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Studies on zebra�sh are carried out to learn how speci�c health conditions might be resolved. The
fact that the genomes of this species and humans are so similar makes this possible. These trials
allow behaviour comparisons between healthy, sick, and cured subjects. When the behaviours of those
healthy and healed match or show a high degree of similarity, researchers frequently �nd a new medicine.
However, there are obstacles that researchers must overcome, such as pricey equipment, time-consuming
analysis techniques, and unsuitable settings for analysis devices. To enhance our comprehension of
the activities of the �sh subjects, we created the Framework for Activity Real-Time Monitoring. This
application makes real-time processing of video records possible, as well as simple calibration and
recon�guration. It also attempts to characterize the behaviour to facilitate comparisons across a broad
spectrum of behaviours. In this study, we provide prospective methods for using k-means clustering
applied to a set of 85 features from motion tracking routes to categorize �sh behaviours. To assess our
solution, we additionally create a public dataset (based on 95 zebra�sh and 80 gold�sh video recordings)
and compare the behaviour of the two �sh species.
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1. Introduction

Behavioural analysis of �sh has developed into
a powerful tool for biomedical research on various
behaviour paradigms, including social interaction,
anxiety, learning, and memory. Fish species studied
include zebra�sh (Danio rerio) and gold�sh (Caras-
sius auratus) [1, 2]. Zebra�sh are thought to be
better laboratory animals than gold�sh, mainly be-
cause of their fully sequenced genome and genetic
tractability. Their quick development, which in-
volves transparent embryos, enables real-time mon-
itoring of developmental processes as well as an
establishing database and protocol network [3, 4].
Conversely, research on toxicity and learning and
memory, which involve a variety of intricate cogni-
tive tasks, also frequently employ gold�sh [5, 6]. Ze-
bra�sh have often been utilized more successfully in
behavioural tests because of their size, convenience
of handling, and the availability of automated track-
ing devices [7].
Software systems like ZebraLab, CleverSys, and

EthoVision XT o�er an integrated platform for
video tracking and quantifying di�erent behavioural
parameters like time spent in particular zones,

movement patterns, speed, and travelled distance.
They are pricey, nevertheless, especially when it
comes to additional hardware requirements, us-
age training, and restrictions on the target ani-
mal species [7]. In biomedical research, the state-of-
the-art automated tracking currently used involves
tracking behaviours such as erratic swimming for
anxiety and depression tasks, preference for speci�c
areas of the test apparatus, or behaviours re�ect-
ing conditioned avoidance and learning or spatial
memory for cognitive tasks.
The monitoring tools are divided into two cat-

egories: behaviour analysis applied to the track-
ing [6, 8, 9] and actual motion tracking [10�14].
Many readily available tools created speci�cally for
tracking depend on heavy software platforms or lan-
guages such as MATLAB, Java, and LabVIEW, as
stated in [15]. These platforms could require ex-
tra setups and expenses. A software program called
idtracker.ai is suggested in research published in
2019 [11] for the simultaneous automated tracking
of up to 100 animal subjects. The video segmenta-
tion settings must �rst be de�ned manually in the
application in order for it to monitor a large num-
ber of comparable recordings. Many challenges still
exist, though, including the need to automatically
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adjust parameters for dynamic light, track the in-
tricacy of �sh movements during interrupted swim-
ming [8], track targets in three dimensions [10], and
� possibly the most challenging of all � integrate
the disparate behavioural patterns in a comprehen-
sive way to enable the standardization of particular
�sh phenotypes.

1.1. Problem

Studying the behaviour of animal subjects in lab-
oratory trials is a fascinating area of research in the
�eld of biomedicine. Researchers can utilize exist-
ing technologies to construct and compare statisti-
cal models for these subjects, encompassing three
di�erent groups: healthy, sick, and cured. They can
then assess the extent to which the statistics of
the cured group align with those of the healthy
group. For comparing behaviours, one-way ANOVA
is commonly utilized in various applications such
as GraphPad Prism, IBM SPSS, or MATLAB,
which typically require annual subscriptions costing
around $1000. Working with new datasets, as well
as considering past ones, can present challenges in
managing and storing statistical models for future
use. Moreover, categorizing behaviours based on
subject movements and distinct tracking character-
istics can be challenging. Although advancements
in this area have incorporated machine learning to
track and analyse behaviours, these methods are not
yet suitable for widespread use due to their high cost
and resource-intensive nature. For example, Zebra-
Zoom [9] is freely accessible and utilizes an inter-
esting combination of technologies for tracking and
analysis. However, it does require MATLAB for op-
eration. Additionally, although ZebraZoom utilizes
machine learning techniques such as support vector
machine (SVM) to categorize behaviours, it is un-
likely that the model can be e�ectively applied to
di�erent scenarios.

