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This paper presents the preliminary results of the work on a control algorithm for a two-�nger gripper
equipped with an electronic skin (e-skin). The e-skin measures the magnitude and location of the
pressure applied to it. Contact localization allowed the development of a reliable control algorithm for
robotic grasping. The main contribution of this work is the learning algorithm that adjusts the pose
of the gripper during the pre-grasp approach step based on contact information. The algorithm was
tested on di�erent objects and showed comparable grasping reliability to the vision-based approach.
The developed tactile sensor-rich gripper with a dedicated control algorithm may �nd applications in
various �elds, from industrial robotics to advanced interactive robots.
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1. Introduction

A fast-growing interest in contact-rich robotic
manipulation has been observed recently, especially
in the context of reinforcement learning (RL) [1]. In
contrast to vision-only-based approaches, contact-
rich grasping allows robots to complete demanding
manipulation tasks, such as assembling with mi-
crometer precision [2].
A contact-rich robotic manipulation may assume

the use of di�erent sensors, such as force and tac-
tile sensors, as well as robot motor load, e.g., cur-
rent. External force sensors attached between a
gripper and a wrist, like OnRobot HEX, provide
high-precision measurements but are relatively ex-
pensive and do not provide much information about
the quality of a grip, whereas tactile sensors, such as
an electronic skin (e-skin) [3, 4], are cheap and pro-
vide rich information about touchpoints and touch
forces.
Using the elastic e-skin technology [3, 4] and

commercial servo motors, an inexpensive two-�nger
gripper has been developed (Fig. 1). The gripper
with e-skin-coated �ngers was mounted on a typ-
ical six-degree-of-freedom manipulator, i.e., Easy
Robots ES5. The experimental setup is shown
in Fig. 2.
The main focus of our work was on developing the

algorithm using contact data, which was an e-skin
pressure map, �ngers' motor position, and �ngers'
motor load. The aim was to develop a method that,

Fig. 1. The tactile-sensor-rich gripper (a) features
two mechanical �ngers, each covered with electronic
skin (b).

based on contact information, can adjust the grip-
per's pose to perform a successful grasp, which is
when the object can be lifted.
The RGBD camera was used to detect an object

and provide its pose in 3D space, which helped to
automate the experiment and served as a baseline
for contact-based grasping. However, visual data
was not used in the main contact-based grasping
experiment.
Typically, calibrating the e-skin's sensor positions

would be the �rst step in developing an engineered-
in rule-based control program for grasping. How-
ever, this was overcome by developing a self-
calibrating data-driven algorithm that learns grasp
position corrections from real-world experiments,
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Fig. 2. The experimental setup.

Fig. 3. The gripper and the objects used for test-
ing registered by the RGBD camera. The detected
color segments are highlighted.

which is the main contribution of this work. The
algorithm was tested on various objects, showing
a contact-based grasp reliability comparable to the
vision-based approach.

2. Experimental setup

The developed experimental setup for robotic ma-
nipulation (Fig. 2) consists of four main compo-
nents: (i) the 6-degree-of-freedom Easy Robots ES5
manipulator, (ii) the e-skin-coated two-�nger grip-
per with an electronic driver, (iii) the PC machine,
and (iv) the RGBD camera. The camera observed
the workspace, which was the rectangular region
in the center of the �sandbox� visible in Fig. 2. A
simple color segmentation allowed for the detection
of colored �ngertips (red and blue) and the yellow
blocks (Fig. 3). The color-based object detection
was su�cient to bring the e�ector to the vicinity
of the objects.

Fig. 4. The e-skin �nger patch layout with a visu-
alization of example readings caused by an object
pressed on the skin (red-colored cells).

The tactile-sensor-rich two-�nger gripper (Fig. 1)
is the key element of the setup. Each �nger is ac-
tuated by a Dynamixel 12A servo motor. The grip-
per works in an open/closed mode. In the closed
position, the motors are commanded to achieve a
�xed position, regardless of the size of the object.
However, the servo motor drivers allow for compli-
ant motion control, which helps to limit the applied
force, consequently reducing the risk of damage and
overheating.
The �ngers are coated with e-skin patches. Each

patch of the e-skin consists of 78 touch sensors ar-
ranged in a grid pattern. The shape of the e-skin
patch is illustrated in Fig. 4.
An e-skin touch sensor is a force-sensitive resistor

(FSR) that is approximately 5×5mm2. Detailed in-
formation on the principles of e-skin operation can
be found in [3, 4]. The e-skin's electronic driver, lo-
cated on the gripper's base, publishes measurements
over Ethernet as 2D arrays of natural numbers, one
value for each touch sensor and one 2D array for
each of the two �ngers. The measured values are in
internal units proportional to the magnitude of an
applied force (Fig. 4).

