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Both short-term and long-term intracranial pressure (ICP ) monitoring is indicated for a number of
neurological pathologies. The clinical gold standard for ICP monitoring is invasive and involves in-
serting a pressure sensor into the brain tissue or cerebral spinal �uid space. Such sensors can only be
used for a limited time due to the risk of infection and sensor degradation. Our aim was to develop a
method for long-term non-invasive ICP monitoring after the removal of invasive ICP sensor. Arterial
blood pressure (ABP ) and cerebral blood �ow velocity (FV ) signals were used as inputs to an arti�cial
autoencoder neural network. The network was trained with invasively measured ICP . Following the
training phase, the network's outputs were used for estimating ICP based on ABP and FV only. The
method was veri�ed on clinical data from 98 traumatic brain injury patients. The proposed procedure
managed to recover ICP using FV and ABP measurements. The median value of the Pearson correla-
tion between the recovered and the reference ICP signals was 0.7, and the root mean square error was
3.9 mmHg with an interquartile range of less than 5 mmHg. An additional feature of our algorithm is
that it not only outputs an ICP estimate, but also provides a con�dence level.
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1. Introduction

Intracranial pressure (ICP ) is an important pa-
rameter used for diagnosing numerous neurological
disorders. Some acute pathologies require ICP to
be monitored continuously, either for a short or for
a longer time. During short-term monitoring, it is
often the case that the rapid changes in ICP or
the occurrence of some abnormal waveforms within
this signal call for an immediate medical interven-
tion. On the other hand, the results of the long-term
monitoring could be used to appropriately adapt the
doses of medication. In both cases, the availability
of an exact and reliable method of measuring ICP
is important.

The standard clinical method of measuring ICP
consists of introducing a pressure sensor into the
patient's cranium. It is obviously an invasive mea-
surement procedure, which comes with associated
risks. Invasive ICP measurement uncertainty is just
a few mmHg, but it does not allow for truly long-
term monitoring. After a few days, the patient's in-
fection risk rises, and the sensor itself may exhibit
zero drift and should be removed or replaced.
Many non-invasive ICP estimation methods have

been proposed in the past. All of them have two im-
portant drawbacks. Firstly, their accuracy is not as
good as invasive methods, especially within a highly
heterogeneous group of patients. The second draw-
back is that known non-invasive methods provide
completely wrong values of ICP , which are not
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related to the real pressure waveforms, for a sig-
ni�cant part of patients. One could speculate that
the reason behind this weakness lies in the total in-
compatibility of the mathematical model with the
speci�c features characteristic of the individual pa-
tient's physiology [1]. As a consequence, the degree
of con�dence among the medical personnel in non-
invasive ICP measurement methods is typically rel-
atively low. An experiment carried out by authors
in [2] shows that initial calibration based on individ-
ual patient signi�cantly improves non-invasive ICP
estimation accuracy.
Our study attempts to formulate a hybrid

method that combines features of invasive and non-
invasive methods. During the �rst phase, called the
training phase, the proposed algorithm utilizes the
results of ICP measurements obtained with the
conventional invasive method. Based on this data,
the algorithm adapts its underlying mathematical
model to the speci�c features of the individual pa-
tient. The learning phase is continued as long as
the ICP sensors remain within the patient's cra-
nium and do not degrade. At the end of the learn-
ing phase, the algorithm is able to compute some
quantitative measures that provide reliable infor-
mation on whether the quality of the identi�cation
of the mathematical model mentioned above is su�-
cient. If this is the case, then the algorithm switches
to the non-invasive ICP measurement mode and
is able to continue working in this mode for many
days. If not, it refrains from estimating the ICP of a
given patient. The clinical scenario for the proposed
method assumes the presence of the inherent learn-
ing phase based on invasive ICP measurements. Al-
though this requirement is somewhat limiting for
the potential areas of application, it results in pre-
cise adaptation to the speci�c features of individual
patient and, in consequence, provides signi�cantly
lower measurement uncertainty in the non-invasive
mode than the competitive, non-invasive only meth-
ods. The availability of quantitative measures of
the quality of outcomes should notably increase the
con�dence of the medical personnel in the measure-
ments made in the non-invasive mode. Furthermore,
the proposed algorithm, even while working in the
non-invasive mode, still has some abilities to auto-
matically detect the inferior quality of the measured
ICP and provide the personnel with such informa-
tion.