1.2. Contributions

In this paper, we will be discussing our contribu-
tion in three di�erent areas. Firstly, we successfully
extracted the motion traces from 95 zebra�sh and
80 gold�sh video recordings. The traces are saved
in JSON format and can be found on GitHub at
vcraciun/Fish_Behaviour_Datasets. The repository
also includes some of the plots and Python scripts
to reproduce the results. The repository also con-
tains scripts for simulating the original recordings,
generating heatmaps, and analysing performance
and behaviour. Additionally, our experiments in-
volve behaviour extraction and classi�cation using
FARM (Framework for Activity Real-Time Moni-
toring) [16]. The application is brie�y introduced in

Fig. 1. FARM application layout tab for a ze-
bra�sh water tank (T shape); user can design cus-
tom layouts or load existing ones; green squares are
sensors for time spent inside a box (A, B, C, etc.),
the red circles are sensors to monitor box transi-
tions.

Sect. 2. Next, we explored a k-means approach using
a set of 85 features to categorize behaviour classes.
Additionally, we compared these classes across the
two datasets in Sect. 3. Our classi�cation aims to
analyse �sh behaviours solely based on their track-
ing features. This enables researchers to accurately
label and associate behaviours with speci�c health
states.

2. Framework for Activity Real-Time

Monitoring

FARM [16] is a Python framework developed to
allow researchers to merge video processing for sub-
ject tracking with the functionalities of behaviour
analysis. Although it shares similarities with id-
tracker.ai [11], it does not o�er the same tracking
capabilities, such as multiple species and CUDA
optimization. However, it does provide the �exibil-
ity to dynamically adjust video processing param-
eters. With this application, researchers can eas-
ily customize various video processing parameters
such as rotation, polygonal tracking area, threshold
for noise reduction, experimental layouts, and sen-
sors. Additionally, the application provides a set of
scripts for behaviour analysis. Figure 1 represents
a screenshot of the application featuring the lay-
out tab, which is populated with sensors de�ned by
the user. Once the video processing parameters are
con�gured, the video processing can be seamlessly
and automatically executed on a large set of video
recordings. Some parameters may shift during the
silent processing to enhance the level of detail in
subject tracking.
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2.1. Application design

FARM consists of two components, i.e., one for
motion tracking and another for behavioural anal-
ysis. While the �rst component has the ability to
handle minimal motion interaction, the second can
conduct various analyses solely based on move-
ment trace. Additionally, Fig. 2 represents a FARM
screenshot from a video processing. in panel (a),
we can observe the presence of the �sh, while in
panel (b), we can see the movement trace. The �sh
tank in this case has a shape and layout that closely
resembles the one shown in Fig. 1.
The tracking data in Fig. 2b, is saved as a list of

numeric pairs (x, y), representing the �sh position.
The �sh position is captured in each frame, enabling
the behaviour analysis component to engage in sub-
sequent computations, ultimately determining the
real elapsed time (based on the original video FPS
� frames per second).

2.2. Behaviour analysis

The behaviour analysis component accepts the
trace generated by FARM in the previous stage,
together with a layout (which may be the same
or di�erent from the one used for video process-
ing). It then either proceeds to simulate the trace or
uses specialized behaviour categorization methods.
Figure 3 represents a heatmap in panel (a) and the
locomotion trace in panel (b) for a completed sim-
ulation. The heatmap serves as a graphical repre-
sentation of the zones where �sh is most frequently
observed. One may reconstruct this image from the
trace by considering both the �sh's location and the
time spent at speci�c coordinates.
While the layout shown in Fig. 1 is an experimen-

tal design, the one shown in Fig. 3 is derived from
a series of observations and can be regarded as cus-
tomary for our speci�c set of experiments, as well
as typical for this type of T-shaped water-tank. As
the �sh exhibits a preference for the corners of the
T shape, we have divided the former B box into B1
(30%) and B2 (70%), the former D and E boxes into
D1 and D2, the former F and G into E1, and the
former H into E2. In essence, the behaviour analy-
sis considers B as the region characterized by both
high and low levels of social activity, C as a transi-
tory pathway, D as a remote contact or retreat zone
and E as an exploratory area.
An investigation of behaviour was conducted by

applying Time Series k-means clustering on a col-
lection of 85 features. The features set was formed
by combining a Cartesian product with an addi-
tional set consisting of the overall mean and max-
imum speed [cm/s] along with the �sh's trajectory
through the six walls (B1�B2, B2�C, C�D1, D1�D2,
C�E1, E1�E2) in both directions. The Cartesian

Fig. 2. (a) Fish detection, (b) �sh tracking.

