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This paper describes the use of the nonlinear autoregressive with exogenous inputs neural network
for the control of electro�hydraulic servo drive. The direct inverse controller was trained on a real
object in an online way with the use of a programmable logic controller before starting work on a
real object, and appropriate tests were performed in the MATLAB/Simulink environment in order
to select the right structure of the neural network. Also, the paper includes various network learning
algorithms: gradient descent, resilient backpropagation, and adaptive moment estimation, which belong
to backpropagation algorithms. In order to compare the suitability of the direct inverse controller, the
controller was implemented on a real electro�hudraulic test stand, and its performance was compared
with the performance of a proportional�integral�derivative controller.
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1. Introduction

The it proportional�integral�derivative (PID)
control algorithm is the most frequently used con-
troller in industrial applications worldwide. The
universality of PID controllers is due to the small
number of parameters to manipulate, i.e., those re-
lated to proportional, integral, and derivative ac-
tions, which facilitate the operation of this type of
controller. Additionally, there are various methods
for selecting these parameters, such as the Ziegler�
Nichols method. Unfortunately, for constant param-
eter values, the PID control algorithm operates cor-
rectly only at speci�c operating points.
Due to these limitations, alternative control tech-

niques are being explored that can achieve satisfac-
tory results even for a wider operating range of non-
linear systems. One such approach is direct inverse
control (DIC) [1�4], which is based on arti�cial neu-
ral networks (ANN). The ability of neural networks
to adapt to varying conditions gives them a signi�-
cant advantage over PID controllers.
Neural networks can be trained using three tech-

niques: supervised, unsupervised, and reinforcement
learning. Supervised learning, or learning with a
teacher, adjusts the network parameters to match
reference values. Unsupervised learning does not in-
volve a teacher to guide the process. Reinforcement

learning focuses on determining the network's ac-
tions to maximize long-term rewards and is com-
monly used in direct inverse control.
This paper is structured as follows: Sect. 2 de-

scribes the basic concepts related to neural net-
works; Sect. 3 presents information about direct in-
verse control; Sect. 4 discusses the general assump-
tions and simulation results; Sect. 5 describes the
laboratory test setup; Sect. 6 presents the control
results of DIC implemented on an electro�hydraulic
servo drive; and Sect. 7 provides conclusions from
the implementation of direct inverse control.

2. Neural networks

Neural networks are composed of individual neu-
rons (see Fig. 1) that form layers, enabling the so-
lution of complex problems [5]. Typically, these lay-
ers include input, hidden, and output layers. This
structure is characteristic of one of the most popu-
lar neural networks, namely multilayer perceptron
(MLP).
The �rst layer of the neural network, i.e., the in-

put layer, receives the input values, with the num-
ber of neurons corresponding to the number of input
variables. Next comes the hidden layer, where the
calculations are performed by multiplying the input
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Fig. 1. Construction of a single neuron.

values by weights and adding a bias. The result is
then passed through an activation function to pro-
duce the output for the following layer. The �nal
layer, i.e., the output layer, generates the network's
results, with the number of neurons in this layer
depending on the number of output parameters.
The operation of MLP can be described as a func-

tion

y = f(x, θ), (1)

where y denotes outputs of neural networks, x �
inputs of neural networks, θ � network weights,
which were determined during the network training
process.
Due to the presence of many layers of this type

of network in the construction, this function can be
presented as

f(x, θ) = f (n)(. . . f2
(
f1 (x1, θ1) , θ2

)
. . . , θn), (2)

where n is the number of all network layers.
In the simplest case, when we deal with only a

single perceptron, function (1) takes the form (see
Fig. 1)

y = f

(
n∑

i=1

wi xi + b

)
, (3)

where wi is matrix of the neural network weights, b
� bias, f � activation function.
We used the nonlinear autoregressive with exoge-

nous inputs (NARX) network � a recurrent neu-
ral network (RNN) with bidirectional information
�ow. It computes outputs based on current inputs
and previous outputs, creating at least one feedback
loop (see Fig. 2).