2. Methods

The proposed hybrid algorithm in non-invasive
ICP mode estimates the ICP signal on the basis
of two other readily available physiological signals:
arterial blood pressure (ABP ) and cerebral blood
�ow velocity (FV ). The rationale behind this ap-
proach is that many existing mathematical models
of the cerebrospinal system closely relate these three

signals (ICP , ABP , and FV ). Moreover, the mea-
surements of ABP (either using an arterial catheter
or the plethysmographic sensor [3]) and FV (e.g., by
the ultrasonic transcranial Doppler �owmeter [4, 5])
are already routinely applied for patient monitoring
and are considered as minimally invasive [6].
Most published models of the cerebrospinal sys-

tem comprise multiple non-linear and time-variant
models that involve many parameters. These pa-
rameters either have arbitrarily assigned �xed val-
ues [7, 8] (limiting the applicability of the model to
di�erent patients) or are estimated from the mea-
surements using complicated methods, which are
not strongly legitimated (as they are mostly heuris-
tic) [9]. Therefore, we decided to use a universal
�black-box� model in the form of an arti�cial neural
network (ANN) [10], more precisely, an autoencoder
network.
The inputs of the ANN are fed with the values

of ABP and FV signals. The neural network has
three outputs, which estimate the values of the de-
sired intracranial pressure signal (ÎCP ), as well as
the recreated versions of both input signals: the ar-
terial blood pressure (ÂBP ) (ÂBP ) and the �ow
velocity (F̂ V ). During the learning phase, when the
invasively measured ICP signal is available as a ref-
erence, the parameters of the ANN (i.e., the weights
and biases of all the neurons) are optimized to recre-
ate all three signals (ÎCP , ÂBP , and F̂ V ). The
optimization criterion for each of the outputs con-
sists not only of the mean square error of the recon-
structed signal with respect to the original (mea-
sured) one, but also of the correlation between the
reconstructed and measured signals.
If (and only if) during the learning phase the neu-

ral network was able to achieve an adequate quality
of the reconstruction of all three signals, then the
network is allowed to be used in the non-invasive
ICP measurement mode. In this mode of operation,
the inputs of the network are still supplied with the
non-invasively measured ABP and FV signals, and
the ÎCP output is used as the non-invasively recre-
ated intracranial pressure signal. At the same time,
the ÂBP and F̂ V outputs of the network are uti-
lized for the real-time assessment of the correctness
of the behaviour of the network by comparing them
with real ABP and FV signals. Poor quality of re-
construction of the latter (measured) signals by the
former (recreated) ones is obvious evidence of the
unreliable ÎCP estimation.
The authors support the view that even if the ex-

act mathematical model relating the ICP , ABP ,
and FV signals is very complicated, highly non-
linear, and time-variant, it still can be formulated
with adequate accuracy by just a few fundamen-
tal laws of the cerebrospinal system's physiology.
This fundamental assumption led to the choice of
the applied structure of the arti�cial neural net-
work. The authors resorted to a modi�ed form of
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Fig. 1. Autoencoder neural network structure. On
the left are inputs � ABP and FV samples from
the past. In the middle are three layers of neurons.

On the right are the outputs, namely ÂBP , F̂ V ,

and ÎCP samples, which represent estimates of cur-
rent ABP , FV , and ICP , respectively.

an autoencoder [11], featuring just a few neurons in
the hidden layer. This relatively low number of in-
termediate neurons (actually, just four neurons were
used) forces the network to learn the features of
ABP and FV necessary to reconstruct ICP .
The network structure proposed in the paper dif-

fers from the conventional autoencoder (possessing
the same number of input and output signals) by an
extra channel for recreating intracranial pressure.
The rationale behind such an approach is based on
the assumption that ICP is closely related to ABP
and FV . Therefore, the accurate reconstruction of
the two latter signals should result in the good re-
construction of the former one as well.
Another important di�erence between the con-

ventional autoencoder and the proposed structure
was motivated by the need to take into account mul-
tiple time horizons of the input signals. To achieve
this, the ABP and FV inputs of the network con-
sist not only of the scalar values of the most current
samples of both signals (averaged over the heart-
beat), but rather of the vectors of appropriately cho-
sen past samples of these signals. The samples are
taken non-uniformly, i.e., densely in the near past
and sparsely in the longer time horizon (up to 50
heartbeats ago), to cover all clinically relevant spec-
tral components. The ÂBP and F̂ V outputs of the
network are vectors as well to make them readily
comparable with the inputs of the network during
the recreation quality assessment.
The structure of the proposed autoencoder result-

