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Metaheuristics are currently playing an increasingly important role in the tuning of industrial con-
trollers. In particular, this paper presents the results of implementing various nature-inspired meta-
heuristics for the tuning of a proportional�integral controller intended for use in a high-voltage pulse
generator. This paper analyses and compares the results of tuning obtained using both classical meta-
heuristics, such as simulated annealing, genetic algorithms, particle swarm optimisation, and di�erential
evolution, and newer approaches, such as sand cat swarm optimisation and sea lion optimisation. An
original, complex multi-criteria cost function is constructed in this paper for optimising and ranking
nature-inspired metaheuristics for the tuning of the proportional-integral controller. The results show
that sand cat swarm optimisation outperforms other optimisation approaches according to the adopted
multi-criteria optimisation criterion.
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1. Introduction

Proportional�integral (PI) controllers are funda-
mental components in industrial control loop sys-
tems, renowned for their simple structure and e�ec-
tiveness in the control of multiple processes.
The tuning of PI controllers plays a pivotal role

in achieving expected performance, stability, re-
sponse to disturbances, and robustness across vary-
ing operational conditions. Generally, the proper
tuning of the controller is not a trivial task. This
is particularly true if the control quality criteria
are highly sensitive to changes in controller pa-
rameters. Numerous tuning approaches have been
developed [1�4]. Among these, heuristics [5] and
nature-inspired metaheuristics are now playing an
increasingly important role [6�13].
This paper aims to compare and rank a set of

nature-inspired metaheuristics in the context of
their application to the tuning of a PI controller
intended for a high-voltage, high-power pulse gen-
erator. Such generators are used, among others, in
experiments with plasma [14, 15].
The high-voltage pulse generator delivers a se-

ries of switched direct current (DC) voltage pulses
across its output terminals (Fig. 1). The averaged
output voltage of an ideal generator is a rectangu-
lar wave with amplitude Us, frequency fs, and duty

Fig. 1. Output voltage of a pulse generator.

cycle ds. The binary-valued control signal Vc allows
for discrete two-level adjustment of the generator
output voltage. This signal has a square-like shape
with frequency fc, as shown in Fig. 1.
The duty of the signal is determined by the pa-

rameter dc. PI controller indirectly governs the out-
put voltage of high-voltage pulse generator Uout by
the changes in duty d of the PWM modulator. The
block structure of the high-voltage control loop is
shown in Fig. 2.
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Fig. 2. Block schematics of the high-voltage con-

trol system.

Fig. 3. PI controller block diagram.

The block diagram of the PI controller discussed
in this paper is shown in Fig. 3. The structure
of this controller is classic. The controller output
voltage u(t) is limited due to the need to match
the controller output with the range of the input
of the pulse-width modulator (PWM). In addition,
the controller is equipped with an anti-windup that
moderates the controller output u(t) in the event of
saturation.
The anti-windup compensates for the output of

the integratorKI on u(t) via negative feedback with
integrator KA. The time constant of this integrator
is �xed, and therefore its tuning is not necessary.
Due to the high voltages and high power delivered

by the generator, conducting plasma experiments is
very risky and requires constant supervision. There-
fore, manual tuning of the controller should not be
considered the best option.
On the other hand, model-based research requires

advanced knowledge of the system under control or
at least exhaustive process data. A compromise so-
lution is the idea of using an auxiliary model of the
generator that is built using the same electronic
components as the real one but with scaled-down
output power, currents, and voltages. Such a solu-
tion re�ects the dynamics of the generator, enabling
experimental studies over a wide range of parame-
ters without compromising the safety of the exper-
imenter.
In the case of nonlinear systems being controlled,

or those following a setpoint, it is necessary to tune
the controller close to the operating point. There-
fore, to compare the e�ectiveness of the selected

Fig. 4. Illustration of output voltages for reference

cases.

TABLE I

Reference control parameters used for benchmark

purposes.

Parameter Unit P1 P2 P3

fs kHz 400 400 400

ds % 75 50 50

Us/Umax � 0.5 0.5 0.75

fc kHz 1 10 0.8

dc % 75 50 80

metaheuristic tuning approaches in seeking optimal
or suboptimal PI controller settings, a set of three
benchmark cases was arbitrarily de�ned. The pa-
rameters of these cases are presented in Table I,
while the waveforms re�ecting output voltages of
the generator are shown in Fig. 4.

