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The scienti�c and technical aspects of gun barrel movement for e�ective attack and defense are of
ultimate signi�cance. The precise control of the gun barrel is of strategic importance during targeting,
especially in changing environmental conditions. Fuzzy logic control o�ers a powerful alternative to
classical and manual solutions to deal with the complexity and uncertainties of dynamic systems,
thus increasing targeting accuracy and precision. This approach provides adaptability and intuitive
parameterization while simplifying system design and implementation. On the other hand, in fuzzy
control management, accurate modeling and visualization of gun barrel movement is essential to achieve
e�cient aiming and performance. Many papers and realizations can be found on the (automatic) fuzzy
control of cannon barrels. In this paper, the authors also suggest an implementation of a fuzzy-controlled
cannon barrel. The novelty of this approach is the application of new defuzzi�cation methods, resulting
in an accurate solution for the problem. The article starts with a review of the theory and literature
on the control of cannon barrels. It is followed by a comparison of di�erent implementations, including
simulation tests on the accuracy, and a discussion of some practical issues.
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1. Introduction

The art of moving the gun barrel is a sophisti-
cated combination of science and technical applica-
tions. In addition to the precise application of phys-
ical principles, the purpose of moving the gun barrel
is to provide an e�ective attack or defense. This pro-
cess is not only a technical solution but also re�ects
strategic decisions, while the aim of the cannon is
to achieve accuracy and precision, whether it is for
attack or defense. Adapting to changes in the en-
vironment and accurately assessing conditions are
essential to achieve optimal performance.
Precise control of the movement of the gun bar-

rel is a key issue in many �elds, such as mili-
tary cannons [1, 2], industrial automation [3], or
robotics [4, 5]. Fuzzy logic control o�ers a power-
ful approach to dealing with task-related uncertain-
ties and complexities [6]. Traditional control meth-
ods [2, 7] often have di�culty dealing with these
dynamic variations, which can lead to lower per-
formance and reduced accuracy. Fuzzy set theory
is represented in many �elds, be it decision sys-
tems [8], environmental applications [9], or some
kind of expert system [10]. The application of
fuzzy control in gun barrel motion o�ers several
advantages over traditional methods. It increases

adaptability to changing environmental conditions,
improves accuracy on targets, and reduces the im-
pact of uncertainties in ballistic systems. Fuzzy con-
trol enables intuitive parameter setting and reduces
the need for complex mathematical modeling, sim-
plifying system design and implementation.
There are many articles in the literature about

fuzzy-controlled cannon barrels. It is reported that
the performance of adaptive neural fuzzy models
outperforms (mean squared error MSE = 0.002,
coe�cient of determination R2 = 0.9998, mean
absolute error MAE = 1.6) the predictive abil-
ity of arti�cial neural networks [11]. Surprisingly,
even in the 21st century, many military cannons
are still operated manually, as pointed out in sev-
eral articles [12] (it is well known that the more hu-
man intervention in a system is minimized, the less
the possibility of error), but the use of fuzzy logic
algorithms orfuzzy-proportional�integral�derivative
(fuzzy-PID) control methods in these �elds is be-
coming more and more widespread. Furthermore,
several papers report on new control methods that
combine elements of machine learning [13, 14] to
achieve a more optimal result.
For our model, we use the Denavit�Hartenberg

convention [20, 21] to de�ne the joint param-
eters and the transformation matrices. The pa-
rameters shown in Table I were de�ned using the
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Fig. 1. System schematic.

TABLE I
System joints.

Joints

A B C

Angle [◦] θ1 0 θ2

Linear displacement (d) 0 0 0

Distance (a) 0 x D

Angular displacement (α) 90◦ 0 0

Denavit�Hartenberg convention with the help of
the transformation matrix, and Fig. 1 shows the
schematic of the cannon system itself. Explanations
of the abbreviations are given in Table I.
In the article, the authors illustrate the potential

of fuzzy logic in cannon control, highlighting new
perspectives and, after presenting the theoretical
model, combine machine learning methods within
the framework of comparison. The fuzzy-controlled
cannon system performance is compared with the
performance of a system augmented with a Hop-
�eld neural network.