ing from the above considerations is shown in Fig. 1.
The neurons in each layer use the most common
bipolar sigmoidal activation function and the extra
bias term, added to the linear combination of the
inputs.
During the learning phase, the conventional error

backpropagation algorithm is used [12]. However,
at the same time, many (at least 10) independent
neural networks are being trained in parallel, each
one with di�erently randomized initial values of the

neuron weights. The concurrent training of multiple
networks, although computationally demanding, is
not a problem nowadays due to the broad availabil-
ity of massively multicore platforms such as graph-
ics processing units (GPUs). Near the end of the
learning phase, the input signals are used to ver-
ify whether the given network has not been over-
trained. Among all networks that pass this test, we
choose the one that recreates in its outputs all three
signals under consideration with the best quality.
If that quality seems adequate for clinical use, the
network switches to the non-invasive ICP measure-
ment mode.

3. Results

The data used for validation of the proposed algo-
rithm originates from a database of neuro-intensive
care recordings that have been collected for more
than 20 years at Cambridge University Hospital
in United Kindom (Addenbrooke's Hospital). The
database encompasses ICP , ABP , and FV , as
well as other clinical recordings of several hundred
patients after traumatic head injury. Signals were
recorded based on a clinical need to daily assess
the autoregulation of cerebral blood �ow during the
stay of the patients in the neuro-critical care unit.
The local Neurocritical Care Unit (NCCU) Users'
Committee and then the local Research Ethics
Committee approved the use of anonymized data
for future validation of methodological projects. For
our research, we have discarded recordings shorter
than half an hour (2000 heartbeats). These record-
ings do not �t into the assumed clinical scenario,
according to which the data should be long enough
to be used to train the neural network and then
verify its performance. For the sake of clarity, we
have also discarded recordings in which any arti-
facts were identi�ed (data corruption, sensor fail-
ure, and misleading data due to speci�c medical
treatment). Recordings concerning the same pa-
tient, but separated with a time interval longer
than 2 h, were considered separately (as if they
came from di�erent patients). Another criterion
used for abandoning the neural network learning
procedure was the narrow range of the recorded
ICP values, as there is no way for a neural net-
work to guess what changes in FV and ABP sig-
nals would coincide with signi�cant changes in ICP
signal if no such changes appeared in the learning
phase. As a rule, we have thus discarded the record-
ings with an ICP range (in the recording frag-
ment used for neural network learning) narrower
than 12 mmHg. The total number of recordings
meeting the above criteria was 193 recordings of
98 patients. There were 21 females and 72 males,
with a mean age of 31. The mean Glasgow Coma
Score was 6.35, and the median outcome was mod-
erate disability (with a 22% mortality rate). A total
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Fig. 2. Correlation between measured signals
ABP , FV , ICP and their counterparts computed
by the neural network. The correlation has been
computed on 162 blocks of test data.

Fig. 3. Root mean square (RMS) value of ICP re-
covery error. The box plot is based on 162 signal
blocks. Thirteen outliers bigger than 15 mmHg are
not shown in the plot.

of 31 recordings were rejected from the testing
phase because all networks trained on a valida-
tion subset of data have an ICP estimation error
above 6 mmHg or Pearson correlation coe�cient
less than 0.6. In the testing phase, the neural net-
work was computing estimates of ÂBP , F̂ V , and
ÎCP in the same way as during the training stage
but for a di�erent set of data.
In Fig. 2, the performance of the neural network

is presented in terms of the Pearson correlation
between acquired signals (test data) and their re-
covered counterparts. The correlations have been
computed for 162 signal blocks that had not been
discarded during the preprocessing stage or valida-
tion. For each of these blocks, the correlation coe�-
cient was found to be statistically signi�cant as the
corresponding p-value was smaller than 0.05.

Fig. 4. The ICP (blue) and ÎCP
(ICP learn (red) is ICP computed in learn-
ing phase, nICP (green) is ICP computed in test
phase) signals � Case A.

Fig. 5. The ICP (blue) and ÎCP
(ICP learn (red) is ICP computed in learn-
ing phase, nICP (green) is ICP computed in test
phase) signals � Case B.

