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This work aims to provide insight into the most recent machine learning approaches to biosignal-based
early sepsis prediction in the intensive care unit environment. A systematic search of the PubMed
database revealed 29 original research papers. These works present sepsis prognosis and detection models
that employ vital signs or densely sampled physiological waveforms (or their derivatives) acquired at
the bedside or retrieved from electronic medical records. The papers were reviewed for the methods,
predictors, datasets, number of participants, and performance achieved in the test set. Even though
the sepsis prediction landscape is dominated by models that employ parameters derived from sparsely
sampled biosignals, there are notable approaches built around densely sampled data, which speaks in
favor of more synergistic solutions that bene�t from both signal types. Given the already good quality
of the models demonstrated using o�ine data, future research should prioritize achieving the promised
performance in real-world intensive care unit operating conditions.
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1. Introduction

Sepsis is a life-threatening condition, and its
early treatment improves patient outcomes. Arti-
�cial intelligence (AI) methods aimed at predict-
ing incoming sepsis are tools with potentially large
impact on critical care medicine in the near fu-
ture [1, 2]. The models found in the literature are
based on factors that may include patient demo-
graphics, lab test results, history of medical in-
terventions, and biosignals (and their derivatives,
like vitals). The signals themselves are commonly
derived in already processed form from electronic
medical records (EMRs), usually sampled once per
hour. This review aims to delineate current trends
in sepsis prediction in ICU settings within the sub-
set of methods that employ machine learning, fo-
cusing on the approaches that take advantage of
densely sampled biosignals (as relying on already
processed data may reduce the amount of conveyed
information). To support the planning of future
studies in terms of prioritizing either further inter-
nal re�nement of models or their intensive care unit
(ICU) deployment, the predictors' readiness for in-
troduction to real-world settings and the measures
taken to guarantee their reliability were analyzed.

2. Materials and methods

PubMed base was searched for original re-
search (published between 01.12.2020 and
30.11.2023) using the following query: �ICU
AND (\�machine learning\� OR \�neural
network\� OR \�reinforcement learning\� OR
\�arti�cial intelligence\�) NOT Review[PTYP]
AND 2020/12/01:2023/11/30[PDAT]�. In total,
1210 documents were identi�ed and screened for
works describing modeling approaches to prognosis
or detection of sepsis in ICU patients. Only re-
search papers were included. The methods had to
be based on vital signs or physiological waveforms,
or their derivatives, acquired at the bedside or
retrieved from EMRs. Papers employing only
laboratory or gene-related data were excluded. At
this stage, 36 papers were preselected. Due to the
low quality of the method description hindering
research reproducibility, four papers were dropped
from the analysis. Another three papers were
dropped due to the lack of institutional access.
Finally, 29 papers were included and reviewed for
machine learning (ML) methods and variables used,
dataset characteristics, diagnostic or prognostic
type, and model maturity (development or external
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validation). Where not given explicitly, the best
model's F1 score was calculated from precision and
recall metrics.

3. Results

3.1. Databases

The majority of identi�ed works used the follow-
ing databases:

� Medical Information Mart for Intensive Care
III and IV (MIMIC-III and MIMIC-IV):
10 and 2 papers, respectively [3�14];

� eICU Collaborative Research Database: 2 pa-
pers [5, 15];

� The PhysioNet/Computing in Cardiology
Challenge 2019 database � PhysioNet/CinC
2019: 6 papers [8, 16�20];

� Other databases: 15 papers [5, 7, 13, 21�32].

Types of models proposed in the research papers
(a single paper may belong to multiple classes):

� prognostic/diagnostic (i.e., sepsis prediction
with 0 h horizon): 24/6;

� development/external validation phase: 29/4;
� infants as participants: 5;
� <18 years old patients as participants: 9.

3.2. Biosignals

The biosignals used for sepsis model development
generally fall into the two following categories:

(i) physiological waveform-derived, densely sam-
pled biosignals, as in 7 of the reviewed pa-
pers; modalities employed: electrocardiogram
(ECG) [11, 13, 23, 24, 30, 32], pulse oximetry
(POx) [23, 24], chest impedance (CI) [23, 30],
and arterial blood pressure (ABP) [11, 13];

(ii) electronic health record (EHR)-derived,
sparsely sampled biosignals (already pro-
cessed and averaged), as used in 22 of the
papers; modalities: blood pressure (systolic
(SBP), diastolic (DBP), mean (MBP)),
heart rate (HR), body temperature, oxygen
saturation (SpO2), respiratory rate (RR),
Glasgow Coma Scale subscores.

The densely sampled signals were processed to
extract several parameters. For each of the works
cited, the type of features derived were as follows:

� Stålhammar et al. [23]:
− Inter-beat intervals (IBI) from ECG, respi-

ratory rate (RR) derived by chest CI, pe-
ripheral SpO2 measured via POx, and body
weight.

− Summarized in 45-min windows using mini-
mum, maximum, mean, standard deviation,
skewness, and kurtosis.