2. Theoretical principles of control

First, the model is presented in a theoretical
framework. Our cannon system is based on mod-
ern cannon systems [15, 16], which consist of sev-
eral direct current (DC) motors, pivots, arms, and
possibly a turning pad [17, 18].
The theoretical model can be interpreted as a

multidisciplinary model, which requires the combi-
nation of the disciplines of fuzzy set theory, cyber-
netics, physics, and mathematics to construct it.

2.1. Factors of joints

The Denavit�Hartenberg convention is essentially
a reference framework that allows the spatial loca-
tion and displacement of each segment of the robot
arm to be described [19].

2.2. System equations

For accurate modeling and implementation, our
model must include the total kinetic energy of the
system, the total potential energy, and the dissi-
pation function due to damping [22�24]. The dy-
namic behavior of the system is described using
the Lagrangian equations of motion, which model
the motion of the arm and other parts of the sys-
tem in detail [25, 26]. The equations are related to
the total kinetic and potential energy of the sys-
tem, as well as the dissipation function. The ki-
netic energy of di�erent components and the grav-
itational potential part of the potential energy are
analyzed. In determining the equations of motion,
we consider the system's total kinetic and poten-
tial energy, as well as the virtual work done by the
forces acting on the system. The resulting di�er-
ential equations describe the motion and behavior
of the system, which vary depending on the avail-
able parameters [27]. The relationships between the
generalized forces and equations of motion of the
system, including the system's total kinetic and po-
tential energies, as well as damping, are expressed
by
d

dt

(
∂Ek

∂qi

)
−
(
∂Ek

∂qi

)
+

(
∂Ep

∂qi

)
+

(
∂Fd

∂qi

)
= Fi,

(1)
where Ek is the total kinetic energy of the sys-
tem, Ep is the total potential energy of the sys-
tem, Fd is the dissipation function due to damping,
Fi is the generalized force corresponding to the i-
coordinate [28]. The generalized coordinate qi de-
scribes the con�guration or position of the system
in relation to its degrees of freedom. The kinetic en-
ergy is given by the generalized formula of the form

Ek =

n∑
i=1

Eki, (2)

where n is the total number of moving parts in the
system, Eki is the kinetic energy of the i-th mov-
ing part. This summation notation can be applied
in a general way to express the total kinetic energy
of the system, regardless of the number of moving
parts present in the system, since it depends on the
implementation of how many moving parts are to
be used [28, 29].
The gravitational potential energy of the arm, the

charge, and the motors represent the potential en-
ergy of the whole system since the stretching energy
of the arm is neglected because it is considered a
rigid body [30]. Based on this, the gravitational po-
tential energy of the charge is given by

Vp = mrT gz, (3)

where Vp is the potential energy at the point, m is
the mass of the mass point, rT is the position vector
of the mass point, g is the gravitational accelera-
tion [31, 32]. The total potential energy is given by

Ep = Eka + Et, (4)
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where Ep is the total potential energy, Eka is the
arm potential energy, and Et is the projectile po-
tential energy [28, 29, 33]. If there is no external
force acting on the end device, the generalized force
of the system comes from the virtual work [34]

δW = Q1θ1 + Q2θ2 , (5)

where Q1 and Q2 are the generalized forces θ1
and θ2, which are the torques applied by the mo-
tors; δθ1 and δθ2 are the virtual displacements θ1
and θ2 [34, 35].
The physical model, which we will apply in our

implementation, has been completed. The follow-
ing sections will discuss fuzzy set theory [36�38],
which can be considered the heart of the system, as
it is crucial for the operation and accuracy of our
model.