2. Tuning of PI controller

Some simple and industrially proven experimen-
tal tuning approaches for PID controllers, such as
Ziegler�Nichols or Cohen�Coon, are neither appro-
priate nor e�ective in the case of high-voltage gen-
erators. The reason is that, as experiments have
shown, they do not guarantee the required quality
of control.
In recent years, there has been a growing in-

terest in leveraging nature-inspired metaheuristic
algorithms to address the challenges of PI con-
troller tuning. Metaheuristic algorithms, drawing
inspiration from natural phenomena or biological
behaviours, o�er a promising alternative by e�-
ciently exploring complex search spaces and iden-
tifying near-optimal controller parameters.
The appeal of metaheuristic algorithms lies in

their ability to adapt and optimise controller pa-
rameters without requiring detailed system mod-
els or explicit knowledge of system dynamics. This
raises hope for solving the problem of proper tuning
for high-voltage generators.
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The problem of �nding near-optimal PI controller
settings can be formulated as seeking the con-
strained minimum of a two-variable function, where
the arguments are the gains of the proportional and
integral terms, and the constraints are the permis-
sible ranges of their settings.
Nowadays, di�erent indices are used for the eval-

uation of the control quality. All of them estimate
how well the controller performs. Some of them can
be interpreted as integrated cost functions. Com-
monly used cost functions include the integral of ab-
solute error (IAE), integral of squared error (ISE),
and integral of time-weighted absolute error (ITAE).
Selecting the proper cost function for the controller
settings optimisation is crucial [8].
Obviously, the use of integral performance indices

does not directly allow for the control of some de-
sired criteria such as overshoot or settling time [8].
Therefore, to account for multiple criteria, it is nec-
essary to propose a cost function that incorporates
these quantities [10, 16�18].
In the case of high-voltage generator, the major

problem encountered is the inability to bring the
system to a steady state using controller settings
resulting from manual tuning. Therefore, in this pa-
per, an optimisation approach was applied to ad-
dress this problem.
The optimisation aims to improve the following

performance indices:

(i) mean of maximum overshoots (em),

(ii) mean settling time (ts) � the time required
for the transient's damped oscillations to
reach and stay within ±5% of the steady-state
value,

(iii) averaged steady-state error (es).

The values of these indices are calculated in slid-
ing time windows. It should be emphasised that
the performance indices are strongly interdepen-
dent. For example, shortening the settling time of-
ten comes at the expense of increased overshoots.
Let us de�ne a simple cost function C considering

together �ve performance indices
C = MΦMT +O, (1)

where M is vector of performance indices, Φ �
diagonal matrix of non-negative weights of perfor-
mance indices, O � o�set, and

M =
[
em est ts MSE IAE

]T
. (2)

Originally, the matrix Φ was chosen arbitrarily in
the form

Φ =



1.5 0 0 0 0

0 1.5 0 0 0

0 0 2 0 0

0 0 0 0.01 0

0 0 0 0 0.001

 . (3)

Additionally, to discourage the optimisation algo-
rithm from selecting controller gains that lead to
system instability, an arbitrary chosen value of an
o�set value O was added to the cost function.
By all experiments, the default settings for PI

controller were used as elements of the initial pop-
ulation. In particular, the values KP = 0.5, KI =
0.003 were chosen as the starting points. Together
six optimisation algorithms were examined, i.e.,
simulated annealing (SA), genetic algorithms (GA),
particle swarm optimisation (PSO), di�erential evo-
lution (DE), sand cat swarm optimisation (SCSO),
and sea lion optimisation (SLnO).
SA mimics the annealing process used in metal-

lurgy, exploring the solution space by probabilisti-
cally accepting even inferior solutions to eliminate
the e�ect of the algorithm getting stuck around a
local optimum.
GA is inspired by natural selection, evolving a

population of candidate solutions through crossover
and mutation.
DE is a population-based algorithm that achieves

better solutions by using mutation, crossover, and
selection. The optimisation strategy is to select the
best individuals from the current population and
use them in the mutation process.
PSO simulates the social behaviour of swarms.