3. Concept of direct inverse control

The concept behind DIC is to exert a direct in-
�uence on the system (see Fig. 3). This type of con-
troller uses the inverse function of the equation de-
scribing the system's behavior [1�4]. The equation
used to describe system behaviors is the following

y(t) = F
{
y(t), y(t−1), y(t−2), . . . , y(t−k), u(t),

u(t−1), u(t−2), . . . , u(t−k)
}
. (4)

Fig. 2. The idea of RNN.

Fig. 3. The idea of DIC.

Fig. 4. The idea of training.

The mathematical model of the controller can be
described as

u(t) = F−1
{
y(t), y(t−1), y(t−2), . . . , y(t−k), u(t),

u(t−1), u(t−2), . . . , u(t−k)
}
. (5)

The inverse dynamics (5), when combined with
the system's dynamics (4), cancel each other out, so
the input to the controller should match the output
of the system.

The new weights of the neural network were cal-
culated based on the di�erence between the refer-
ence signal and the process output (see Fig. 4).

In (4)�(5), F is a �lter and will be discussed in
Sect. 4.
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4. General assumptions

Various neural controller structures were tested,
di�ering in input signals, the number of hidden layer
neurons, and learning methods. Each network had
one hidden layer and was tested with input signal
structures ⟨0 : 2.0⟩, ⟨0 : 2.1⟩, and ⟨0 : 3.1⟩. For
each con�guration, 5, 10, 15, and 20 hidden neurons
were used. The activation function was tanh, with
a linear function in the output layer. Three learning
algorithms � gradient descent (GD), resilient back-
propagation (RPROP), and adaptive moment esti-
mation (ADAM) [6, 7] � were applied three times
per con�guration to minimize initial weight varia-
tion. Performance was measured by mean squared
error (MSE), stopping when MSE dropped be-
low 10−16. Tables I�III list the learning parameters
used in the simulations.
The assessment of the e�ectiveness of DIC opera-

tions was based on integral indicators of regulation
quality

IIAE =

∞∫
0

dt |e (t) , (6)

IISE =

∞∫
0

dt e2 (t) , (7)

IITAE =

∞∫
0

dt t |e (t) |. (8)

In addition, a �lter with a transmittance of 1
0.1s+1

was applied before calculating the di�erence be-
tween the reference signal and the process output.
This �lter reduces the abrupt changes in the forcing
signal, which a�ects the gradient value required to
update the weights.
The training signal was a sinusoidal signal with

an amplitude of 50 mm and a frequency of π
4 rad/s.

The variation of this signal is smoother than that
of a square signal, resulting in less abrupt changes
in the weight values (see Fig. 5). Before being input
to DIC, the signal values were scaled to the range
[−1, 1].

Fig. 5. Learning signal.

TABLE I

Learning parameters of GD algorithm. Here, learning
rate is a scalar value that sets the step size for each
iteration in the optimization process.

Parameter Value

learning rate 5× 10−5

TABLE II

Learning parameters of RPROP, where: ∆max � sin-
gle value that sets the maximum allowable change in
weights during an update; ∆min � single value that
establishes the minimum change in weights to prevent
stagnation; η+ � scalar value that determines how
much the weight change should be increased when
the previous update is successful; η− � scalar value
that indicates how much the weight change should be
decreased if the previous update is not successful.

Parameter Value

∆max 100

∆min 10−5

η+ 1.0002

η− 0.0002

TABLE III

Learning parameters of ADAM, where: learning rate
� scalar value that sets the step size for each iter-
ation in the optimization process; β1 � scalar value
representing the exponential decay rate for the �rst
moment estimate, which helps to stabilize the opti-
mization process; β2 � scalar value that indicates
the exponential decay rate for the second moment es-
timate, allowing the learning rate to adapt based on
the variance of past gradients; ϵ � small constant
added to prevent division by zero during weight up-
dates, ensuring numerical stability.