3. Grasp learning algorithm

The presented grasp learning algorithm assumes
that the gripper is close to an object and that only
a small pose correction is required. Speci�cally, the
adjustment range was set to ±50, ±50, ±12.5 mm
in the X, Y , Z directions, respectively, and ±90◦

around the Z axis, which was perpendicular to the
table surface and was aligned with the wrist rota-
tion axis. The correction is applied with respect to
the initial grasp position, which is the center of mass
of a 3D point cloud representing the detected ob-
ject.
As the main goal is to evaluate whether contact-

based grasp adjustment is comparable with the
vision-based approach, the grasp learning algorithm
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is presented in two variants: a contact-based (the
main variant) and a vision-based one (the baseline).
Although it is natural to combine contact features
and visual features together, we do not present such
a variant of the algorithm to not obscure the role of
contact data.
The measured contact-related values were an

e-skin pressure map (a 2D array of size 9 × 16), a
motor angular position, and a motor load for each
of the two �ngers. All measured values were un-
calibrated sensor-speci�c values, except for angular
�nger positions represented in radians.
More formally, a contact-related observation

recorded at time t is a tuple

oct =
(
f1
t , f

2
t , e

1
t , e

2
t , A

1
t , A

2
t

)
, (1)

where f1
t , f

2
t are �nger positions [rad], e1t , e

2
t are

�nger e�orts (�nger servo motor loads in internal
units), and A1

t , A
2
t are pressure maps for the �ngers

1 and 2, respectively.
Whereas �nger positions and e�orts are scalars,

pressure measurements are matrices; hence, extract-
ing feature vectors from these matrices is necessary.
2D pressure maps can be thought of as images, and
spatial image moments can be computed according
to

mji =
∑
x,y

A (x, y)xjyi, (2)

where A is a pressure map and x, y are pres-
sure map point coordinates. For each of the two
pressure maps, a number of spatial moments
were computed and stored in a vector, i.e., m =
[m00,m10,m01,m20,m11,m02,m30,m21,m12,m03].
Finally, for each tactile observation oct , a tac-
tile feature vector can be computed, i.e.,
f c
t = [f1

t , f
2
t , e

1
t , e
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t ,m

1
t ,m

2
t ]. Feature vectors

of observations recorded during a learning phase
are stored in F c.
Tactile feature vector components are of di�erent

scales; therefore, feature vectors f c
t are divided by a

standard deviation σF c that is recomputed on every
new observation, which gives a normalized feature
vector fnc

t stored in Fnc.
As normalized tactile feature vectors are points in

a feature space, the nearest-neighbor search method
can be used to �nd a similar past observation and
apply the same grasp pose adjustment, which is the
core idea behind the presented algorithm. A grasp
pose adjustment is represented as a 3D transform
matrix T corr but will also be called an action, de-
noted by �a�.
The algorithm keeps track of past actions and

their later reuse (using the same T corr). If action
aj reuses (imitates) action ai, then ai is called a
parent of aj , and aj is a child action of ai. Such
a parent�child tree-like structure is used for an ex-
pected reward computation

v (ai) =

(
r (ai) +

∑
aj∈children(ai)

r (aj)
)

|children (ai)|+ 1
, (3)

Fig. 5. The �owchart of the algorithm.

where r(ai) and r(aj) are immediate rewards (one
on success and zero on failure) of i-th and j-th ac-
tions, respectively, and children(ai) returns are a set
of child actions of i-th action. In other words, the
expected reward of i-th action is the average of its
immediate reward and the immediate rewards of its
child actions.
The contact-based grasp learning algorithm

(Fig. 5) performs the following steps in a loop (i-th
loop is also called i-th attempt):

1. Move to the home position above the table.
The robot is o� the camera's �eld of view,
which helps to detect the object and its center
of mass (Fig. 6a).

2. Move to the uncorrected grasp position, ap-
proaching the object in a top�down direction,
and close the gripper. A tactile observation
is collected, and a normalized tactile feature
vector fnc

i is computed (Fig. 6b). Open the
gripper.

3. Move to the pre-grasp position above the ob-
ject (shifted by 25 mm along the Z axis from
the object's center of mass).
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4. If the previous attempt was unsuccessful or
the number of attempts is smaller than two,
then perform step 4a, else perform step 4b.

a. Assign random pose correction to T corr
i .

b. For fnc
i , �nd k = 4 nearest observations

in Fnc, select the one with the highest
expected reward according to (3), and
use the corresponding pose correction as
T corr
i .

5. Move from the pre-grasp pose by T corr
i and

close the gripper (Fig. 6c).
6. Move to the pick-up position above the table,

and store fnc
i in Fnc and T corr

i in T corr set.
7. If the object is in the gripper, then do step 7a,

else step 7b.

a. Report SUCCESS, assign reward of one
to i-th attempt, i.e., r(ai) = 1, and re-
lease the grasped object (Fig. 6d).

b. Report FAILURE, assign reward of zero
to i-th attempt, i.e., r(ai) = 0.

