. The aim of the
paper was to identify a set of data that would allow
the classification of PPG signals based on gender,
age, and physical activity. The study was conducted
using three data sets:

o An artificial data set simulating PPG signals
of healthy males aged 25-75 years,

e A set of ten-minute measurements taken from
57 healthy individuals at rest,

e A set of measurements collected over four
weeks from the same study participants.

The results of the study demonstrated that both
techniques are useful in identifying cardiovascular
differences between patients as well as within a sin-
gle patient. These techniques can be used for classi-
fication based on age and physical activity, but not
by gender.

3.6. Blood pressure

PPG measurements enable a simplified way of in-
direct estimation of blood pressure (BP). No need
for using a cuff and the possibility of building PPG
systems into wearables such as smartwatches en-
able everyday blood pressure monitoring, which can
be helpful for many people, including those at risk
of hypertension. We gathered four original papers
about BP estimation.

In the first article [18], the authors addressed
the issue of overestimating the accuracy of mod-
els used for monitoring arterial blood pressure. The
discussion focuses on machine learning models that
were trained and tested on the same dataset. The
authors compared the results of cross-validation
(using data from the same dataset) with external
validation, where the model is tested on a new
dataset in a regression model based on PPG fea-
tures. The study utilized data from the PhysioNet
database [19], specifically the “Continuous Cuffless
Monitoring of Arterial Blood Pressure via Graphene
Bioimpedance Tattoos” dataset. This dataset con-
tains measurements from 7 patients, both at rest
and during specific test activities designed to in-
duce blood pressure changes. The authors pointed
out that while the results show a small mean
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absolute error in cross-validation, they also demon-
strate “poor generalization ability in an external-
validation scenario.”

The second article [20] describes an algorithm for
calculating blood pressure using PPG signals ob-
tained with the Senbiosys ring, a device capable of
continuous “ultra-low power” PPG monitoring.

The study was conducted with six male partic-
ipants. Measurements were taken using both the
Senbiosys ring and a cuff-based sphygmomanometer
as a reference. In total, seventeen recordings were
collected, each lasting between one and a half to
two and a half hours.

Deviations from the reference device were:

e 0.28 + 7.54 mmHg for systolic pressure,
e 1.30 £ 7.18 mmHg for diastolic pressure.

The authors also pointed out that these results meet
the requirements of the ISO/ANSI/AAMI protocol,
which specifies a deviation of 5 + 8 mmHg.

The third article [21] describes an algorithm for
estimating BP values using a camera. The analysis
focused on video recordings of the subjects’ fore-
heads, from which a feature vector was extracted
and then processed using the Random Forest gen-
erator algorithm.

The algorithm’s performance was tested using
data collected from a group of 40 male volunteers
aged 17 to 42. The subjects were healthy, and their
skin tones varied. The results were compared to a
reference device.

The obtained mean absolute errors compared to
the reference sphygmomanometer were:

e 0.20 £+ 6.41 mmHg for systolic pressure,
e 0.45 + 12.39 mmHg for diastolic pressure.

In the future, the authors plan to increase the num-
ber of test data and the camera’s operating fre-
quency.

The fourth article [22] describes an algorithm for
measuring blood pressure based on machine learn-
ing and the segmentation of signals into Poincaré
sections.

The algorithm was tested using the Multipa-
rameter Intelligent Monitoring in Intensive Care
(MIMIC) II database, which includes arterial blood
pressure and PPG signals.

The algorithm achieved the following mean abso-
lute errors:

e 2.1 mmHg for systolic pressure,
e 1.4 mmHg for diastolic pressure.

3.7. Response to an orthostatic test

The studies show that changes in the patient’s
position during PPG measurements affect the shape
of the PPG curve. This phenomenon was examined
and described in article [23].
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As a part of the test, a group of 7 individuals
(6 men and 1 woman) underwent a series of mea-
surements during an active orthostatic test. Stan-
dard PPG shape indicators commonly found in the
literature were used, and two new indicators were
proposed: the time of occurrence of the maximum
derivative on the ascending phase and the time
of occurrence of the minimum derivative on the
descending phase of the plethysmographic curve.
The authors found a statistically significant differ-
ence in measurement results between the standing
and supine positions (p<0.05). They also suggest
that the proposed indicators could be used for non-
invasive assessment of the cardiovascular system.

In another study [24], the authors highlighted the
impact of orthostatic hypotension on the increased
risk of developing atrial fibrillation. The aim of the
study was to illustrate the effect of orthostasis on
the autonomic nervous system and to identify the
characteristics of the pulse wave in patients with
chronic atrial fibrillation during orthostasis.

The study was conducted with a group of two in-
dividuals undergoing an orthostatic test. Measure-
ments were made using PPG and electrocardiogra-
phy (ECG) signals.

The authors noted differences between the char-
acteristic features observable in ECG and PPG
measurements. In the case of ECG, the pulse wave
shows increased irregularity in the intervals between
QRS complexes. In the case of PPG, a dual change
can be observed — an increase in irregularity in
both the frequency and amplitude of the signal.

4. Conclusions

This article describes 16 studies covering various
scientific achievements in the field of photoplethys-
mography. The materials address topics such as the
examination of vascular system parameters and the
detection of its diseases, as well as methods for ac-
quiring, analyzing, and improving the quality of
PPG signals. Diverse methods employed were de-
scribed, utilizing modern techniques and devices,
such as machine learning and wearable devices for
long-term patient monitoring. We are convinced
that advanced analysis of photoplethysmographic
signals might bring additional information useful for
general healthcare, which seems to be an inspira-
tion to develop both signal generation and analysis
methods.
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