Parameter Value

learning rate 4× 10−6

β1 0.9

β2 0.999

ϵ 10−20

On the other hand, the assessment of the regu-
lation indicators (panels (a)�(c) in Fig. 6) will be
based on the following signals:

� A sinusoidal wave with an amplitude of 35 mm
and a frequency of π

4 rad/s (see Fig. 6a);

� A square signal with values oscillating be-
tween 0 and 30 mm, changing every second
(see Fig. 6b);

� A complex square-wave signal with value
changes occurring every second (see Fig. 6c).
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5. The results of simulation

Based on the studies described in Sect. 4, the
most appropriate structure was selected for each
method (see Table IV). The following con�gura-
tions were used in Table IV:

� DIC I � learning algorithm: gradient descent,
structure ⟨0 : 3.1⟩, neurons in hidden layer: 20,
time of reaching MSE: 285 s;

� DIC II � learning algorithm: resilient propa-
gation, structure ⟨0 : 3.1⟩, neurons in hidden
layer: 5, time of reaching MSE: 247 s;

� DIC III � learning algorithm: adaptive mo-
ment estimation, structure ⟨0 : 2.1⟩, neu-
rons in hidden layer: 10, time of reaching
MSE: 480 s.

From Table IV, we see that the control quality
indicators for DIC controllers are generally higher
than those for the PID controller, indicating that
the PID controller achieves more precise control.
Although neural controllers were trained only on
sinusoidal signals, they achieved a control quality
similar to that of the PID, especially for square

Fig. 6. (a) Sin wave, (b) square wave, (c) complex-
square wave.

TABLE IV
Results of simulation.

IAE ISE ITAE

Quality indicators for sin wave

DIC I 13.33 27.45 53.3

DIC II 13.35 27.51 53.33

DIC III 12.99 26.08 51.99

PID 11.78 21.42 49.45

Quality indicators for square signal

DIC I 11.53 223.1 18.75

DIC II 11.49 222.1 18.76

DIC III 11.54 225.4 18.86

PID 11.38 223.8 18.76

Quality indicators for complex-square signal

DIC I 24.92 317.2 172.5

DIC II 26.07 326.8 171.2

DIC III 26.43 339.2 174.5

PID 24.55 311 156.6

signals. Among the neural controllers, the one
trained with the RPROP method had the lowest
regulation indices and the shortest time (247 s) of
reaching the MSE target. Therefore, the best net-
work con�guration may be the one trained with
RPROP, as shown in Table III. Figure 7 shows the
system's responses to the sinusoidal input for DIC,
as described in Table IV, compared to those for the
PID controller.

6. Laboratory station

The operation of the direct inverse controller was
performed on electro�hydraulic test stand, whose
structure is presented in Fig. 8. The laboratory sys-
tem contains following main parts: hydraulic pump,
pressure relief valve, electro�hydraulic servo valve,
piston, linear position encoder, a programmable
logic controller (PLC) and PC computer with MAT-
LAB/Simulink software.
The laboratory test stand is shown in Fig. 9.
The system employs a double-acting actuator

with double-side piston rod (#2). In order to sta-
bilize the movement of the piston rod, the plat-
form (4) is positioned on slideways within the range
⟨−50;+50⟩ mm.
The position of the piston rod is changed by the

servo valve (#1), controlled by the voltage signal in
the range ⟨−10;+10⟩ V. The position of the actu-
ator piston rod is obtained by means of a magne-
tostrictive transducer (#3). The control algorithm
and data transfer between the position transmit-
ter and the servo valve is carried out using PLC
(X20CP1586 from B&R). PLC was programmed
using a PC computer with MATLAB/Simulink

409



A. Winnicki et al.

Fig. 7. (a) Sin-wave input, (b) zoom in 1.7�2.3 s: sin-wave input, (c) square-wave input wave, (d) zoom in
1.15�1.35 s: square-wave input.