The AIW-PSO (AIW � adaptive inertia weight)
variant adjusts the inertia weight dynamically dur-
ing the optimisation process to balance exploration
and exploitation e�ectively.
SCSO is inspired by the hunting behaviour of

sand cats, optimizing solutions by exploring and
exploiting the search space through adaptive strate-
gies based on the cats' social and hunting dynamics.
SLnO simulates the social and predatory be-

haviour of sea lions. It utilizes mechanisms such as
spiral updating positions and encircling prey to bal-
ance exploration and exploitation in the search pro-
cess.
It should be added that for all optimisation al-

gorithms, the original implementation of the al-
gorithm was used, except for the PSO algorithm,
where the AIW-PSO variant was used.
Table II presents the set of initial parameters cho-

sen for the optimisation.
The ranking of the algorithms was carried out

based on the �nal value of the objective function
achieved.
Surprisingly, even a small change in the gains of

the PI controller signi�cantly a�ects control qual-
ity. This con�rms the observation that the search
for optimal PI controller settings is a di�cult task.
Moreover, the search space for the gains of the PI
controller is quite large. Therefore, searching for
near-optimal settings can be time-consuming. To
reduce this time, a preliminary analysis of the data
was conducted to narrow down the search space.
For this purpose, a data clustering method was
used. Figure 5 illustrates the collected data for all
the studied reference cases. For each case, exactly
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Fig. 5. Representation of acquired data.

TABLE II
Parameters of used algorithms.

Algorithm Parameter Symbol Value

SA
start temperature Tmax 25000

end temperature Tmin 2.5

GA

crossover probability pc 0.95

mutation probability pm 0.0025

population size ps 30

AIW-PSO

acceleration constant c1 2.05

acceleration constant c2 2.05

inertia factor α 0.4

population size ps 30

DE
mutation constant F 0.5

population size ps 30

SCSO population size ps 30

SLnO population size ps 30

TABLE III
Results of GMM clustering in Case 1.

Index KP range KI range

C [0, 10] [0, 0.33507]

[4.80, 9.99]

IAE [0, 10] [0, 0.34632]

MSE [0, 10] [0, 0.34632]

em [0, 10] [0, 5.62669]

est [0, 10] [0, 0.52697]

ts [0, 10] [0, 0.52697]

900 measurement data points were collected, evenly
covering the plane constrained by the permissible
ranges of the PI controller gain settings.
For each case, clustering was carried out using

the Gaussian mixture model (GMM) algorithm, al-
lowing commonalities to be identi�ed. GMM was
useful for recognising the relationships between the
performance indices and individual controller set-
tings. Surprisingly, no relationship was found for
the proportional gain. The results are summarised
in Figs. 6�8. In these �gures, the cluster with the
lowest average performance index value is marked
in green.

Fig. 6. Results of clustering experimental data in

Case 1.

Fig. 7. Results of clustering experimental data in

Case 2.

TABLE IV
Results of GMM clustering in Case 2.

Index KP range KI range

C [0, 10] [0, 0.66729]

IAE [0, 10] [0, 1]

MSE [0, 10] [0, 1]

em [0, 10] [0, 1]

est [0, 10] [0, 0.63525]

ts [0, 10] [0, 0.63525]

Table III presents the results of clustering
achieved for KI gain.
Based on the data presented in Table III,

the search space was narrowed to the range
of [0, 0.52697] for the KI gain.
Figure 7 presents the clusters of experimental

data obtained in Case 2.
Table IV presents the results of clustering

achieved for KI gain values indicated by the green-
marked clusters.
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Fig. 8. Results of clustering experimental data in

Case 3.

TABLE V
Results of GMM clustering in Case 3.

Index KP range KI range

C [0, 10] [0, 0.3218]

[4.848, 5.727]

IAE [0, 10] [0, 0.39845]

MSE [0, 10] [0, 0.52697]

em [0, 10] [0, 0.72994]

est [0, 10] [0, 0.39845]

ts [0, 10] [4.848, 5.727]

Based on the data presented in Table IV,
the search space was narrowed to the range
of [0, 0.63525] for the KI gain.
Figure 8 shows the clusters of experimental data

obtained in Case 3.
Table V presents the results of clustering achieved

for the KI gain.
In this case, the search space for the gain KI was

narrowed to [0, 0.52697].

