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Navigation systems are critical for the practical implementation of autonomous vehicles. While clas-
sical and modern control methods have been explored, simultaneous localization and mapping have
limitations due to their complexity and sensor requirements. As a result, there is growing interest in
using arti�cial intelligence algorithms. This paper proposes to use a reinforcement learning algorithm
agent as a local planner for obstacle avoidance, coupled with rapidly exploring random trees for global
path planning. Unlike prior methods relying solely on reinforcement learning or point of interest for
global path planning, this approach integrates reinforcement learning with random trees to ensure
e�cient navigation in complex environments. By mapping the environment and generating optimal
global paths, divided into intermediate waypoints, the proposed method facilitates e�cient navigation
toward the goal. Experimental results demonstrate the e�ectiveness of the approach, particularly in
navigating through intricate environments, o�ering promising advancements in autonomous navigation
systems.

topics: simultaneous localization and mapping (SLAM), arti�cial intelligence (AI), reinforcement learn-
ing (RL), rapidly exploring random trees (RRT)

1. Introduction

Mobile robots, unlike stationary robots, o�er
versatility by autonomously navigating in various
environments. Autonomous mobile robots (AMRs)
operate without physical or electro-mechanical
guidance, unlike guided robots that follow set
routes. Robust navigation systems are crucial to
applications in industry, healthcare, and house-
holds, with advancements such as Industry 4.0
boosting manufacturing �exibility and productiv-
ity [1]. The �eld includes technologies such as hu-
manoid robots, unmanned rovers, and drones, all
of which depend on advanced cognitive systems.
Key trends include arti�cial intelligence (AI), au-
tonomous driving, and human-robot interaction,
with robots categorized by locomotion: station-
ary, land-based, air-based, and water-based. Re-
views highlight land-based robots' terrain naviga-
tion and collaboration capabilities [2], while system-
atic reviews address modular systems, robustness,
and communication challenges [3]. Recent advance-
ments in reinforcement learning (RL) have also been

signi�cant and have notably enhanced mobile robot
navigation and control. Work [4] employs deep re-
inforcement learning (DRL) for autonomous navi-
gation and exploration in unknown environments,
using points of interest (POI) for goal-driven ex-
ploration, which improves navigation e�ciency and
real-time mapping without pre-existing maps.
In [4], DRL guided a robot using POI, but

struggled with explicit path optimization in com-
plex environments. Our experiments presented in
this work show that increased complexity or goals
hidden behind walls often cause the robot to
get stuck in local minima. Our work improves
path�nding by using waypoints, expanding POI,
and preventing the robot from getting trapped be-
hind obstacles. Environment complexity is mea-
sured by the number of obstacles and the goal's
position, with hidden goals considered particu-
larly challenging due to past di�culties in reaching
them.
The upcoming chapters will cover: mathematical

formulation (Sect. 2), simulation environment setup
(Sect. 3), results and discussion (Sect. 4), and con-
clusion (Sect. 5).
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Fig. 1. Full pipeline of the algorithm for the mobile robot navigation.

2. Mathematical formulation

The proposed algorithm for navigating the mo-
bile robot involves three key steps: pre-processing
the environment map with the rapidly exploring
random tree (RRT) algorithm to identify optimal
waypoints, extracting points of interest (POIs) to
guide the robot to the next optimal waypoint, and
using a reinforcement learning algorithm to pro-
vide local guidance (see Fig. 1). The neural network
receives waypoints in polar coordinates relative to
the robot's location and heading, calculates actions
based on sensor data, and navigates the robot to-
wards the global goal.

2.1. Global navigation

For global navigation, the environment map is
processed using the RRT path planning algorithm
to �nd the optimal path from the start to the goal.
The map uses black and white images, with black
lines indicating walls and obstacles, and non-black
areas as navigable (see Fig. 2). The algorithm gener-
ates the optimal path by re�ning edges and remov-
ing unnecessary nodes if needed. This preprocessing
step is done at the beginning of navigation, and the
resulting waypoints guide the robot's journey.

2.2. Points of interest (POI) navigation

After generating waypoints, the robot navigates
to each of them using points of interest (POI) [4].
It avoids both dynamic and static obstacles, as well
as dead ends, without prior knowledge of the envi-
ronment. The robot identi�es and stores POIs from
its immediate surroundings using two methods for
obtaining new POIs, detailed in [4].
If any of the POIs are found to be near an obstacle

in subsequent steps, they are removed from memory.

Fig. 2. Map (a) and map with boundary drawn on
it (b).

The robot was equipped with two RpLidar laser
sensors mounted at di�erent heights, each with a
maximum range of 10 m. Both sensors were care-
fully calibrated for their position and angle, with
laser readings covering 180 degrees in front of the
robot. The operation is as follows:

(i) POI is added if the di�erence in values be-
tween two sequential laser readings exceeds a
threshold, indicating a navigable gap.

(ii) POI is placed if sequential laser readings re-
turn a non-numerical value, representing free
space due to the laser sensors' maximum
range.

