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Functional dependency analysis is an important �eld of data science, where the goal is to determine
the relationships between di�erent data attributes and attribute sets in a given data set. This can
lead to gaining valuable information about the data that is often not evident through surface-level
analysis. In previous work, the authors proposed a functional dependency extraction method called
Sequential Indexing Tables, which is a specialized variant of the Sequential Fuzzy Indexing Tables
(SFITs) classi�ers. SFITs combined lookup table classi�ers with fuzzy logic to implement a very fast
yet �exible classi�cation. A special feature of the SFIT classi�er is that its structure indicates the
functional dependencies between the data attributes that are present in the training data set. However,
the main disadvantage of SFITs is that they require a signi�cant part of the problem space to be stored
in the computer memory, scaling exponentially with the number of attributes. To solve this issue, a
new classi�er called Sequential Fuzzy Indexed Search Trees (SFISTs) has been proposed by the authors,
which builds on the same idea as SFITs but uses a more compact structure while providing a slightly
better classi�cation accuracy. In this paper, the functional dependency detection and extraction method
is presented, which is a specialized version of the SFISTs classi�er that uses the same base idea as its
predecessor but with a much smaller spatial complexity.
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1. Introduction

Functional dependency (FD) analysis is an im-
portant �eld of data science where the goal is to
determine the relationships between di�erent data
attributes and attribute sets in a given dataset. This
can lead to gaining valuable information about the
data that is often not evident through surface-level
analysis, most often used in database management
(schema normalization [1], query optimization [2],
data cleansing [3], etc.), but also can be used to
evaluate the classi�cation feasibility of classi�cation
models [4], data mining [5], etc.
In simple terms, attribute A (the dependent) is

functionally dependent on a set of attributes X
(the determinant) over a dataset (X → A) if the
dataset does not contain any two tuples that have
the same value in the attributes of the determi-
nant set attributes, but di�erent values in the de-
pendent attribute. The discovery process of FD
generally consists of two steps: candidate genera-
tion and FD validation, which has a complexity of

O(P 2N22N ) [6], where P is the number of data
tuples (the rows of the data), and N is the size
of the schema (the number of attributes, i.e., the
columns). Most of the methods proposed in the lit-
erature attempt to mitigate the quadratic depen-
dence on the number of tuples by minimizing the
necessary number of data comparisons with various
heuristics.
In previous work, the authors proposed a new

classi�cation method called Sequential Fuzzy Index-
ing Tables (SFITs) [7], combining lookup table clas-
si�ers with fuzzy logic to make a very fast yet �ex-
ible classi�er. A special feature of the SFIT classi-
�er is that its trained structure implicitly indicates
the presence of functional dependencies between
the data attributes in the training data set, mean-
ing that there is no need for data sample compar-
isons, thus reducing the computational complexity
of the FD discovery problem. Thus, the FD discov-
ery method Sequential Indexing Tables (SITs) [8, 9]
was developed, which has a very high operational
speed, but, in turn, similarly to the SFIT classi-
�er, it requires a signi�cant part of the problem
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Fig. 1. An illustrative example of an integer-
valued dataset with 4 attributes (a), and the layer
built using attribute #0 (b). For the latter, the
search tree and its indexed array representation are
shown.

space to be stored in the computer memory, mak-
ing it less usable for higher-dimensional problems as
its structure size scales with the size of the known
value domain of the attributes. To solve this issue, a
new classi�er called Sequential Fuzzy Indexed Search
Trees (SFISTs) [10] has been proposed by the au-
thors, which builds on the same idea as the SFITs
but uses a more compact structure (using balanced
search trees), while providing a slightly better clas-
si�cation accuracy.
In this paper, a new functional dependency ex-

traction method called Sequential Indexed Search
Trees (SIST) is presented, which is based on the
SFISTs classi�er. The main goal of this preliminary
research is to explore the capabilities and applica-
bility of the proposed method, alongside its weak
points, to �gure out which aspects of the method
need further development.
The rest of the paper is as follows. In Sect. 2.1, the

FD indication of the proposed method is described
in detail, while in Sect. 2.2, the evaluation sequence
generation (in which the attribute combinations are
processed) is presented. In Sect. 2.3, the steps of
the FD extraction are summarized, in Sect. 2.4, the
experimental results are shown, then Sect. 2.5 ex-
amines the computational and spatial complexities
of the SIST method, and Sect. 2.6 summarizes the
gained experiences. Finally, Sect. 3 concludes the
paper and presents future work.