The histogram shown in Fig. 3 illustrates the root
mean square error of ICP signal recovery. The plot
was constructed from 162 samples, where each sam-
ple represents a signal block of various lengths. The
ICP root mean square error has an upper quar-
tile (75% of recordings) of 3.9 mmHg (95% CI 3.5
to 4.9 mmHg) and a median (50% of recordings)
of 2.2 mmHg (95% CI 1.9 to 2.6 mmHg), where
CI is con�dence interval. In the case of 13 record-
ings (11 patients) � the outliers in Fig. 3 � our
algorithm has failed to estimate ICP with an error
above 15 mmHg.
In Figs. 4 and 5, the performance of the con-

structed neural network is presented for two di�er-
ent patients. In both patients, the autoencoder net-
works have been trained so that the errors between
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ICP and ÎCP are relatively small. This error stays
at the low level in Case A, illustrated in Fig. 4.
Such a good performance of the network was possi-
ble because the dynamics and range of ICP signal
changes during the training stage were similar to
those in the testing phase. For Case B, illustrated
in Fig. 5, the situation is quite di�erent. Despite
this, it was possible to achieve a small recovery er-
ror during the training stage; the di�erence between
the recovered and the measured ICP signals is quite
big. The reason for such undesired behaviour of the
constructed network in some of the cases requires
further research that would need more exhaustive
data on each case, e.g., information on patient treat-
ment and recovery.

4. Discussion

For many years, clinical neuroscientists have tried
to �nd an accurate, non-invasive or less invasive
method for measuring ICP . A number of such
methods are described in the literature, as listed
in review paper [13]. In [14], the authors propose
a �black box� system which attempts to convert
arterial blood pressure (ABP ) and transcranial
Doppler blood �ow velocity (FV ) waveforms using
linear regression analysis. The results are promis-
ing; the mean of the absolute values of the dif-
ferences between measured and predicted ICP is
4.0 mmHg with a 95% con�dence interval (95% CI)
2.2 to 5.8 mmHg), but based on a very small group
of patients (11 for training, 10 for testing) and short
measurement time of 100 seconds. An improved
method presented in [15] studied a much larger
group (145 patients, 197 recordings). It achieved an
ICP error of 6.0 mmHg (95% CI 4.9 to 6.9 mmHg),
but only for 50% of recordings. For 75% of record-
ings, the ICP estimation error was 9.1 mmHg (95%
CI 8.1 to 10.5 mmHg) and for 90% of recordings, the
ICP estimation error was 14.4 mmHg (95% CI 12.5
to 18.1 mmHg). Another innovative method of non-
invasive ICP measurement is presented in [16] using
57 patients. The authors show that it is possible to
measure absolute (without learning or intracranial
reference measurement) ICP with 0.9 mmHg (95%
CI ±12 mmHg) mean di�erence between invasive
and non-invasive method. The method is based on
a two-depth transcranial Doppler (TCD) technique
for absolute intracranial pressure (aICP) and exter-
nal absolute pressure (aPe) comparison using the
ophthalmic artery (EA) as natural �balance�. The
main drawback is highly customized equipment in-
stalled on the patient's eye. Another approach is
shown in [9], where authors used a simpli�ed Ursino
and Lodi model [7] with only two parameters (brain
arterial compliance and resistance to blood �ow,
changing with each heartbeat) to estimate ICP .
These results are promising but require further vali-
dation on larger patient cohorts. In [17], the authors

present a highly advanced approach based on non-
linear regression analysis that gives 6.0 mmHg (up-
per 95% CI 7.61 mmHg) ICP estimation error, but
their research is based on a small group of 23 pa-
tients.
Our study validates the concept of non-invasive

estimation of ICP using TCD and arterial blood
pressure using autoencoder neural networks. Ini-
tial results obtained using retrospective analysis of
pre-recorded clinical data are promising. In clinical
practice, this method may be applied after the end
of invasive ICP monitoring in cases where knowl-
edge of non-invasive ICP is still valuable. This in-
cludes ICP monitoring after weaning from mechan-
ical ventilation when the ICP sensor is removed but
patients still are unconscious or semi-conscious.

5. Conclusions

In our view, the hybrid algorithm proposed in
the paper, which utilizes invasive ICP measure-
ments during the learning phase and then passes
into the non-invasive measurement mode, can be
applied in many practical clinical treatment scenar-
ios. Autoencoder neural network, after a relatively
short period of training, is able to non-invasively
estimate ICP with the accuracy that seems to be
clinically feasible. Further prospective clinical stud-
ies are needed.
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