POIs will not be obtained from laser readings
in areas the robot has already visited. Further-
more, if a POI is chosen as a waypoint but can-
not be reached within a certain number of steps,
it is deleted, and a new waypoint is selected. As
stipulated in [4], from available POI, the optimal
waypoint at the time step is selected by using
the information-based distance limited exploration
(IDLE) evaluation method. The IDLE method eval-
uates the �tness of each candidate POI as

h (ci) = tanh

(
ed(pt,ci)

2

e(
l2

l2−l1
)2

)
l2 + d(ci, g) + eIi,t . (1)
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The score h for each candidate POI, c, with index i
is calculated as the sum of three components. The
Euclidean distance component d(pt, ci) between the
robot's position p at time t and the candidate POI
is represented as a hyperbolic tangent tanh function

tanh

(
ed(pt,ci)

2

e

(
l2

l2−l1

)2

)
l2. (2)

Here, e is Euler's number, and l1 and l2 are distance
thresholds used to discount the score, determined
based on the size of the DRL training environment
area. The second component, d(ci, g), represents the
Euclidean distance between the candidate points of
interest and the global goal g. Finally, the map in-
formation score at time t is expressed as

eIi,t , (3)

where Ii is calculated as

Ii,t =
1

k2

k
2∑

w=− k
2

k
2∑

h=− k
2

C(x+ w)(y + h). (4)

In (4), k represents the size of the kernel used to cal-
culate the information around the candidate points'
coordinates x and y, while w and h denote the ker-
nel's width and height, respectively. The POI with
the lowest IDLE score from (1) is chosen as the op-
timal waypoint for local navigation.

2.3. Local navigation

The local planner algorithm navigates the robot
using sensor input and a neural network trained
with the DRL algorithm. Speci�cally, a twin de-
layed deep deterministic (TD3) policy gradient net-
work trains the motion policy for continuous ac-
tion spaces. The TD3 actor network takes input
from laser readings within a 180-degree front range
and the waypoint's polar coordinates. It features
two fully connected layers with recti�ed linear unit
(ReLU) activation, outputting two action param-
eters for linear and angular velocities, constrained
within (−1, 1) by a tanh function and scaled by the
robot's maximum velocities. Backward movement is
excluded, and the linear velocity is adjusted to re-
main positive

a =
[
vmax

(
a1 + 1

2

)
, ωmaxa2

]
. (5)

The Q-value of the state-action pair Qsa is eval-
uated by two critic networks with identical struc-
tures but delayed parameter updates to ensure di-
vergence. Both networks take the state�action pair
as input. The state is processed through a fully con-
nected layer with ReLU activation, producing the
output Ls. This output and the action are then fed
into two transformation fully connected (TFC) lay-
ers, which are of the same size, before being com-
bined, thus

Lc = Ls Wτ1 + aWτ2 + bτ2 . (6)

The combined fully connected (CFC) layer, Lc, uses
weights Wτ1 and Wτ2 from layers τ1 and τ2, respec-
tively, along with a bias bτ2 from layer τ2. ReLU
activation is then applied to Lc, which connects to
an output layer with one parameter representing the
Q value. To prevent overestimation, the minimum
value of Q from both critic networks is chosen as
the �nal output.
In order to reward the agent, the following reward

function employed [4]

r (st, rt) =


rg, ifDt < µD,

rc, if collision,

v − |ω|, otherwise. (7)

The reward r of the state�action pair (St, at) at
timestep t depends on three conditions. If the dis-
tance to the goal at the current timestep Dt is less
than the threshold µD, a positive goal reward rg is
given. If a collision is detected, a negative collision
reward rc is applied. In the absence of these condi-
tions, an immediate reward is based on the current
linear velocity v and angular velocity ω. To guide
the navigation policy towards the goal, a delayed
attributed reward method is used as follows

rt−i = r (st−i, at−i) +
rg
i
, ∀i = {1, 2, 3, . . .} .

(8)

In this setup, n represents the number of preced-
ing steps in which the rewards are adjusted. Con-
sequently, the positive goal reward is not only as-
signed to the state�action pair at the goal but also
distributed (diminishingly) over the preceding n
steps. The network thus developed a local naviga-
tion policy that e�ectively reaches a local goal while
avoiding obstacles using direct laser input data.

3. Result and discussion

The proposed algorithm has been tested in mul-
tiple environment setups (see Fig. 3).

3.1. System setup

Local navigation using DRL was trained on a
computer with an NVIDIA GTX 4050 GPU, 16 GB
RAM, and an Intel Core i5 CPU. The TD3 net-
work trained in Gazebo with ROS commands for
800 episodes over 8 h, ending each episode upon
reaching a goal, collision, or after 500 steps. The
robot's max speeds were 0.5 m/s and 1 rad/s, with
delayed rewards updating over the last 10 steps and
parameter updates every 2 episodes. Training took
place in a 10 × 10 m2 environment with random
obstacles and noise for generalization. A Pioneer
P3-DX robot with RpLidar sensors was used, with
waypoints/goals considered reached within 1 m. Al-
though smaller than real industrial settings, this
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Fig. 3. Environments for simulating and testing
the algorithm with di�erent structure and obsta-
cle setup.

experiment demonstrates the feasibility of the ap-
proach and can be extended to industrial di�erential
drive robots.