2. Sequential Indexed Search Trees

2.1. Functional dependency indication

Similarly to its predecessor (the aforementioned
SITs method), instead of comparing tuples to each
other to �nd FDs, the SIST extractor analyzes value
combinations by building a sequence of indexing ar-
rays, sacri�cing memory usage for faster operation.
In each layer in the layered architecture, the

sets of tuples of the dataset are virtually separated
into subsets, based on their corresponding attribute

value. Each subset has its own subset index, and
in the next layer, the tuples in each subset are
further divided (again, by their corresponding at-
tribute value). If the number of subsets in layer i
is the same as in the previous layer, then the value
cannot divide the subsets any further, which means
that for all value combinations in the previous layer,
there is only one value in attribute Ai, so X → A
holds (where X is the set of the attributes of the
layers that precede Ai). This presents a very simple
and fast way to check if an attribute is functionally
dependent on one or more other attributes, namely
by simply building the layered structure using the
supposed determinant set and building a layer using
the dependent set upon them.
In each layer i, the data is stored in the form of a

semi-balanced binary search tree, where each node
corresponds to a distinct value in Ai (from the given
dataset). Let SV denote the number of nodes. The
tree is implemented as a series of SV -long arrays,
where

� V stores the given value,
� CL stores the index of the left child of a node,
� CR stores the index of the right child of a
node.

The index of the root node is stored in r. Given
that it is a binary search tree, any given value can
be found in the tree simply by starting at the root
node and then proceeding to the left or right child,
depending on the given value being smaller or big-
ger than the value of the node, and stopping if the
values are the same.
Furthermore, the aforementioned subset indices

are stored for each node in the 2D array µ, for which
the number of rows is SV , while the column number
depends on the number of subset indices from the
next layer. For the �rst layer, the latter is 1. The
number of indices in a given layer is stored in m.
While V , CL, and CR are constants (they are

built only once for each attribute), the index array
is created dynamically for each FD investigation.
Normally, in order to gain this subset index from

the previous layers, each layer would need to be
evaluated again, so to avoid this computation over-
head, P ×N sized 2D array H is maintained, where
Hk,i stores the subset index value tuple k gained in
layer i.
Figure 1a shows an example of a simple dataset T

with 4 attributes and 7 tuples, while Fig. 1b illus-
trates the �rst layer built from the data, i.e., the
binary search tree and the arrays that implement
the tree. Since the data of attribute i = 0 consists
of values 1, 2, and 4, they will be the contents of
the value array. The root of the tree is at index 1,
so indices 0 and 2 will be the left and right children
of the tree, respectively. Each tuple tk is processed
in the dataset, but �rstly, the index of the value ar-
ray that equals their own value (tk,i) is acquired (in
log2(SV ) steps). If the corresponding µ value is −1,
then the value is updated to the current number of
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Fig. 2. Following the previous example, (a) H is
built to store the corresponding µ value for each
tuple in each layer, and (b) the second layer (for
attr.#1) is built upon L0.

Fig. 3. A layer built on L1 using A2.

indices (m0), and m0 is incremented. If the value is
larger than −1, then the gained subset index value
is noted in H (Fig. 2a).
In the next layer (Fig. 2b), each tuple k is sorted

into a subset based on its value (indicating the
row) and its subset value acquired in layer 0, stored
in Hk,0.
From the �gure, it can be seen that A0 → A1

does not hold, as m0 < m1.
Similarly, if L2 is built upon L1 (Fig. 3), it is

obvious from the resulting values that FD A0A1 →
A2 also does not hold. On the other hand, if L3 is
built upon L1 (Fig. 4), we can see that m3 = m1,
thus, A0A1 → A3 holds over the dataset. Remark:
This can be checked in T as well, as there are no
cases where two tuples have the same values for A0

and A1, but di�erent ones for A3.

