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Large medium voltage machines such as motors and generators, running with a low speed of less than
1000 rpm, are typically designed with the use of sleeve (or journal) bearings. These machines play a
critical role in industrial processes. Sleeve bearings are simple in construction yet designed to operate
for many years without any maintenance. Since these are critical components of rotating machines,
knowledge about their condition is fundamental. Typical and well-proven methods for condition mon-
itoring of journal bearings are based on measurement of the shaft movement within lubrication oil or
monitoring the condition of lubrication oil itself. Both techniques require the installation of special
additional sensors that are typically very costly and not necessarily feasible for the systems already
in operation. Instead, this article proposes to use existing large data sets of performance-related mea-
surements from rotating machines equipped with sleeve bearings and model them in order to detect
anomalies, preferably originating from potential bearing faults. The aim of modelling is to predict bear-
ing temperature as it impacts physically and predictably lubrication oil viscosity and thus lubrication
quality. Models derived from both linear and non-linear approximations are to be benchmarked. Since
at this stage of analysis, the training process is unsupervised (due to lack of labels for confirmed bearing
fault), recommendations given in the article are fundaments for a follow-up work aiming at enriching
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the data with simulated or field-confirmed bearing defects or suspensions.

topics: journal bearings, system identification, linear and non-linear systems

1. Introduction

The context of the study is a maritime industry
with a fleet of liquefied natural gas (LNG) carriers
propelled by ABB diesel-electric propulsion system
(Fig. 1). An LNG carrier is a tank ship designed for
transporting liquefied natural gas.

LNG carriers are highly sophisticated in terms of
technology and are specially designed to transport
LNG at a low temperature of —162°C. They are re-
garded as the “super freezer cars of the sea” and “the
pearl on the crown” in the world shipbuilding in-
dustry [1]. With the diesel-electric concept design,
main reciprocating engines are typically 4 stroke,
dual-fuel engines that are capable of running on
both liquid diesel oil and gaseous boil-off gas. As a
result, the propeller of the diesel-electric propulsion
is operated by an electric motor, which draws power
from a diesel generator. A schematic overview of the
diesel—electric system is shown in Fig. 2. Main elec-
tricity producers onboard LNG vessels are medium
voltage (MV) electric generators driven by a prime
mover, e.g., 4 stroke diesel engines. Generators
convert mechanical energy derived from diesel en-
gines into electrical energy generated as alternating
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Fig. 1.

LNG carrier equipped with ABB diesel
electric propulsion system (manufacturer — ABB).

current (AC) sinusoidal output waveform. The dis-
tribution of electrical AC power is governed and
protected by MV switchboard. One of the main con-
sumers of electricity is electric propulsion motors
(Fig. 3). Propulsion motor (PM) is driven by MV
frequency converter that modulates the frequency
and torque of the electrical supply and thus con-
trols the rotational speed (rpm — revolutions per
minute, here denoted also as RPM) of the motor.

The mechanical power of the propulsion motor
is transferred via a step-down gearbox to the main
shaft ended up with a fixed-pitch propeller.
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Fig. 2. Fragment of electric single line diagram
(SLD) for diesel electric propulsion system (man-
ufacturer — ABB).
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Fig. 3. Electric propulsion motor (manufacturer
— ABB).

Electric propulsion motors are of excited, syn-
chronous type. They are equipped with sleeve (or
plain, or journal) bearings. There are two bearings
on each motor (drive and non-drive end) and two
propulsion motors per vessel.

2. Journal bearings

2.1. Design

The main propulsion motor onboard LNG carrier
is a critical component. Unexpected failure or stop-
page of the motor forces the vessel to decrease sail-
ing speed. That in consequence may lead to missing
the time window selected for this particular LNG
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Fig. 4. Sleeve bearing (manufacturer — RENK).

carrier to reach LNG terminal and to load/discharge
the main cargo. Economical losses caused by such
a scenario are substantial and counting in approx-
imately 100000 USD per day of charter rate plus
penalties related to delayed delivery.