3.2. Quantitative analysis

The algorithm was tested in various environments
to evaluate its performance in guiding a robot to its
goal. Each setup recorded the robot's success, com-
paring the proposed algorithm with the GDEA al-
gorithm. The results in Table I show that while the
GDEA algorithm performs well in simple environ-
ments, it struggles in complex environments, often
getting stuck behind obstacles and incorrectly in-
dicating goal achievement due to local minima. In
contrast, the proposed algorithm excels in complex
environments by using waypoints, ensuring consis-
tent success.

Fig. 4. Success rate comparison between the pro-
posed algorithm and GDEA.

Table I compares performance across eight envi-
ronments (env-1 to env-8) by measuring a time [s]
and distance [m] to reach the goal. The proposed
algorithm performs consistently well, taking 31 s
and covering 9 m in env-1, and 17.31 s and 7.4 m
in env-8, showing its robustness. In contrast, the
GDEA algorithm performs well in simpler environ-
ments like env-1 (15 ss, 6.4 m) and env-4 (35 s,
13.67 m), but fails in more complex ones (e.g., env-
2, env-3, env-5). For example, in env-7, GDEA took
96.76 s compared to 60.63 s for the proposed algo-
rithm, which highlights its e�ciency.
Figure 4 shows the success rates of the algo-

rithms. Here, GDEA has a 62.5% success rate, in-
dicating limitations in complex scenarios, while the
proposed algorithm achieves an 87.5% success rate.
This highlights its robustness, reliability, and e�ec-
tiveness in navigating diverse environments, avoid-
ing pitfalls like local minima that a�ect GDEA.

3.3. Qualitative analysis

3.3.1. Operate in the complex environment

The proposed algorithm navigates the robot ef-
fectively even in complex environments, while the
GDEA algorithm struggles as complexity increases,
often causing the robot to get stuck in local minima,
mistaking them for the goal. Unlike GDEA, the pro-
posed algorithm avoids obstacles, reliably guiding
the robot to its target, showing superior robustness
and performance in diverse scenarios.

3.3.2. Robustness of the proposed algorithm

As the environment complexity increases, the
need for highly accurate algorithms grows, often
leading to higher computational costs. The pro-
posed algorithm improves navigation accuracy and
robustness by dividing the complex environment
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TABLE I
Quantitative comparison between the proposed algorithm and GDEA.

env-1 env-2 env-3 env-4 env-5 env-6 env-7 env-8

Proposed algorithm
time [s] 31 79 38.52 33.24 57.0 23.36 60.63 17.31

distance [m] 9 29 12.7 12.48 17.4 8.7 13 7.4

GDEA-algorithm
time [s] 15 failed failed 35 failed 12.4 96.76 11.9

distance [m] 9.5 failed failed 13.67 failed 6.9 19 4.3

map into sub-optimal waypoints that guide the
robot step-by-step to the destination. This ap-
proach breaks down complex tasks into manageable
segments, ensuring reliable navigation without ex-
cessive computational demands, and preventing the
robot from getting stuck in local minima or making
signi�cant errors.

3.3.3. Predictable navigation

The proposed algorithm improves navigation by
preprocessing the environment map to select an op-
timal, prede�ned path, enhancing accuracy and re-
liability. In contrast, the GDEA algorithm relies on
real-time decisions without a prede�ned path, which
can be less reliable in complex environments and
prone to local minima. By using waypoints and a
planned route, the proposed algorithm ensures more
consistent and successful navigation across diverse
environments.

4. Conclusions

In conclusion, this paper presents a novel ap-
proach to autonomous vehicle navigation by in-
tegrating reinforcement learning (RL) with the
rapidly exploring random tree (RRT) global path
planning algorithm. Unlike previous methods, such
as the one proposed by [4], which relied on points
of interest (POI) for global navigation and lacked
explicit optimization for path�nding, the proposed
method generates an optimal global path from the
initial point to the �nal goal. By utilizing RRT for
global planning, the method provides a clear, op-
timized route and avoids issues like local minima
that plagued earlier approaches. The method starts
by analysing an image map of the environment to
identify obstacles, using this information to gener-
ate waypoints along the optimal path. These way-
points guide the RL-based local planner to navigate
e�ectively while avoiding obstacles. This approach
not only ensures a more e�cient navigation process
but also enhances the robot's ability to reach its
goal despite environmental complexities.

The disadvantages of the proposed approach,
which will be subject of the future research, are
mainly related to its behaviour in simpler environ-
ment. While the GDEA algorithm may perform well
by adapting to immediate obstacles, the proposed
algorithm might generate unnecessary waypoints,
leading the robot to cover more distance and follow
sub-optimal paths. This can be improved with more
e�cient path planning algorithms like RRT∗. On
the other hand, in complex scenarios, the proposed
method prevents the robot from getting stuck in
local minima. Integrating RRT for global planning
and RL for local navigation increases the robot's
success rate in reaching its goal. Another topic that
requires further exploration is the challenges emerg-
ing in applying the method within the complexity of
a real industrial environment with industrial robots.
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