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A photoplethysmographic signal, widely used in cardiovascular monitoring, is susceptible to the sensor's
mounting conditions, including the contact force at the sensor-to-skin interface. We aimed to extract
this concomitant parameter from a re�ective photoplethysmographic signal to enable better observation
of varying measurement conditions. Evaluation of a regressor based on an echo state network yields
promising results when modeling the relationship between a reference force signal delivered from a force-
sensitive resistor and the infrared and red photoplethysmographic signal components with an average
normalized root mean square error of 0.101 (range of 0.051�0.150) for the considered test cases. The
echo state network regressors using as few as 10 neurons show potential for deployment and online
adaptation in resource-constrained hardware, e.g., microcontrollers.
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1. Introduction

Photoplethysmography (PPG), an optical tech-
nique for measuring blood volume changes in tis-
sues, is widely used in cardiovascular monitoring [1].
PPG sensors consist of a light source, which irradi-
ates the skin, and a photodetector, which measures
the light that becomes re�ected or transmitted (de-
pending on the photodetector's position relative to
the light source). The received signal may serve,
e.g., for indirect estimation of blood �ow, blood oxy-
gen saturation, or blood pressure [2]. However, this
signal remains susceptible to the sensor's mount-
ing conditions, including the temperature and the
contact force at the sensor-to-skin interface [3].
Changes in the latter contribute to baseline wander-
ing in the raw photodiode signal and a�ect some of
the morphological features in the PPG signal [4, 5].
The mentioned changes in raw signal are consid-
ered a disturbance and commonly attenuated via
high-pass �ltering. In contrast to this approach, we
propose to process the raw signal and extract the
contact force changes. The primary goal is to im-
prove PPG-based monitoring by allowing for dif-
ferentiation between changes due to the mounting
conditions and those resulting from blood �ow al-
terations of cardiovascular origin. This would make
it possible, for example, to identify signal deterio-
ration related to external pressure in bed-con�ned
patients who may accidentally lean on the sensor.

2. Materials and methods

The measurement module consists of a mount-
ing plate made using 3D printing technology from
polylactic acid (PLA) material, Analog Devices
MAX30102 re�ective pulse oximeter & heart-rate
sensor (PPG sensor), DFRobot RP-C7.6-ST thin-
�lm force-sensitive resistor (FSR), and Redox S90
MG micro servo (Fig. 1). The device is attached to
subject's body using non-elastic velcro straps.

Fig. 1. Schematic of the study setup with the mea-
surement module attached to a �nger. The servo
modulates the sensor-to-skin contact force F , while
signals are collected from the photoplethysmographic
(PPG) sensor and the force-sensitive resistor.

369

http://doi.org/10.12693/APhysPolA.146.369
mailto:mateusz.szumilas@pw.edu.pl


M. Szumilas et al.

Fig. 2. Example of acquired raw signals.

The PPG sensor positioning is achieved by loose
mating with a corresponding cutout in the mod-
ule. The servo horn pushes the PPG sensor against
the skin with the FSR between the sensor and the
horn. The force that the PPG sensor exerts on the
body is modulated by the oscillatory movements of
the servo horn. The system is controlled using the
STM32 NUCLEO-G031K8T6 board. Data from the
PPG and force sensors are acquired concurrently at
200 samples/sec rate and streamed to the host com-
puter via serial interface.
The measurements were conducted on the

thumbs of two subjects, who were members of the
research team. For each subject, data were col-
lected under nine di�erent test conditions, includ-
ing three repositionings of the module on the �n-
ger and three force modulation rates, fmod (0.25,
1, and 4 Hz). Changing the positioning of the �n-
ger involved manual adjustment of the initial pres-
sure of the �nger against the PPG sensor using the
non-elastic strap with simultaneous visual veri�ca-
tion of the recorded signal quality (with an aim
to make the systolic peak of the pulse wave vis-
ible and to avoid clipping of the PPG and FSR
signals). Figure 2 presents an example of seven cy-
cles of raw PPG signals (acquired using red and
infrared (IR) light) and the corresponding raw FSR
signal.
To achieve transformation between the FSR and