2.3. Defuzzi�cation

To perform fuzzy calculations, inputs must be
transformed from crisp values into linguistic forms,
and outputs must be defuzzi�ed from linguistic
forms back into crisp values. There are numer-
ous defuzzi�cation methods for this purpose, but
we recommend a method mentioned by Piegat
and Tomaszewska [39] (2017), which addresses the
shortcomings and imperfections of existing meth-
ods.
This method does not involve aggregation; in-

stead, it determines the best, optimal fuzzy repre-
sentation and the optimal crisp representation of
the activated inferences [39, 40]. Additionally, the
authors emphasize that �the OpR method is well-
suited for both fuzzy modeling and control problems,
as well as for fuzzy inferences. Its 'democratic' ap-
proach takes into account all rule inferences and
their degrees of signi�cance (competence).� [39].

3. Implementation

We implemented our model using the Python
programming language because, through fuzzy li-
braries, it seemed to be the most suitable for the
task [41], and it is also excellently suited for creat-
ing fuzzy control systems.
It was necessary to de�ne antecedents (latitude,

depth, etc.) and consequents (horizontal adjust-
ment, vertical adjustment, etc.). We automatically
generated several fuzzy sets (poor, average, good,
etc.) for the antecedents. For the consequents, we
de�ned unique triangular fuzzy sets (negative, zero,
positive, etc.), which are included in the rules. We
then de�ned rules for the fuzzy control system. We
used multiple rules that describe the relationships
between antecedents and consequents. For exam-
ple, if the latitude and/or depth are poor or av-
erage, we applied the corresponding horizontal and

Fig. 2. Visualization of the fuzzy-controlled sys-
tem.

vertical adjustments. We de�ned the positions of
the cannon and the target and calculated the trajec-
tory from the initial position to the target, utilizing
the precise implementation of the physical model
in practice. Finally, we output the horizontal and
vertical adjustment values.
The fuzzy sets assigned to the antecedents and

consequents represent the fuzzy sets used to inter-
pret the values of input and output variables. The
rules describe logical relationships that determine
the adjustments needed to reach the target based
on the values of the input variables. During the
simulation, the adjustments are computed based on
fuzzy logic and then applied during trajectory ad-
justments to reach the target.
The model is a good example of how fuzzy set

theory can be applied to a speci�c problem, such
as aiming a cannon. The fuzzy control system helps
to handle variable conditions �exibly and regulates
the achievement of the target. A 3D visualization
was created to represent the projectile, the target
positions, and the trajectory (Fig. 2).
Overall, the use of fuzzy set theory in this model

e�ectively demonstrates its e�ciency in handling
specialized problems such as weapon targeting. The
fuzzy control system enhances adaptability to vari-
able conditions and facilitates accurate target acqui-
sition, encouraging the use of fuzzy logic in similar
systems.

4. Testing

During the accuracy assessment, we applied sev-
eral statistical methods to obtain a comprehensive
view of the system's performance for both �xed
and dynamically moving targets. Each test was run
100 times to ensure reliability and statistical signif-
icance.
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Fig. 3. Visualization of the fuzzy-controlled Hop�eld logic system.

For �xed-position targets, the average deviation
from the target was 0.12 m, with a 95% con�dence
interval ranging between 0.4 and 0.6 m. The average
standard deviation was 0.118 m. Additionally, the
mean absolute error (MAE) was 0.25 m, while the
root mean square error (RMSE) was 0.12 m. For
dynamically moving targets, the average distance
from the target was 1500 m, changing within 5 s.
Based on these values, the system was able to track
dynamically moving targets, although the accuracy
decreased by 3.21% due to the dynamic behavior.
Overall, these results demonstrate high accuracy

for both �xed and dynamically moving targets and
con�rm the e�ectiveness of the fuzzy control system
in achieving targets.