2.2. Evaluation sequence

For N attributes, there are 2N possible sequences
that could be examined in this way. However, that
would result in a lot of redundant evaluations, e.g.,
sequences A0A1 → A2 and A1A0 → A2 are basi-
cally the same. Therefore, only a subset of these is
needed to be taken.
Figure 5 shows the set containment lattice, a di-

rected graph that shows the order of the building
of new layers (where the last attribute is used for
the newly built layer). An ordering (panel b) can be
set up where each step either builds only one layer
(marked red) on top of the one built in the previous
step (marked green), or steps back an attribute and
builds the new one on a previous one. To produce
this series, in this paper, a specially crafted directed

Fig. 4. A layer built on L1 using A3.

Fig. 5. (a) A set containment lattice for 4 at-
tributes, and (b) an evaluation sequence for the lat-
tice nodes (that start with 0).

graph is created, where each node has a unique ID
from 0 to N − 1, and a directed connection is from
each node towards nodes with higher IDs. For ex-
ample, node #2 is directed towards nodes #3, #4,
and #5. On this graph, depth-�rst search is used,
namely, each time the algorithm enters a new node,
its layer gets built. Each time the algorithm needs
to step back (as there are no more directed connec-
tions to move on), the sequence needs to step back
too. The results are stored in lattice sequence ar-
rays: LI and LB . The former stores which attribute
needs to be built in a given step, and the latter,
if the next step needs to go back to the previous
attribute and use that as a base for the next layer.
As can be seen in Fig. 5b, this results in eval-

uating the attribute combinations that start with
attr. #0, so the sequence of the attributes is rotated
N−1more times (A0A1A2A3 �rst, then A1A2A3A0,
A2A3A0A1, and A3A0A1A2), so all (N 2N−1) rele-
vant combinations are made.

2.3. Functional dependency extraction

Finally, with these in mind, the proposed method
can be summarized as follows:

� Building the lattice sequence (LI , LB), then
the static structures (V , CL, CR) for each
layer.
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TABLE IExperimental results on 7 di�erent benchmark datasets.

Dataset Iris WBC Chess Solar �are Glass Abalone Seismic

N 5 10 7 13 11 9 16

P 150 683 28056 323 214 4177 2584

FDs 4 20 1 9 170 137 374

Lattice size 32 5120 448 53248 11264 2304 524288

Required time [s] 0.003 0.246 0.6 0.75 1.85 47.072 2426.1

Avg. structure size [MB] 0.698 0.45 4.44 0.756 3.56 67.54 18.4

Highest structure size [MB] 0.699 0.569 5.63 0.885 3.56 318.82 22.64

Highest process memory usage [MB] 9 12 29 11 19 629 391

Fig. 6. The dependency extraction time for the
di�erent attribute number variations of the abalone
dataset.

� Going through the lattice sequence, building
a single layer accordingly, and checking if the
number of indices in it is the same as the last
one. If so, then the attributes involved are
added to the FD list.

� Going through the FD list and removing the
non-minimal FDs, i.e., the ones with proper
subsets that are only FDs regarding the de-
pendent attribute.

2.4. Experimental results

The following experiments were performed using
an average PC (Lenovo Legion 7 16ACHg6, AMD
Ryzen�9 5900HX CPU, 32GB RAM, NVIDIA
GeForce RTX 3080 16GB) using MS Visual Studio
Community 2022 and C# .NET framework 4.7.2.
This environment has been primarily chosen for its
tools for easy development and error analysis, as the
goal of the presented experiments is to demonstrate
the operability of the SIST FD extractor and ana-
lyze how it scales with the dataset size (the number
of attributes and tuples).
In the �rst set of experiments, benchmark

datasets (taken from the UCI machine learning
repository [11]) have been evaluated using the pro-
posed SIST method: the iris, chess, Wisconsin

Fig. 7. The highest process memory usage for the
di�erent attribute number variations of the abalone
dataset.

breast cancer (WBC), abalone, glass identi�ca-
tion, solar �are, and seismic bumps datasets. Each
dataset has been evaluated 100 times, and the av-
erage values are presented in Table I. The pro-
posed method found all FDs that are present in
the datasets. The evaluation time is measured (of
which, unsurprisingly, the dependency extraction
step takes most of the operation time, as processing
the lattice takes a number of iterations that is an
exponential function of the number of attributes).
The memory requirement is also measured, i.e., the
average and highest size of the built structure and
the highest value of the process memory usage. The
latter is taken using the Diagnostic Tool of the
VS framework. Remark: The average process mem-
ory usage has been typically 30�50% of the highest
value.
In the second experiment, the scalability of the

attribute number has been examined, for which
the abalone dataset has been taken and modi�ed:
6 datasets have been created by choosing only the
�rst 3 to 8 attributes, while 2 more have been made
by generating random numbers (real values between
0 and 1). This resulted in 9 datasets with N ranging
from 3 to 11, and each has been evaluated 10 times.
The resulting average dependency extraction times
can be seen in Fig. 6, clearly showing the exponen-
tial nature that is inherent in FD extraction. How-
ever, Fig. 7 shows that the highest process memory
sizes increase linearly with N .
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Fig. 8. The dependency extraction time for the
di�erent tuple number variations of the abalone
dataset.