3. Experimental �ndings

The output voltage of the generator was mea-
sured in each experiment. The experiments were
performed for each set of PI controller settings gen-
erated by all the optimisation algorithms tested.
The output voltage and control error for the stud-

ied reference Case 1 are shown in Figs. 9 and 10,
respectively.
The collected values of performance indices ob-

tained experimentally in Case 1 are depicted in
Table VI.
As can be seen in Figs. 9�10 and Table VI, the

SLnO algorithm achieves the best performance in
terms of minimizing the cost function. It is worth

Fig. 9. Generator output voltage waveform in

Case 1.

Fig. 10. Relative control error obtained in Case 1.

Fig. 11. Convergence of cost functions in Case 1.

mentioning that the SCSO and DE algorithms
also provide a signi�cant improvement over manual
tuning.
Moreover, as can be seen in Fig. 11, the SLnO

convergence curve of the cost function shows the
greatest rate of decrease among all others and falls
to the lowest value, thus exhibiting its e�ciency in
the studied case.
The output voltage and control error for the ex-

amined reference Case 2 are shown in Figs. 12
and 13, respectively.
The collected values of performance indices ob-

tained experimentally in Case 2 are depicted in
Table VII. Notably, the obtained values di�er sig-
ni�cantly from those obtained in Case 1.
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TABLE VI
Experimental results of the reference Case 1.

Parameter Unit Manual SA GA PSO DE SCSO SLNO

KP � 0.5 6.6941 6.33648 5.42544 6.86145 7.72135 7.48437

KI � 0.003 0.01362 0.07965 0.07492 0.00915 0 0.00125

C � 78849583 1720 1723 1799 1631 1654 1620

em % 9.1 14.19 13.83 13.44 15.87 16.38 15.45

est % � −2.499 −2.373 −2.81 −0.94 −0.781 −1.156

ts % � 4.416 4.416 5.584 5.167 5.0 4.584

TABLE VII
Experimental results of the reference Case 2.

Parameter Unit Manual SA GA PSO DE SCSO SLNO

KP � 0.5 0.69505 0.5 0.57478 0.2926 0.38109 0.05947

KI � 0.003 0.34373 0.23699 0.02094 0.01065 0.00562 0.20234

C � 949 477 479 474 484 466 480

em % 3.62 4.88 2.71 3.17 2.97 4.85 2.75

est % −2.195 −0.716 −2.74 −2.328 −2.648 −0.668 −2.743

ts % 0 0 0 0 0 0 0

Fig. 12. Generator output voltage waveform in

Case 2.

As can be seen in Figs. 12�13 and Table VII, the
SCSO algorithm achieves the best performance in
terms of the cost function and the lowest steady-
state error. It is worth mentioning that the SA
metaheuristic algorithm also provides similar re-
sults, but with a worse steady-state error.
As can be seen in Fig. 14, the SCSO convergence

curve of the cost function shows the greatest rate
of decrease among all others and falls to the low-
est value compared to the other algorithms, thus
demonstrating its e�ciency in the studied case. The
SA algorithm also demonstrates rapid convergence
in the initial stages; however, it becomes trapped
in a local minimum, preventing it from achieving a
globally optimal �nal result.
The output voltage and control error for the stud-

ied reference Case 3 are shown in Figs. 15 and 16,
respectively.

Fig. 13. Relative control error obtained in Case 2.

Fig. 14. Convergence of cost functions in Case 2.

The collected values of performance indices ob-
tained experimentally in Case 3 are depicted in
Table VIII. The obtained values in this case show
that the SCSO once again achieves the best perfor-
mance in terms of cost function.
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TABLE VIII
Experimental results of the reference Case 3.