In step 7 of the algorithm, the presence of an object,
i.e., the successful grasp, is checked with a simple
rule on the gripper aperture, i.e., the gripper aper-
ture is greater than 5% of the full opening. Such a
simple rule can be used knowing that the gripper is
at a certain height above the table, and, of course,
it is not su�cient if the object is still on the table.
The vision-based variant relies on the same grasp-

ing algorithm, but in step 2, it computes visual fea-
tures, and the robot does not move from the home
position.
The visual features are the central image mo-

ments computed for the masked depth image of the
object detected in step 1, according to

muji =
∑

x,y
D (x, y) (x− x)

j
(y − y)

i
, (4)

where D is a masked depth image of an ob-
ject, x, y are image point coordinates, and (x, y)
is the mass center of the object's mask. Then,
the visual features vector is de�ned as fv

t =
[mu20

t ,mu11
t ,mu02

t ,mu30
t ,mu21

t ,mu12
t ,mu03

t ]. Con-
sequently, fv

t are stored in F v and normalized fea-
ture vectors fnv

t are stored in Fnv.
In both variants, the proposed algorithm is an ex-

ample of instance-based learning, which in step 5,
by using K nearest neighbors, is similar to the lo-
cally weighted learning approach proposed in [5]
and utilized by VINN [6]. However, it always uses
the original grasp o�set without any control averag-
ing. Also, the algorithm samples pose corrections in
a continuous action space. Thus, the algorithm can
compete with state-of-the-art RL algorithms, such
as TD3 (twin delayed deep deterministic policy gra-
dient) [7], which require large datasets to train actor
and critic neural models. Moreover, the algorithm
does not distinguish between the learning and test-
ing phases. Therefore, it can adjust to new objects
or new unseen observations online, which is a form

Fig. 6. The data collected in subsequent steps of
the grasping algorithm. (a) The robot is in the home
position (step 1). (b) The robot approaches and
touches the object (step 2). (c) The robot corrects
its pose and grasps the object (step 5). (d) The
robot picks up the object and checks if the object
is in the gripper (step 7).

of continual learning [8]. Finally, recorded observa-
tions and actions can be saved and restored; thus,
there is no need for learning from scratch.

4. Experiments

In the experiments, the manipulator program
performed typical pick-and-place task steps, which
are described in Sect. 3, i.e., the grasping algorithm
steps. Although objects of di�erent shapes were also
tested, this section discusses the experiments with
the most challenging one, a long yellow block shown
in Fig. 6. The length of the block, which is larger
than the aperture of the gripper, does not allow for
a successful grasp in some con�gurations.
After powering up the e-skin driver, initial mea-

surements may show some pressure even when no
pressure is being applied. Therefore, the average
pressure level was recorded for all e-skin sensors in
a no-contact scenario. This average level was then
subtracted from the raw measurements in subse-
quent experiments.
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Fig. 7. An arti�cial image depicting all positions
of the block during the contact-based experiment.

Fig. 8. The success rate of grasping for the
contact-based and visual-based variants of the ex-
periment over the course of learning, i.e., the aver-
age number of successes in a window of ten consec-
utive attempts. The values are the averages of three
runs for each variant.

At the beginning of every experiment, a transfor-
mation from the RGBD camera frame of reference
to the robot's global frame of reference was com-
puted by recording the colored �ngertips in four
non-coplanar positions. Although the method is ap-
proximate, it was su�cient for the experiments.
In both variants of the experiment, three runs

of one hundred grasping attempts each were per-
formed. The experimenter could interrupt the main
loop of the algorithm and place the object in a
desired position. In most cases, however, the algo-
rithm continued after both successful and unsuc-
cessful attempts. After a successful grasp, the ob-
ject was dropped with random orientation, which
helped to achieve a certain degree of randomness

among the block positions. All of the block posi-
tions observed in the �rst run of the contact-based
variant are shown in Fig. 7, gathered in a single
image.
The success rates for the two experiment variants,

shown in Fig. 8, are the mean values from the three
runs. The success rates are calculated as the average
number of successes in a window of ten subsequent
attempts. In both variants, the algorithm achieved a
success rate of more than eighty percent. In general,
the algorithm was able to improve its success rate
over time and appeared to be sample e�cient, as it
learns within tens of attempts.
In conclusion, the results show that the novel e-

skin-covered gripper provides su�cient contact in-
formation to achieve a grasping success rate compa-
rable to the vision-based approach when used in the
same learning algorithm. Moreover, with the pro-
posed learning algorithm, grasp adjustment learn-
ing is feasible within a small number of attempts.

5. Conclusions

This paper proposes and evaluates a simple al-
gorithm for robotic grasping learning using a pro-
totypical gripper equipped with an electronic skin
that provides contact-rich information. The experi-
mental results show that the learning algorithm can
achieve a very good success rate within tens of at-
tempts. Moreover, the success rate obtained for the
contact-based experiment is comparable to the suc-
cess rate of the vision-only variant of the algorithm.
These preliminary results suggest that the learn-

ing algorithm and the prototypical e-skin gripper
are worthy of further investigation and may be use-
ful in real-world applications when visual data is
insu�cient, for example, objects are indistinguish-
able or visual data is simply unavailable.
In future work, the learning algorithm will be

compared with state-of-the-art reinforcement learn-
ing algorithms in robotic manipulation tasks. Ongo-
ing work also focuses on self-supervised multimodal
robotic manipulation learning using the proposed
algorithm and the gripper.
To make better use of contact-based measure-

ments, it would be ideal to cover a larger area of
the gripper surface with e-skin. At the same time,
the gripper should have a more robust and compli-
ant design, capable of withstanding high force and
displacement without breaking.
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