There are few possible failure modes that may
occur in MV electric propulsion motor but for the
simplicity, we categorize them by origin into two
categories, namely electrical and mechanical. An ex-
ample of the failure mode originated from electrical
source is the one described in work [2] where the
motor winding overheating occurs. Article [2] dis-
cusses methods and algorithms that are supposed
to forecasted such faults. Good case of the failure
mode originated from mechanical source is a sub-
ject of this article, i.e., motor bearing. We focus on
journal (or sleeve or plain) type of the bearing that
is used most commonly in electric propulsion mo-
tor onboard LNG carriers propelled by ABB diesel
electric propulsion system.

Journal (or sleeve or plain) bearings shown
in Fig 4. facilitate rotational movement between two
parts.

Unlike the rolling action of a ball bearing or roller
bearing, the sleeve bearing has a sliding action.
When needed they can be used with lubricates or
self-lubricating components to ensure smooth con-
tinuous operation.

Because they are relatively low cost and
maintenance-free, sleeve bearings are used in many
applications, commonly in low-speed machines
such as MV propulsion motor of LNG carrier
that has typically maximum rotational speed be-
low 1000 rpm.

2.2. Condition monitoring of journal bearings

There are several factors that can damage a
journal-bearing surface. Abrasive wear is one of the
most common. Wear can be caused by a hard par-
ticle rubbing between the lubricated surfaces or by
asperity on one surface cutting the other surface.
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Wear can also result from insufficient volume of
lubricant (starvation leading to boundary condi-
tions), overheated lubricant (viscosity at operating
temperature cannot support the load causing fric-
tional heat and additional oil thinning), rough sur-
faces (asperities on the journal cause rubbing), im-
balance (improper loading of the support element
causing shock loading), journal eccentricity (egg-
shaped journal causing rubbing on the high spots),
and metal fatigue from improper metallurgy. Jour-
nal bearing wear can be effectively monitored by
following techniques:

(i) Oil analysis to detect contamination of oil
(water, dirt) that may be a cause of the wear
and ferrographic analysis to monitor actual
content of metal particles that are an effect of
the wear and metal to metal contact of sliding
elements.

Orbit plots — technique that visualizes the
movement, of the shaft within the bearing.
It uses proximity (displacement) probes that
measure actual movement between the bear-
ing casing and the shaft. Orbit plots analysis
can detect faults such as imbalance, misalign-
ment, heavy pre-load, oil whirl and oil whip.

(iii) Vibration analysis — accelerometer mounted
on the case of the bearing will provide a use-
able to some extent signal that helps to detect
problems such as oil whirl, oil whip, and shaft
rubs. However, due to the dampening effect of
the fluid film, the vibration will be attenuated
and the low-frequency response is limited.

To summarize techniques (i) and (ii) are the most
effective but their disadvantage is the high cost of
implementation. Unless the machine is equipped
with proximity probes and an online oil analysis
sensor during its manufacturing process, it is very
costly and technically challenging to install those
sensors on running system. Method (iii) is less costly
and relatively easy to implement, yet does not pro-
vide a full overview about different symptoms of
faulty condition. Therefore, in case techniques (i)
and (ii) cannot be used, it is justified to combine
method (iii) with other techniques, basing on the
availability of other measurements from the motor
related to its performance.

The essence of this article is to explore the pos-
sibilities of using a model-based approach for an-
alyzing journal bearing frame temperature in or-
der to detect anomalies related to the condition of
the bearing. A similar approach has been used in
work [12]. There are very few works about condi-
tion monitoring methods for journal bearing based
on temperature measurements only. However, by
monitoring the bearing temperature, it is expected
to detect overheating of lubricant. In such a con-
dition, viscosity of lubricant decreases, leading to
oil thinning or even rubbing. Ning Ding at al. [13]
involve bearing temperature measurements within
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Fig. 5. Data acquisition flow diagram.

multi-sensor data set analysis that aims at gener-
alization of learning methods. An approach with
a direct model of thermo-elastic hydrodynamic lu-
brication (THL) is used in work [14] to find the
correlation between contact potential and asperity
contact. Ojaghi and Yazdandoost [15] present inter-
esting work on detecting unwanted oil-whirl state
within sleeve bearings, based on spectral analysis
of motor stator current measurements. Similarly,
Jung and Park in work [16]. Bearing temperature is
used in machine learning algorithms to predict fric-
tion torque and friction coefficients in radial, jour-
nal bearings [17]. There is an attempt of deriving
a mathematical model for a temperature change of
the journal bearing presented in work [18]. Finally,
Ates at al. [19] develop a data-driven methodology
for indirectly determining the wear condition of the
bearing by leveraging collected vibration data.