Parameter Unit Manual SA GA PSO DE SCSO SLNO

KP � 0.5 5.04991 5.42544 5.42544 6.07837 6.26104 6.45068

KI � 0.003 0.00106 0.01094 0.07492 0.0008 0 0.00209

C � 78851313 2300 2593 2686 2438 2249 2318

em % 13.73 14.41 11.85 12.99 14.19 14.49 15.39

est % − −0.365 −3.246 −2.393 −1.9047 −0.289 −0.065

ts % � 7.501 4.499 5.299 5.6 7.299 7.2

Fig. 15. Generator output voltage waveform in

Case 3.

As can be seen in Fig. 17, the SCSO convergence
curve of the cost function falls to the lowest value
compared with the other algorithms, thus exhibit-
ing its e�ciency in the studied case. The SLnO
and SA algorithms demonstrate rapid convergence
however, they get worse results in terms of settling
time.

4. Discussion of results

This section aims to compare and analyse the
control quality indices obtained for all six stud-
ied metaheuristic nature-inspired algorithms ap-
plied for tuning the PI controller of a high-voltage
generator.
Figure 18 reveals the relation between cost func-

tion and achievable overshoot. It turns out that the
lower the cost function, the lower the average over-
shoot em is. Speci�cally, the cost function tends to
balance the performance and reduce em more e�ec-
tively compared to IAE and MSE.
The MSE cost function results in moderate em

values, while the IAE tends toward high averaged
overshoots. Therefore, in order to minimize the
maximum overshoot, the analysis of the cost func-
tion C may be advantageous.
Figure 19 shows the correlations between the val-

ues of the cost function and steady-state error.
The IAE consistently displays the lowest average

Fig. 16. Relative control error obtained in Case 3.

Fig. 17. Convergence of cost functions in Case 3.

steady-state error. This indicates that the IAE func-
tion is particularly useful when striving for minimiz-
ing steady-state error. In contrast, the MSE and C
cost functions generally result in higher average est
values. Therefore, to minimize the average steady-
state error, the analysis of the IAE cost function
may be the preferred choice.
Figure 20 shows the correlations between values

of cost functions and settling time ts. Here, the cost
function C stands out as the most e�ective, when
aiming for the shortest average settling time values.
Therefore, to minimize the average settling time,
the analysis of the cost function C may be the best
choice.
The analysis revealed that the C cost function

generally brings the most balanced performance
across the control quality indices em, est, and ts.
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Fig. 18. Summary of maximum overshoot ob-

tained in the performed experiments.

Fig. 19. Summary of steady-state error obtained

in the performed experiments.

Fig. 20. Summary of settling times obtained in the

performed experiments.

Speci�cally, the C function is e�ective in minimiz-
ing the em and ts parameters, but performs worse
with est. To achieve the lowest est, the IAE cost
function is recommended.

5. Conclusions

The comparative study of nature-inspired meta-
heuristic algorithms for tuning the PI controller set-
tings of a high-voltage generator demonstrates the
superiority of these techniques over manual tun-
ing. The SCSO and SLnO algorithms consistently
showed superior performance across the three dif-
ferent benchmark cases studied in this paper. The
SLnO algorithm exhibited the fastest convergence
rate in Case 1, indicating its potential for rapid op-
timisation in similar scenarios.
The comparative analysis indicates that the

choice of cost function and optimisation algorithm
signi�cantly impacts the control quality indices.

The cost function generally provided the most
balanced performance across control quality indices,
e�ectively minimizing both overshoot and settling
time. In turn, the IAE cost function was particu-
larly e�ective in minimizing the steady-state error,
making it a preferred choice when this parameter is
critical.
These �ndings underscore the importance of se-

lecting appropriate optimisation algorithms tai-
lored to speci�c processes. For problems similar to
those studied, SCSO and SLnO are recommended
for their consistent performance in minimizing
cost functions and rapid convergence, respectively.
When balancing overall performance across multi-
ple indices, the C cost function de�ned in this pa-
per is advantageous, while the IAE cost function is
preferable for applications where steady-state error
minimization is paramount.
Future research should include multiple runs of

each algorithm to provide statistical validation of
the �ndings. Additionally, exploring hybrid meta-
heuristic approaches and more sophisticated pa-
rameter tuning methods hopefully could further
enhance optimisation performance. Incorporating
real-time adaptive mechanisms might also address
the dynamics of high-voltage generator control,
leading to more robust and reliable solutions.
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