PPG signals, we employ a leaky echo state network
(ESN), a machine learning model that belongs to a
broader �eld of reservoir computing (RC) [6, 7]. In
the RC approach, the input data is used to excite
a system (called a �reservoir�) capable of develop-
ing potentially complex and non-linear dynamics.
As the dimensionality of the data represented with
the reservoir states is increased compared to its in-
put, it facilitates obtaining the desired input vs.
target relationship with relatively simple methods
such as linear regression. It is worth noting that the
reservoir is a �xed entity, i.e., it does not undergo
training-based adjustments, and its parameters are

set only during initialization. The ESN itself is im-
plemented as a recurrent neural network (RNN)
with a randomly initialized hidden layer (typically
having a sparse set of recurrent connections) that
serves as a reservoir. An adequate adjustment of its
hyperparameters makes the network gain an echo
state property. It means that the fading memory of
the network input uniquely de�nes the reservoir's
state, where it becomes embedded. The only net-
work element that undergoes supervised learning is
the output layer.

The ESN state is stored in the reservoir vector x
With each new data sample at the network's input,
its state becomes updated according to

x(t) = (1− α)x(t− 1)

+α tanh
(
Win

[
1 ; u(t)

]
+W x(t− 1)

)
, (1)

where x(t) ∈ RN is a vector of reservoir activations
at the time step t, N is the number of neurons in
the reservoir, u(t) ∈ RM is an M dimensional input
signal at the time step t, Win ∈ RN × RM+1 and
W ∈ RN × RN are the input and reservoir weight
matrices, respectively, [· ; ·] is a vertical concatena-
tion operator, α ∈ (0, 1] is the leaking rate, and
tanh(·) is the element-wise hyperbolic tangent func-
tion.

The ESN output is de�ned as

y (t) = Wout

[
1 ; x (t)

]
, (2)

where y(t) ∈ RP is the P -dimensional network out-
put and Wout ∈ RP × RN+1 is the output weight
matrix.

The reservoir matrix W and input weights Win

are initialized randomly from uniform distribu-
tions over [−0.5; 0.5] and [−0.5ω; 0.5ω], respectively,
where ω is the input scaling parameter. The matrix
W is typically sparse, with sparsity (i.e., the fraction
of non-zero elements in the matrix) denoted by s.
An important ESN hyperparameter is the spectral
radius ρ(W ) of the reservoir, i.e., the maximum ab-
solute eigenvalue of W . Considering a network with
leaky integration in nodes (α ≤ 1), the e�ective
spectral radius is calculated according to [8] via the
equation

ρ
(
W̃
)
= ρ
(
αW + (1−α I)

)
, (3)

where I ∈ RN × RN is an identity matrix. In most
cases, setting ρ(W̃ ) < 1 is su�cient to ensure the
echo state property, however, a reservoir-speci�c ad-
justment may be necessary. Usually, the spectral
radius of the matrix is adjusted in two steps: the
matrix is element-wise divided by its current spec-
tral radius and then element-wise multiplied by the
value of the desired spectral radius.

As the ESN state is a function of its past inputs,
the network has to process a sequence of input ini-
tialization data before its output may be considered
valid. Therefore, we compute the length of an ini-
tialization data, pinit, which allows the uninitialized
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Fig. 3. Illustration of pinit: (a) FSR signal esti-
mation from uninitialized vs initialized ESN and
(b) corresponding absolute estimation error and the
pinit index position (Ninit = 100, β = 0.95).

network's output guninit(x) to converge with the
output of a pre-initialized network ginit(x). The es-
timation error ei for the data point xi is de�ned
as

ei = abs (ginit (xi)− guninit (xi)) . (4)

The length pinit is equal to the index of the point
xi at which the cumulative absolute error becomes
greater than a prede�ned fraction β of the total cu-
mulative error of the analyzed data (Fig. 3 and the
following equation), i.e.,

pinit = argmin
p

(
p∑

i=0

ei ≥ β

Ninit∑
i=0

ei

)
, (5)

where Ninit is the length of the analyzed data,
β should be assigned from the (0; 1) range.