3. Data set description

3.1. Data acquisition

Data acquisition process that facilitated compi-
lation of data set used in this work is depicted
in Fig. 5.

The process consists of the following stages:

(i) Onboard the vessel, both the propulsion mo-
tor and frequency converter are equipped with
a number of sensors measuring different physi-
cal properties. Examples are temperature sen-
sors installed on the stator winding or journal
bearing frame or in the cooling air ducts. The
overriding control is taken by propulsion con-
trol unit (PCU), e.g., programmable logic con-
troller (PLC) that receives commands from
the bridge together with signals from the sen-
sors and translates it into set points for fre-
quency converter. PCU also acts as a lo-
cal digital hub for all critical signals. The
role of the data historian is taken by remote
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diagnostic system (RDS). In principle, it is a
computer onboard the vessel, connected to vi-
tal digital communication buses within diesel—-
electric systems. RDS computer runs diagnos-
tic software facilitating smart acquisition of
essential signals. Among others, RDS acquires
also relevant signals related to the perfor-
mance of the propulsion motor and for that, it
subscribes to the PCU controller. Communi-
cation between RDS and PCU is based on the
open platform communications (OPC) proto-
col (OLE for process control) and the RDS
acts as an OPC client. Approximately 100 sig-
nals from a single PCU are acquired with sam-
pling rates varying from fraction of a second
to minutes and hours.

Cyber secure data transfer from RDS system
onboard to Smart Asset Management reposi-
tory in the cloud. Data packaged into 10 min
long, compressed chunks are tunneled via an
encrypted link over the public internet.

Once data arrive on the cloud side of this
ecosystem, they are automatically imported
into highly efficient storage, based on Azure
Databricks technology. Data are contextual-
ized so that are agnostic regardless of the ves-
sel design type. Querying and exporting data
out of Azure Databricks is done with the use
of PySpark libraries and runs effectively on
the Azure cluster. Data are dumped into a
number of parquet formatted files and down-
loaded to physical machines, where actual dis-
covery analysis is done with the use of Matlab
and Python environments.

(iii)

3.2. Scope of data

In order to create a data set used in this work,
recordings from approximately 40 LNG carriers
have been extracted. That translates to 80 propul-
sion motors and 160 instances of journal bearings.
The main criterion for the selection of the vessel
was data completeness. In reality, historical records
for data considered in the article reach back to
the year 2017. However, as the data preprocessing
work for this analysis proved, the actual amount
of data is smaller due to the delayed deployment of
ecosystems presented in Fig. 5 and data gaps caused
by temporary acquisition system outage. The total
sum of all periods with good quality data across all
cases analyzed in this work gives the measurement
time length of almost 300 years. Out of approxi-
mately 100 different signals available within a single
PCU subsystem, for journal-bearing analysis, there
were approximately 23 selected. Selection was based
on domain, and engineering knowledge related to
the relevance of the measurements to its impact on
the bearing temperature. Table I presents selected
signals, grouped by similar type and origin.
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Signal description. TABLE I
Signal groups
Signal names [unit] Fs Description

DENDTemp, 1 min |temperatures of bearing

NDENDTemp [°C] frame on drive and non-
drive ends

DENDVib, 30 s |overall vibration velocity

NDENDVib [mm/s] RMS values on drive and
non-crive ends

MPCoolAirINTemp, 1 min |temperatures of cooling

MPCoolAirOUT Temp IN and cooling OUT air

[°Cl

MPCoolFanl-4 [1] 1 min |ON/OFF signals for
cooling fans 1-4; four
signals in total