5. Comparison with other methods

For comparison purposes, we created an addi-
tional model, in which we initialized a Hop�eld net-
work used for solving optimization tasks. The net-
work helps to �ne-tune the angle of the cannon and
then iteratively updates the network's states to �nd
the most e�ective �ring angle. Numerous studies use
Hop�eld networks for similar tasks [42�45].
Based on the results from the Hop�eld network,

we selected the optimal �ring angle and calculated
the required initial velocity to ensure that the pro-
jectile reaches the target at the speci�ed distance,
considering the physical motion equations

si (t+1) = sign
(∑

j ̸=i

sj(t)
)
, (6)

where si(t+1) is the state of the i-th neuron at
the next time step, and sj(t) represents the current
state of the other neurons. The iterative steps in
the model are described, where each neuron's state
is updated based on the aggregation of the current
states of all other neurons (excluding its own state),
i.e.,

E = −1

2

∑
i ̸=j

wijsisj , (7)

where E denotes energy, wij represents the weight
of the connection between neurons i and j, and
si and sj are the states of the respective neu-
rons. In the case of the model using a Hop�eld
network (Fig. 3), accuracy improved on average
by 4.32%. This suggests that integrating machine
learning typically results in better performance, in
our case accuracy, which is supported by several
studies [46�48].

6. Model validation

Our fuzzy logic control model was validated using
a structured framework that included comparison
with experimental data and sensitivity analysis. We
used experimental data from the Janes defense [49]
website to validate the model, as similar models are
not fully comparable to ours. The system was tested
under various conditions, including target ranges of
1000�6000 m and wind speeds of 5, 10, and 15 m/s.
For example, the model suggested a muzzle an-
gle of 28◦ for a target at 400 m, the gun was set
to that angle and the actual projectile trajectory
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was recorded. The measured angle was 27.9◦, and
the projectile landed 0.05 m from the target. The
mean absolute error (MAE) between the model
and experimental data was 0.09 m and the root
mean square error (RMSE) was 0.08 m, indicating
a high degree of agreement with the experimental
results.
In the sensitivity analysis, key parameters such

as membership functions and ranges of rule weights
were varied. For example, a 20% increase in the
wind compensation rule weight resulted in an im-
provement in targeting accuracy of 0.02 m, re-
�ecting the sensitivity of the model to parameter
changes. The model was also evaluated under ex-
treme conditions, such as wind speeds of 20 m/s,
and we showed that accuracy remained within
0.05 m, demonstrating robustness under varying en-
vironmental conditions.

7. Modeling conditions and limitations

The model was optimized for wind speeds up
to 15 m/s; higher wind speeds may reduce accu-
racy. Simulations were conducted using Python li-
braries, such as scikit-fuzzy, on a high-performance
computer cluster with 64 GB of RAM and 8 core
CPUs.
The model assumes ideal conditions, neglecting

factors such as mechanical wear, friction, or bar-
rel misalignment. These simpli�cations may limit
the model's applicability in long-term operations.
Additionally, the model requires signi�cant compu-
tational resources and is optimized for average pro-
jectile speeds between 700 and 1000 m/s; deviations
from this speed range may a�ect performance.

8. Conclusions

In this research, we investigated the fuzzy logic
control of cannon tube movement for e�ective tar-
geting tasks and defense. The results indicate that
the fuzzy control system e�ectively tracked both
�xed and dynamically moving targets.
Examined metrics, such as average deviation,

mean absolute error (MAE), and root mean square
error (RMSE), show low values, indicating high ac-
curacy of the system for both static and dynamic
targets.
The results con�rm the adaptive nature and in-

tuitive parameterization of fuzzy control, which en-
able the system to e�ectively adapt to varying
environmental conditions. Additionally, the appli-
cation of fuzzy set theory o�ers signi�cant advan-
tages in managing dynamic systems, as it simpli�es
system design and implementation while increasing
accuracy and e�ciency. The �exibility and accu-
racy provided by fuzzy control highlight its impor-
tance in precisely modeling and controlling cannon

tube movement under changing environmental con-
ditions. Furthermore, the incorporation of the Hop-
�eld network and the resulting increase in accuracy
support the fact that integrating machine learning
is crucial for precision.
Overall, it can be concluded that the fuzzy con-

trol system is an e�ective tool for achieving targets
through cannon tube movement and o�ers poten-
tial for broad application in other dynamic systems
where precision and e�ciency are key factors.
Future work will involve conducting additional

tests under various environmental and operational
conditions and exploring the integration possibil-
ities of other fuzzy logic and machine learning
methods.
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