The choice of the ESN hyperparameters deter-
mines the network's performance. In the presented
solution, their values are tuned using Bayesian op-
timization (BO) [9]. The core concept of the BO
approach is to establish a probabilistic model of an
optimized function f(x) on a bounded set A and
exploit this model to make an informed decision
(i.e., a decision based on the previous f(x) eval-
uations) about which new point x ∈ A is expected
to yield the most signi�cant increase in the function
value and is worth evaluating. This is particularly
suitable for optimizing functions that are expensive
to evaluate (e.g., it is time-consuming or it spends
other valuable resources), which would not be fea-
sible using exhaustive optimization methods, e.g.,
grid search.

After normalization and downsampling to 100
samples/sec, measurements from the PPG calibra-
tion sequence are fed into the network. The �rst 300
points from the sequence initialize the ESN internal
state, and the corresponding network activations
are dropped. The following 1600 (for 0.25 Hz mod-
ulation rate) or 800 (for 1 Hz and 4 Hz modulation
rates) samples are split into the train and validation

TABLE I

Network hyperparameters subject to optimization.

Symbol Description Range

N number of neurons in the reservoir 10�300

α network leaking rate 0.01�0.99

s sparsity of W 0.02�0.9

ω input scaling of Win 0.01�10

ρ spectral radius of W 0.5�1.5

tlag estimation delay (in samples) 0�10

datasets in a 3:1 ratio. The reservoir activations are
collected and stored in the activation matrix S. A
linear regression model is then �tted on the training
set to calculate the Wout and establish the relation-
ship between the readouts from the FSR sensor and
S with a con�gurable delay of output vs input by
tlag (to compensate for the possible delay between
the force change and the corresponding raw PPG re-
sponse). This yields the signal estimation equation

F̂SR (t− tlag) = Wout [1 ; x (t)] . (6)

The network is optimized over the hyperparame-
ters given in Table I.
For each set of hyperparameters, a pool of �ve

ESNs is evaluated to account for their inherent ran-
domness. The network's performance metric is the
normalized root mean square error (NRMSE), cal-
culated with the validation data. After training all
the ESNs in the pool, the within-pool minimum
value of NRMSE becomes the score for the speci�c
set of hyperparameters. This score is then mini-
mized using the BO, with the expected improve-
ment (EI) as the acquisition function (ξ = 0.01)
and the Matérn 5/2 kernel. The process is initial-
ized with 20 points; after that, f(x) is evaluated
40 times. For the ESN with the lowest NRMSE in
the pool, pinit is calculated independently in 3 non-
overlapping segments of the combined training and
validation data (Ninit = 300, β = 0.95), and then
averaged.
For each measurement sequence, the estimation

error of the best-performing ESN (i.e., the one with
the lowest NRMSE during BO) is evaluated on all
the other sequences. Each time the network is ini-
tialized with 2pinit data points.
The data processing and subsequent ESN train-

ing and evaluation are performed in the R environ-
ment ver. 4.3.2 [10].

3. Results

The parameters of the best-performing models
are summarized in Table II and Fig. 4.
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TABLE II

Parameters of the best-performing models. The normalized root mean square error (NRMSE) is evaluated for the
validation data (evalid.) and externally, as an average from all the modi�ed measurement setups ( ¯eextern).