ExcE1Temp [°C] 1 mmin |phase E1 excitor wind-
ing temperature

MPWindPhl-2Temp 1m |in total 6 signals rep-

[°C] resenting stator wind-
ing temperatures on all
6 phases (Ul, U2/V1,
V2/W1/W2)

MPPower [%] < 1 min |electrical power  of
propulsion motor in %
of nominal

MPSpeed [%] < 1 min |rotational speed of the
shaft in % of nominal

MPTorque [%] < 1 min |electical ~ torque  of
propulsion motor in %
of nominal

MMode [1] 1 min |manouvering mode of
the vessel according
to Automatic Identi-
fication System (AIS)
schema

RudderAngle [deg)] 58 |degrees of rudder angle

SSpeed [knots] 20 s |ship’s speed over ground

Fs — sampling frequency rate,
DE — drive-end, NDE — non-drive-end

Data sets were categorized by the journal-bearing
types. As a result a list of bearing types with corre-
sponding dataset identifiers is presented in Table II.
Motor types and ratings are typically the same
within a single building series of ships and vary
slightly across various owners. In particular, for
nominal values, motor power is in the range of
11-12.5 MW, the motor voltage on the level of
2900 V, current 2x 1300 A or 2700 A, rotation speed
between 520 and 675 rpm.

3.3. Data cleansing

Since signals are recorded with different sampling
rates it is necessary to synchronize them into the
same time grid.

From the analysis of the time step response of
the modelled variable that is the temperature of
the bearing frame, it has been verified that the
time constant of dynamic response is in the order
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TABLE II

List of journal bearing types with dataset identifiers.

Data set identifier
G1, G2, G3, G4, S1,
S2, S4, S5, S6, S7, S8,
S9, 02, 03, 06, 09,
010, 011, 012
01, 04, 05, 07, 08,
013, 014, 015, 017,
018, 019, 020, 021,
022, 023, 024, 025, 027

Bearing type

R-35 (DE)/R-28 (NDE)

L-35 (DE)/L-28 (NDE)

of 40-70 min. Thus, it has been arbitrarly set to
retime all the signals to a common grid of 3 min
intervals. Filling missing points with previous value
and aggregating with maximum value from the bin.
Figure 6 illustrates how the above approach han-
dles cases with missing data due to system outage
or deadband settings.

4. Modelling techniques

4.1. Correlation matrix

The goal of the analysis is to model bearing drive-
end (DE) and non-drive end (NDE) temperature
with use of selected covariates from the dataset.
Model structure, i.e., selection of covariates is done
in an iterative manner with the use of the backward
elimination method. This is to reduce the model
size, yet achieve the best performance.

The very first step to determine the relation
between covariates is to calculate the correlation
matrix. As expected and shown in Fig. 7, there
are strong linear correlation between bearing frame
temperature and temperatures of other points of the
motor. Stator windings are elements that heat up
most significantly and the temperature increase is
a direct effect of motor losses.

4.2. Linear models

Model selection by backward elimination is initi-
ated with the use of continuous state-space multiple
input single output (MISO) structure of the follow-
ing form
z(t)=Az(t)+Bu(t)+ Ke(t),

y(t)=Cx(t)+Du(t)+e(t). (1)

Here, A, B, C, D, K are state-space matrices, u(t)
is the input, y(t) is the output, e(t) is the distur-
bance and z(t) is the vector of n states (e.g., model
order).
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Fig. 6. Retiming effect on raw data.

The order of the model is selected optimally based
on the Hankel matrix. For the data sets used in the
calculation, the order is set typically to value 2.

For each and every model training and testing
process, the training set is arbitrarly set as the ini-
tial c.a. 30% portion of the entire data set. For the
model tests, the remaining part is used. Table IIT
summarizes information about the model perfor-
mances vs its structure based on selected and most
representative data sets. Normalized root mean
square error (NRMSE), expressed by

)