Fig. 3. (a) Heatmap plot, (b) trace simulation and
total time spent in the original video recording.

product is computed between the set of boxes {B1,
B2, C, D1, D2, E1, E2} and a set of properties {dis-
tance, time, sharp-turns, geo-directions}. We per-
formed a silhouette analysis to automatically deter-
mine the optimal number of clusters for k-means,
ranging from 2 to 30 in both zebra�sh and gold-
�sh datasets. This technique selects the �rst high-
est value for a given number of desired clusters.
Figure 4 demonstrates that the k-Shape [17] dis-
tance identi�es 6 clusters for zebra�sh and 8 clus-
ters for gold�sh. We also conducted some exper-
iments with other distance formulas such as Eu-
clidean, dynamic bandwidth allocation (DBA), and
soft dynamic time warping (soft-DTW). These three
distances identify 3 clusters for zebra�sh and be-
tween 11 and 25 clusters for gold�sh. From the 4
distance computation formulas, we selected the k-
Shape.

3. Evaluation

In this section, we assess the performance of the
k-means clustering algorithm on a dataset compris-
ing 95 traces for zebra�sh and 80 traces for gold�sh.
The video recordings were captured using the Etho-
Vision XT system, a commonly employed tool for
tracking and analysing �sh behaviour related to ag-
gression and social interactions. The data collected
in the way that EthoVision works, is compared
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Fig. 4. Number of clusters recommended by sil-
houette analysis; (a) for zebra�sh, the highest val-
ues for Euclidean, DBA, and Soft-DTW suggest 3
clusters, while the highest k-Shape value suggest 6
clusters; (b) for gold�sh, the highest values for Soft-
DTW, Euclidean, and DBA suggest between 11 and
25 clusters, while for k-Shape only 8 clusters seems
to be an optimal value.

statistically across di�erent health states of the
�sh (i.e., healthy, sick, and recovered). The origi-
nal videos, recorded in grayscale at a resolution of
800 × 600, span durations of 3 to 5 min. Our pri-
mary objective was to analyse �sh behaviour in-
dependent of their health status, as the recordings
include a mixture of potential health conditions. Al-
though EthoVision XT provides its own video pro-
cessing and tracking data analysis, we conducted in-
dependent computations and analyses, utilizing the
device solely for its camera; the recordings could
have been obtained using a di�erent camera or even
a mobile phone. Our analysis involves translating
the video data into a set of 85 features, followed
by applying the k-means algorithm to group these
features. Prior to feature extraction, a spatial lay-
out is superimposed on the water tank (Fig. 3),
enabling the computation of features such as time
spent, transitions, total tracking distance, speed,
sharp turns, and �sh geo-direction, all in relation to
the de�ned compartments of the layout. The video-
recorded trials were conducted in accordance with
established �sh social interaction guidelines. In this
setup, the top-left compartment included a separate

section containing one to four �sh subjects, allow-
ing distant interaction with the primary �sh. For
example, repeated approaches by the main �sh to-
ward the invisible barrier on the leftmost side of the
tank were indicative of increased social behaviour,
whereas movement toward the rightmost arm was
linked to fear-driven behaviour.
Although alternative clustering techniques, in-

cluding statistical and rule-based approaches, were
considered, this study primarily focuses on the ap-
plication of k-means clustering. It is important to
note that we do not have information about the ini-
tial condition of the �sh (e.g., whether they were
healthy, ill, or recovered), allowing the clustering to
be fully based on the observed data without prior
assumptions.