− For IBI, additionally, sample entropy (Sam-
pEn) and sample asymmetry were calcu-
lated.

� Kausch et al. [24]:
− ECG-derived HR and POx-derived SpO2.
− Summarized in 10-min windows using

mean, standard deviation, skewness, kur-
tosis, max & min, and HR-SpO2 cross-
correlation.

� Mollura et al. [11]:
− Sixty-eight cardiovascular features from

ECG and ABP.
− Classical linear features extracted from

normal-to-normal beats and spectral fea-
tures computed from 5-min windows and
successively averaged.

− Nonlinear features calculated from the com-
plete time series.

� Shashikumar et al. [13]:
− Six features: standard deviation of RR in-

tervals and MAP, average multiscale en-
tropy of RR and MAP, and average mul-
tiscale conditional entropy of RR and MAP
(calculated using 6-h sliding windows, with
5-h overlap).

� Liu et al. [29]:
− Aggregation of raw data within the 1-

min/5-min windows (upsampled when re-
quired).

− Subsequent feature extraction from overlap-
ping windows (15 min, 30 min, 1 h): mean,
minimum, maximum, standard deviation,
variance, skewness, and kurtosis (from all
vital signs: HR, BP, RR, and SpO2).

− Entropy was calculated from HR, BP, and
RR in 1-h windows.

� Cabrera-Quiros et al. [30]:
− Aggregation in 1-h windows.
− Movement estimators, HR, and HRV fea-

tures extracted from ECG.
− Respiration features extracted from CI.

� Leon et al. [32]:
− HRV features (time-domain, frequency-

domain, nonlinear, and visibility graph in-
dices) derived from 500 samples/s ECG
recordings.

3.3. Performance in the test set

Most of the presented research papers evaluated
proposed models on a hold-out test set. A few
limited the evaluation to leave-one-out or multi-
fold cross-validation. Results are shown in Table I.
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TABLE I

Summary of the best results reported per research paper (when evaluated in the test set). The area under receiver
operating characteristic (AUC) and F1 score are provided in the context of dataset composition (N � number
of patients in the dataset, SPr � sepsis prevalence) and prediction horizon in hours (Tsep). Models that employ
densely sampled biosignals are marked with *.

Best model N SPr AUC F1 Tsep [h]

XGBoost 2 000 50% 0.91 0.32 6

DNN, GRU 27 189 23.8% 0.788 0.285 24

XGBoost 47 185 5.8% 0.745 n/a ≥ 24

Deep model + self-attention 136 478 18.8% 0.761 0.447 1.7

RL + LSTM 40 336 7.3% 0.911 0.467 24

Naïve Bayes classi�er∗ 378 9.5% 0.67 n/a 24

XGBoost 4 603 26%
0.88 n/a 4

0.83 n/a 24

RF 40 336 7.3% n/a 0.87 12

XGBoost∗ 2 494 11% 0.799 n/a 24

GBM + TrL 7 344 16% 0.93 n/a 4

MLP + TrL 7 344 16% 0.93 n/a 4

XGBoost 27 040 16.3% 0.825 0.165 0

XGBoost 2 932 n/a 0.862 0.111 0

RNN + GA 31 575 4.8% 0.94 n/a 3

VAE(GMM)
18 814 38%

0.82 0.652 3

LSTM 0.80 0.660 3

biLSTM 24 219 3.8%

0.768 n/a 2

0.739 n/a 4

0.761 n/a 6

SVM with linear basis∗
142 50%

0.92 0.83 0

Logit∗ 0.91 0.85 0

CNN 2 893 20%
0.84 0.597 3

0.85 0.531 0

DNN with encoder 515 720 7.1% 0.953 0.537 12.2

MLP 113 67% n/a 1 0

RFs 3 031 47.2% 0.824 n/a 0

Ensembles of MA-ARMA + DFs 3 298 13.5% 0.975 0.864 0

LightGBM + PMI factorization 40 336 7.3% 0.862 0.164 6

GRU + NN∗ 25 820 5.6% 0.90 n/a 4

RF, NN + statistical analysis∗
882 50% n/a 0.74 6

634 50% n/a 0.71 10

Logit* 64 50% 0.79 0.799 3

NLP + RF + Logit + voting ensemble 5 317 6.15%

0.94 0.869 0

0.90 0.805 24

0.94 0.87 12

0.92 0.849 6

0.92 0.834 4

LSTM/GRU + CNN 40 336 6%

0.92 0.717 4

0.87 0.652 8

0.84 0.629 12

RFs + CNN 5 154 27.2%
0.972 n/a 6

0.982 n/a 0

GA + RUSBoost 40 336 7.3% 0.843 n/a 6

Logit∗ 49 49% 0.877 n/a 6
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Fig. 1. Model performance metrics (AUC, F1 score) presented in relation to the dataset parameters (number
of patients and sepsis prevalence) and the prediction horizon.