Subject Finger placement fmod [Hz] evalid. eextern pinit tlag N α s ω ρ

1 I 0.25 0.150 0.476 64 10 300 0.31 0.71 0.98 1.23

1 0.064 0.615 24 7 281 0.93 0.86 0.19 1.03

4 0.065 0.310 40 6 10 0.40 0.16 0.01 1.27

II 0.25 0.094 1.049 19 8 167 0.69 0.44 0.01 1.03

1 0.099 0.365 6 10 10 0.48 0.18 4.20 0.79

4 0.139 0.661 27 0 38 0.21 0.43 0.26 1.06

III 0.25 0.121 0.250 41 4 13 0.15 0.80 3.02 1.11

1 0.129 0.505 13 2 71 0.34 0.29 1.86 0.87

4 0.111 0.298 17 9 179 0.77 0.38 1.70 1.25

2 I 0.25 0.133 0.324 1 9 25 0.97 0.77 8.51 0.94

1 0.103 0.996 162 3 51 0.12 0.57 0.55 1.44

4 0.127 0.349 63 8 250 0.90 0.80 0.02 1.19

II 0.25 0.073 0.330 157 10 10 0.03 0.11 2.52 1.5

1 0.080 0.383 36 0 136 0.78 0.07 0.65 1.12

4 0.089 0.493 13 6 221 0.62 0.80 0.96 0.82

III 0.25 0.051 0.930 127 2 55 0.24 0.67 0.46 1.34

1 0.087 0.264 32 10 10 0.24 0.79 1.22 0.89

4 0.100 0.414 24 3 125 0.77 0.63 0.04 1.04

The NRMSE errors of the models for the consid-
ered test cases (evalid.) are in the range of 0.051�
0.150, with an average of 0.101. Each ESN model
with the lowest optimization-stage error was tested
externally on the data from the remaining measure-
ment setups to verify its prediction quality under
changing conditions, yielding an average eextern er-
ror across all the models equal to 0.501 (range of
0.250�1.049).
Considering the estimated pinit and the data sam-

pling rate (100 samples/sec after downsampling), all
the tested networks should adapt to signi�cant sig-
nal changes within 2 s.

4. Discussion

The model characteristics that have an essential
impact on its usability are the reservoir size N and
the number of samples required for initialization
pinit. Models with fewer neurons (as low as 10 neu-
rons in our case, as shown in Table II) require lim-
ited resources for operation and possible online re-
training. The dynamics of model response to input
signal changes might be partially predicted by esti-
mating its startup time � models with high pinit,
particularly when it noticeably exceeds the num-
ber of reservoir's neurons, will respond slowly with
possible overshoot. Such insensitivity to the input
is expected in networks with relatively low leaking
rates (here, reaching 0.03).

Some model transferability issues after changing
the measurement setup are visible in the results. Es-
timated NRMSEs exhibit relative increases in the
range of 2.1�18.2 between the modi�ed and the
training setup (eextern/evalid. in Table II).
This behavior may be an e�ect of tuning the

network to a signal with a particular modulation
frequency, especially considering that the error in-
crease is lowest when tested on setups with un-
changed fmod (mainly for 1 Hz and 4 Hz), even after
changing the subject (Fig. 4). It is worth consid-
ering replacing the force modulation pattern with,
e.g., frequency sweep to mitigate this e�ect.
Due to the relatively short period of acquired

data, we did not gain insight into the model's re-
sponse to long-term signal drift. In the case of us-
ing a measurement module equipped not only with
a PPG sensor but also featuring a force-modulation
capability, periodic retraining of the ESN should be
possible to avoid model quality loss.
Given the risk of over�tting the data from a spe-

ci�c measurement setup, two di�erent model opti-
mization paths are viable, depending on the desired
application. The �rst option is to aim for better
generalisability to improve the direct estimation of
contact force in the absence of signals other than
raw PPG. This requires modifying the force mod-
ulation pattern to diversify the network excitations
and states for both model training and validation.
The second contrasting option is to take advantage
of the network's sensitivity to the measurement con-
�guration. This e�ect allows for the implementation
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Fig. 4. The summary of NRMSE scores achieved
by the best-performing ESN models when tested on
the data from di�erent PPG sensor setups.

of an anomaly detector that can be used for moni-
toring not explicitly the sensor's contact force but
rather the overall stability of its working conditions,
contributing to the �eld of PPG signal quality con-
trol [11].
As the literature review showed no comparable

studies aiming to retrieve sensor contact force from
the PPG data, we consider this approach worth
further investigation, especially by acquiring more
training data covering various measurement condi-
tions and �ne-tuning the optimization target func-
tions.

5. Conclusions

The contact force at the sensor-to-skin interface
of a PPG sensor can be retrieved from the raw sig-
nal using relatively small recurrent network-based
models (with as few as 10 neurons) suitable for
resource-constrained devices (e.g., microcontrollers)
and optional online adaptation. For the considered
test cases, an average NRMSE error of 0.101 (range
of 0.051�0.150) is a promising result warranting fur-
ther investigation.
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