3.1. Behaviour evaluation

In Fig. 5, we emphasize the characteristics of the
zebra�sh clusters (shown in yellow) and their cen-
troid (shown in red) for the k-Shape distance. We
restructured the dataset by allocating 80% of it for
training purposes (Fig. 5a) and the remaining 20%
for testing purposes (Fig. 5b). The training dataset
was shu�ed, normalized using ScalerMeanVariance,
and reduced to 40 features, which approximates half
of the original size. An optimal random state value
of 42 was selected for shu�ing. Approximately 55%
of the training dataset consists of the �rst cluster
for zebra�sh, whereas for gold�sh, clusters 4 and 8
sum up to around 31% of the dataset. This �nd-
ing indicates that more than a half of the zebra�sh
recordings exhibit a highly comparable behaviour.
In comparison to the zebra�sh, the gold�sh shows a
more homogeneous distribution (a four times lower
standard deviation compared to zebra�sh). The re-
maining test data consists of 19 zebra�sh samples
and 16 gold�sh samples.
The �rst cluster, which has a higher hit-count in

the train set, predicts 13 behaviours from the re-
maining test samples, as shown in Fig. 5b. Clus-
ters 4, 5, and 2�6 yield predictions of 1 and 2 sam-
ples, respectively, however cluster 3 does not pro-
vide any predictions. The allocation of the sam-
ples within clusters exhibits a comparable pattern
to those in the training dataset.
Figure 6 illustrates certain typical characteristics

observed in the gold�sh recordings. The reduced
size of the whole dataset for this species results
in smaller anticipated test clusters compared to ze-
bra�sh. Nevertheless, a comparable pattern can also
be observed in the train/test sets of the two �sh
species. Compared to the training data, the distri-
bution of the predicted data is remarkably com-
parable. The usage of k-Shape allowed us to re-
duce the number of clusters in gold�sh recordings,
however, in contrast to zebra�sh, all the distances
we experimented with, found larger clusters for
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Fig. 5. Zebra�sh train/test feature clusters using k-Shape: feature index (x-axis) vs feature value (y-axis);
yellow � cluster features; red � cluster centroid.

Fig. 6. Gold�sh train/test feature clusters based on k-Shape; yellow� cluster features; red � cluster centroid;
each image has speci�ed the cluster index and the number of predicted samples.
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Fig. 7. Zebra�sh resembled simulation images in
�rst cluster; (a) train heatmap, (b) test heatmap.

Fig. 8. Zebra�sh simulation images for the
heatmaps in Fig. 7; (a) train tracking, (b) test
tracking.

gold�sh (while the dataset was overall 15% smaller).
This �nding could imply that either gold�sh have
more complicated behaviours, or there were greater
variations in the examined settings and subjects'
health conditions.

3.2. Discussion

A random selection of one pair of heatmap and
tracking simulation for zebra�sh was made to com-
pare the �sh tracking heatmaps based on the chosen
feature clusters. The initial set of heatmap/tracking
images was chosen from the most extensive training
clusters (cluster 0 in zebra�sh), whereas the second
image was taken at random from all the samples
in the test cluster with the same label (0). Despite
the absence of some of the properties (speed, po-
sitions, etc.) employed in k-means clustering, it is
obvious that the heatmap and tracking of record-
ings in Figs. 7 and 8 exhibit numerous shared visual
similarities. In these two videos, the zebra�sh sub-
ject is observed to relocate to the B1 box for social
contact and remains stationary until the recording
ends. The recording in panel (b) is 1 min longer
compared to the one in panel (a), but this does not
seem to in�uence the behaviour.

4. Conclusions

This study introduces a k-means clustering
methodology for conducting laboratory experiments
on zebra�sh and gold�sh. The clustering analysis
was performed on two datasets, each containing
85 features, with 95 recordings for zebra�sh and
80 recordings for gold�sh. We evaluated k-means
clustering using various distance metrics, including
Euclidean, DBA, Soft-DTW, and k-Shape. Among
these, the k-Shape method produced tighter and
more consistent clusters across both datasets. For
our experiments, we split the original dataset into
80% for training and 20% for testing. Additionally,
the features were normalized and resampled to re-
duce their size by approximately half. The test set
predictions were then assigned to the clusters estab-
lished during training, and the cluster indices were
mapped back to the simulated tracking data for vi-
sual comparison.
As part of our ongoing development, we want to

expand FARM to include the capability to target
several species, enhance the performance of video
processing, and increase �exibility in altering video
processing parameters such as polygonal area shifts
and thresholds. In relation to behaviour analysis,
we aim to expand the collection of rules and the
level of speci�city, enabling researchers to select a
model that aligns with their necessary criteria from
a predetermined list. We anticipate that in the fore-
seeable future, researchers will allocate time to ex-
periment with various con�gurations and strive to
improve the behaviour tagging and extend the set
of features.
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