Fig. 9. The highest process memory usage for the
di�erent tuple number variations of the abalone
dataset.

In the third experiment, the increase in the size of
the dataset (i.e., the number of tuples) is examined.
For this, new datasets have been generated, once
again taking the abalone dataset as a base, but this
time, for each new tuple, a value has been chosen
from a random row in the abalone dataset (of the
corresponding column). This resulted in datasets
with 5000, 10000, 20000, 40000, and 80000 tuples.
Figures 8 and 9 show that the dependency extrac-
tion time and the highest process memory need are
both increasing linearly with the number of tuples.

2.5. Computational complexity

The computational and spatial complexity of the
proposed SIST method is compared to that of
its predecessor method in Table II. The proposed
method builds a layer (processing each of the P
tuples in a BST with an average size of V̄ ) for
each of the 2NN lattice sequence steps. While it
is linear considering P , it has an exponential de-
pendence on N . In this regard, the SITs method
is faster (φ denotes the number of FDs), though it
uses a heuristics that makes it prone to miss some
of the FDs, a complete FD analysis (using the pre-
sented lattice sequence) would take it O(N 2N−1P )

TABLE II

Comparison between the computational and spatial
complexity of the predecessor SITs method and the
proposed SIST method.

Computational

complexity

Spatial

complexity

SIT O
(
N3Pφ

)
O (N PDmax)

SIST O
(
N2N−1P log2(V̄ )

)
O

(
N P V̄

)

to complete. On the other hand, the SIST method
produces a much smaller structure, as the aver-
age number of unique values (V̄ ) is generally much
smaller than the largest size of the value domain
(dmax) among the attributes.

3. Discussion

Overall, the results of the experiments and com-
plexity analysis show that the proposed SIST
method works best on datasets with attributes that
have somewhat restricted values (e.g., categorical or
integer), as real values tend to result in a bloated
structure (large but sparsely �lled arrays). Its pre-
decessor method had a similar, though even more
pronounced problem, namely that whole regions of
the value domains of the attributes needed to be
stored as arrays. Although the SIST method sig-
ni�cantly reduced this with the use of search trees,
the structure can still be further optimized to re-
duce the number of unused array cells in the index
array µ.
It is linear in memory need due to the lack of

pairwise comparisons, but its exponential depen-
dence on the number of attributes is still a signi�-
cant downside.
In its current form, the SIST method is basically a

�brute force� approach that evaluates all signi�cant
attribute combinations and then just removes the
non-minimal ones afterward. If the lattice sequence
were such that these non-minimal FDs would not be
evaluated at all in the �rst place, this would result
in a signi�cantly shorter operation time.
Another possible way to enhance the speed of the

SIST method is the application of parallel comput-
ing.
A de�nite advantage of the proposed method is

that it is easy to implement, as it does not involve
any complex computation or structure.

4. Conclusions

In this paper, a new functional dependency ex-
traction method named Sequential Fuzzy Indexed
Search Trees is proposed, which is a specialized
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version of the SFISTs classi�er. It uses indexing ta-
bles and half-balanced binary search trees to build
a layered structure using the value combinations of
the tuples in the given dataset, and from a trivial
indicator in the last layer it can determine if the
attribute of the last layer is functionally dependent
on the set of attributes used to build the previous
layers or not. Its operability is demonstrated using
benchmark datasets.
The method is fast in investigating a single FD,

but processing all possible FDs results in an expo-
nential computational complexity, so in future work
a better approach will be developed.
Furthermore, we will further develop the pro-

posed method to also indicate approximate func-
tional dependencies (which are FDs that hold over
the dataset, aside from a small percentage of excep-
tions), and explore the possibilities of �nding con-
ditional functional dependencies as well.
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