_ Myl

|ly — mean(y)||
is used as a measure of goodness of fit between
the predicted model response and the actual mea-
surement data of bearing temperatures. Interest-
ingly, as presented on selected cases of G4-1 DE
and 013-1 DE (see Table III), there are respectively
two cases observed for the 2nd order linear, con-
tinuous time state-space estimation. The first case
is represented by NRMSE error for G4-1 DE in
Table III, where model reduction results in better
performance (higher NRMSE), and the second case
is for O13-1 DE, where reduction of the model struc-
ture results in worse performance (lower NRSME).
The second family of linear model used in the
benchmarking was so-called ARX model. For ex-
ample, autoregressive with extra input as the model
input term is also included. The ARX model struc-

ture is given by

y(t) =ary(t=1)+... +an,y (t—na)

NRMSE = 100 x (1

biu (t—ng) + ... + bp,u (t—np—ng+1) + e(t),

(3)
where y(t) is output at time ¢, n, is the number
of poles, n; is the number of zeros, n; is the num-
ber of dead time samples, y(t—1),...,y(t—n,) —
previous outputs on which current input depends,
u(t—ng), ..., u(t—nr—np) + 1 — previous and de-
layed inputs on which the current output depends.
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Fig. 7. Correlation matrix for selected variables.

TABLE III

Structure of linear state space models for selected
datasets

, , NRMSE [%]
ID | Model input covariates
G4-1 DE| O13-1 DE
V-DE, T-IN,T-OUT,
P PM, T
ALL WR, RPM, TRQ, 76.8 93.1
T-WU1, T-NDE/T-DE,
V-NDE
RPM, PWR, V-DE,
M1 |V-NDE, T-IN, T-OUT, 78.5 92.5
T-NDE/T-DE
PM, P T-IN
M2 RPM, PWR, ’ 78 92.5
T-OUT, T-NDE/T-DE
PM, T-IN, T-OUT
M3 RPM, , T-OUT, 68 69
T-NDE/T-DE
M4 |RPM, T-IN, T-OUT 82.8 76.5
M5 |RPM, T-IN, T-WU1 85,3 79.3
PM, T-IN, T-OUT
M6 RPM, , T-OUT, 84.1 76.3
V-DE/V-NDE

For ARX models, only two structures have been
tested that correspond to state-space model M5 and
M6. As presented in Table IV, the performance of
ARX models is superior to state-space model. This
is due to strong, positive impact of previous outputs
on which current output strongly depends.

4.3. Non-linear models

In recent years, models based on various types
of artificial neural networks (ANN) have been in-
creasingly used. ANNs are inherently nonlinear, so

0.9847
0.9919 0.9962
0.9916 0.9901
0.9755 0.9909 0.9845 0.9924

(K:LvicM 0.8557

0.9849 0.9965 0.9896 0.9919 0.993 NIk} 1
PWR
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TABLE IV

Structure of linear, ARX models for selected datasets.

ID | Model input iat NRMSE [%]
odel imput covariates G4-]_ DE 013_1 DE
M1 | RPM, T-IN, T-WU1 87.1 86
Mg | RPM, T-IN, T-OUT, 86.6 84.8
V-DE/V-NDE
TABLE V

Structure of non-linear models for selected datasets.

, , NRMSE [%]
ID | Model input covariates
G4-1 DE | O13-1 DE
M1 | RPM, T-IN, T-WU1 90.5 89.8
PM, T-IN, T-OUT
M2 RPM, , T-OUT, 89.4 83.8
V-DE/V-NDE

they can be used to identify processes that contain
even strong nonlinearities. For time series prediction
applications, models based on the classical, multi-
layer neural network can be used. Although such a
network can reflect the dynamics of the object per
se, it is possible to use external feedback. In this
case, delayed values of its outputs are fed to the
network input. The use of particularly popular and
recently studied deep and convolutional networks
in time series prediction problems seems to be too
complicated at the first stage. In practice, it has
been proven that a network with at least 2 hidden
layers can approximate any continuous function —
increasing the number of hidden layers mainly leads
to an increase in computational requirements. The
use of convolutional networks makes sense when we
know that detecting certain features is important
in the data processing process. And as such, it is
mainly predisposed to classification problems.
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An interesting solution seems to be the use
of recurrent networks, particularly long short-term
memory (LSTM). Such a network abandons unidi-
rectional transmission and processing of informa-
tion, assuming that individual neurons have a state
— a memory of what has happened to them in the
past. Generally, the main problem with recurrent
networks is their complex learning process.