As the performance varied with a prediction horizon
between 0 h (diagnosis) and 24 h (prognosis), more
than one result from a single paper is reported when
possible. The following model-related abbreviations
are used:

NN � neural network,
CNN � convolutional NN,
DNN � deep NN,
RNN � recurrent NN,
DF � deep forest,
GA � genetic algorithm,
GBM � gradient boosting machine,
GRU � gated recurrent unit,
Logit � logistic regression model,
LSTM � long short-term memory,
MA-ARMA � multi-activations autoregres-
sive moving average,
MLP � multilayer perceptron,
NLP � natural language processing,
PMI � pointwise mutual information,
RF � random forest,
RL � reinforcement learning,

SVM � support vector machine,
TrL � transfer learning,
VAE(GMM) � variational autoencoder
(Gaussian mixture model),
XGBoost � eXtreme gradient boosting.

4. Discussion

The majority of models with the best scores re-
ported per paper are, to some extent, employing
neural networks (15 out of 32 models) or tree-
based methods (13 out of 32), whereas the �nal
model commonly merges di�erent ML approaches
(Table I). No evident relationship was observed
between performance and dataset characteristics
(size and sepsis prevalence) or prediction horizon
(Fig. 1a�f). Some models, having relatively high
AUC reported, presented low F1 scores (Fig. 1g).
This may occur in imbalanced datasets where the
AUC cannot show actual performance, as revealed
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by F1 [33]. Underreporting the latter raises concerns
about the tested model's error rate in the minority
class (most often sepsis cases). A precision�recall
curve is an example of a characteristic worth pre-
senting in such cases.

4.1. Densely vs sparsely sampled biosignals

Employing densely sampled biosignals should im-
prove the dynamical properties of a prediction
model, contrary to the dampening e�ect evoked by
the inclusion of constant or slowly changing factors,
e.g., demographic variables [24]. In particular, dense
sampling is arguably the only way to acquire enough
data to get a model prediction as early as possible
for patients arriving at the healthcare facility, which
is the use case for rapid sepsis detection models [11],
commonly sought after in neonatal settings.

4.2. Transferability issues

The lack of models' generalization capabilities
emerges when these models face data shift due
to di�erences in the monitored population, speci�-
cally covariate shift (change in predictors distribu-
tions), prior probability shift (change in outcomes),
or concept shift (change in the underlying rela-
tionship) [15]. Models that deteriorate on exter-
nal data can be �ne-tuned with such techniques as
transfer learning to improve their performance in
new datasets [7]. Continuous, rather than one-time,
adaptation may be required as a part of long-term
model maintenance.

4.3. Class imbalance

With the estimated 6% sepsis prevalence in hos-
pitals [31], researchers are faced with large datasets
being dominated by non-sepsis patients. This needs
addressing during model training. One approach is
to employ adequate algorithms, like the RUSBoost,
following gradient-boosting schemes [20]. Another
is to use sampling techniques, like the synthetic mi-
nority oversampling technique (SMOTE) [31], or a
mixture of oversampling of sepsis-related data and
undersampling of controls [9]. Finally, a balanced
dataset may be synthesized based on clinical knowl-
edge [3].

4.4. Real-world evaluation

As AI is introduced in critical care, clinicians en-
counter many published models that are not ac-
companied by real-world validation [34]. Indeed, the

post-development model validation on real-world
data was conducted in only one of the reviewed pa-
pers [7]. Moreover, the performance measures typi-
cally calculated during model testing might not be
enough for the decision-makers responsible for in-
troducing early sepsis prediction models to clinical
practice. For example, more adequate analyses may
comprise in situ observation of the long-term bene-
�ts for patients [35] or even investigation of the po-
tential cost and cost-e�ectiveness impact [36] due to
the implementation of ML-based sepsis prognostic
systems.

5. Conclusions

The ICU ML and biosignal-based sepsis predic-
tion landscape is dominated by models that em-
ploy parameters derived from sparsely sampled sig-
nals. This reduction of data complexity happens
at the expense of potentially losing much of the
information conveyed by signal dynamics in the
small timescale. There are, however, approaches
built around densely sampled data, commonly in
the neonatal setting, aimed at sepsis prediction,
even up to 24 hours before onset. To achieve fast-
responding models that simultaneously keep track
of the patient's medical history, the path to follow
is arguably in between where combining static fac-
tors, slowly-changing vitals, and densely sampled
biosignals yields a synergistic e�ect. However, even
without further adjustments of the input variables,
it should be admitted that most reviewed models
show good prediction quality at the current devel-
opment stage. Considering the importance of ad-
vancing the discussed solutions towards the phase
of actual implementation, future research should
now focus not on the model re�nement using the
o�ine data, but rather on reaching the promised
performance in the real-world operating conditions
of ICUs. This may include investigating the feasi-
bility of continuous model tuning or studying meth-
ods that prevent the deterioration of the prediction
when faced with missing or corrupt input data.
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