Fig. 8. Schematic diagram of the electro�
hydraulic servo drive system with neural network
direct inverse controller.

Fig. 9. Laboratory test stand: (1) servo valve, (2)
piston, (3) position encoder, (4) load platform, (5)
mass, (6) support.

software and Automation Studio (software from
B&R for PLCs). A plug-in (Automation Studio Tar-
get for Simulink) from B&R was used to transfer the
program from Simulink to Automation Studio.

TABLE V
Results of the experiment.

IAE ISE ITAE

Quality indicators for sin wave

DIC I 7.43 8.33 29.26

DIC II 7.29 8.00 29.01

DIC III 7.98 9.62 32.64

PID 5.43 4.51 22.97

Quality indicators for square signal

DIC I 9.41 192.7 15.65

DIC II 9.66 194.7 16.29

DIC III 9.69 197.19 16.11

PID 9.45 195.9 15.65

Quality indicators for complex-square signal

DIC I 20.18 291.25 130.26

DIC II 21.64 302.58 138.30

DIC III 21.52 298.08 139.01

PID 20.41 291.2 130.8

For the purpose of object modeling, the trans-
mittance of the servo electro�hydraulic drive was
determined by parametric identi�cation. The object
is usual described by the following transmittance

G(s) =
ω2
0k

s (s2 + 2ξω0 + ω2
0)
, (9)

where k is ampli�cation factor (87.761 mm/s), ξ �
damping factor (0.37), ω0 � natural vibration pul-
sation (93.742 rad/s).
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Fig. 10. (a) Sin-wave input, (b) zoom in 1.15�1.35 s: square-wave input, (c) zoom in 1.7�2.3 s: sin-wave input,
(d) complex-square wave input, (e) square-wave input, (f) zoom in 2.9�6.1 s: complex-square wave input.

7. The results of the experiment on real

object

This section presents the results of tests carried
out on a real object [8, 9]. The structures of the
arti�cial neural networks are the same as those pre-
sented in Sect. 4. The transmittance of the �lter has
been changed from 1

0.1s+1 to 1
0.05s+1 , which is ap-

plied before calculating the di�erence between the
set value and the measurement.

The new �lter improved the quality indicators for
both sinusoidal and square signals. However, the
time to reach the target MSE error signi�cantly in-
creased when comparing Table IV to Table V, as
the MSE value was �xed at 10−16 with a measur-
ing resolution of 10−4. Although the system oper-
ated with minimal error after approximately 400 s,
the extended learning time may have contributed to
slightly better quality indicators for square signals
using neural controllers, compared to the PID con-
troller (see Table V). Figure 10 shows the system
responses using the GP algorithm, which achieved
the most accurate control, alongside the PID con-
troller, as described in Table V.

The following con�gurations were used in Ta-
ble V:

� DIC I � learning algorithm: gradient descent,
structure ⟨0 : 3.1⟩, neurons in hidden layer: 20,
time of reaching MSE: 3223 s;

� DIC II � learning algorithm: resilient propa-
gation, structure ⟨0 : 3.1⟩, neurons in hidden
layer: 5, time of reaching MSE: 4644 s;

� DIC III � learning algorithm: adaptive mo-
ment estimation, structure ⟨0 : 2.1⟩, neu-
rons in hidden layer: 10, time of reaching
MSE: 4381 s.

8. Conclusions

Based on this paper, we can conclude that direct
inverse control can be successfully applied to con-
trol the electro�hydraulic servo drive. With an ap-
propriate structure and learning duration, we can
achieve even more precise control than with the
most commonly used PID controller. The neural
network controller utilized only one hidden layer,
which was su�cient to control the electro�hydraulic
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servo drive. To further advance the research, the
number of layers in the neural network controller
can be increased, and other activation functions can
be implemented.
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