Due to the ability to easily estimate nonlinear
phenomena and include process dynamics in the
model, multilayer feedforward neural networks were
selected for this paper as a starting point. A neural
network with two hidden layers was trained, with
the number of neurons being 2 times the number
of inputs in the first hidden layer and 0.5 times the
number of inputs in the second hidden layer.

The MATLAB/Simulink package was used as the
basic modelling tool. The received results are in
Table V.

5. Discussion

The main effort of the study presented in this
work was to compile a significantly large set of field
data, representing the real performance of the pop-
ulation of identical or very similar propulsion mo-
tors and their components. Having such a represen-
tative data set sets strong foundations for further
work related to the modelling of selected physical
properties of the motor to further use it in anomaly
detection and actual fault identification.

The motor component, of the main focus in this
work is journal bearing. In order to get better
understanding of signal relation, the correlation

Tirm (mirudes.
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Bad performance of linear models in steady-state periods.

matrix has been analysed. A strong correlation with
RPM is expected. The rotation speed of the shaft
should have a direct impact on the lubrication oil
temperature. Motor power, or torque, or a speed
describe the same causality, e.g., load of the motor.
They are strongly correlated with bearing tempera-
ture as well. Stator winding temperature and exci-
tation winding temperatures are also highly corre-
lated but in this case, it is expected, as it is related
to the heat transfer between motor components. It
is not obvious, however, what is the exact heat tran-
sition path between stator windings and the point
of the motor where the bearing frame temperature
sensor is installed. Cooling air IN and OUT temper-
atures may be important model covariates, provided
there is a direct effect of cooling the winding into
the bearing temperature. Design-wise, the excita-
tion winding is located closer to the drive end bear-
ing and we also see it in a higher correlation value
than for non-drive end. Surprisingly, there is a low
correlation between bearing temperature and bear-
ing vibration, and further models selection proved
vibration is a covariate of low significance.

Linear state-space model of order 2 shows that
combination of training set versus testing set gives
different results of model backward elimination se-
lection. One may say, however, that a model based
on RPM, cooling AIR IN and stator winding or ex-
citation winding temperature gives the best results.

ARX models gave superior results over state-
space and the structure excluding vibration and
including stator winding temperature gave better
scoring (Table IV, model M1).

In case of tested linear approximations, there has
been observed quite significant bias between esti-
mated and real values in the steady state periods.
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An example is shown in Fig. 8, where purple arrows
show model output bigger than actual values and
green arrow shows the opposite performance.

Such an outcome indicates that the physical sys-
tem has strong non-linearities most probably in the
static characteristics. Linear models are not suffi-
cient in this case and either non-linear coefficient
transformation of linear models is necessary or the
application of purely non-linear models is needed.
The application of neural models demonstrated the
validity of the assumption about the nonlinearity
of the process. For both input sets to the model
— M1 and M2, an improvement was observed, with
greater modelling accuracy initially obtained for the
M1 model with fewer inputs. This confirms the the-
sis about the lack of influence of vibrations on the
bearing temperature.

6. Conclusions

The scope of work presented in this article
allows for drawing initial conclusions about the
best way of utilizing motor performance data in
the diagnostics of journal bearings. It has been
recognized that with the use of selected types of
linear approximations, it is possible to achieve
decent predictions, especially during dynamic
states of the system. It has also been possible to
pinpoint a model structure that performs the best
and has the lowest number of covariates. There
is, however, strong desire to improve predictions
in the steady-state areas of the system operation.
For that, including non-linear transformation
of selected covariates is one way. Other way is
to employ fully non-linear techniques such as
neuro-fuzzy models or boosting methods could be
other direction of further research. It may also be
tempting to reduce the problem to building a model
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that only detects steady states and predicts. This is
because application-wise, it is not required to find
symptoms and anomalies as quickly as possible. It is
more about finding them reliably. Ultimately, pre-
dictions are supposed to be used as the very first
step of a more important task which is anomaly or
fault detection. In this area, there is also a need
to possibly step out from unsupervised data sets as
was done in this work and attempt to enrich data
with weakly or strongly supervised cases.
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