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Entropy of Mutating Viruses
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A virus is a biophysical dissipative system, far from thermodynamic equilibrium, self-organizing, and
self-adapting during evolution. This means, in accordance with the second law of thermodynamics
developed by Prigogine, that entropy production and entropy flux decrease the internal entropy of
the virus. We showed that the Shannon entropy change of three different viruses (SARS-CoV-2,
HIV, and influenza) is constant but negative. This confirms Vopson’s hypothesis that virus evolu-
tion shows a linear negative decrease in information entropy. It also suggests that viruses are evolving
systems that are unlikely to reach their stationary (steady) states due to their discrete host-to-host

multiplication.
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1. Introduction

A virus is a physical open system, far from
thermodynamic equilibrium. This means that lo-
cal entropy production causes the system entropy
to decrease. However, the virus is not a typical
biological organism — its evolution towards bet-
ter adaptation to changing environments is only
possible thanks to hosts, in which viruses can
replicate and mutate. Therefore, viruses are self-
adapting and self-organizing systems in discrete
time relationships depending on the host-to-host
manner.

Recently, Melvin Vopson and colleagues [1-3]
showed that the genetic Shannon information en-
tropy of the SARS-CoV-2 virus decreases with the
number of its mutations (which is correlated with
time). The main motivation of our work is to verify
these calculations and test them for other types of
viruses, such as HIV or influenza. This is of crucial
importance because other entropy-related methods
have been used in the past [4, 5].

The second motivation of our work is to test
our hypothesis that the evolution of viruses tends
towards minimal entropy production (stationary
states). This can be verified by comparing the dy-
namics of information entropy decrease between
a new population virus (SARS-CoV-2), an inter-
mediate one (HIV), and the virus that has been
present in the population for a very long time
(influenza).
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2. Materials and methods

Three types of viral mutation data, namely
SARS-CoV-2, HIV, and influenza, were downloaded
from the free database of the National Center for
Biotechnology Information (NCBI) [6]. The down-
loaded data are customized to consist of: date,
genome length, and full genotype, stored as letters
corresponding to nucleotides (elements of DNA).
The IUPAC (International Union of Pure and
Applied Chemistry) standard for data storage is
used. The archive is in the form of a single file
with variants separated by blank lines and can
later be extracted into files containing informa-
tion for individual genomes. The database contains
8.8 million entries for SARS-CoV-2, 1.1 million for
HIV and 1 million for influenza. Each entry cor-
responds to a single DNA sequence of the viral
genome.

The method of calculating genetic Shannon in-
formation entropy was used, as described by Vop-
son [1-3], in relation to the information in DNA
nucleotide sequences. The entropy is thus defined
as

n
S==> pilog,(pi), (1)
i=1
where m is the base of logarithm and defines the
unit of information entropy, and has been set to 2
to obtain results in bits, and p; is the probability
of each nucleotide in the genome, interpreted as the
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number of specific nucleotides in the genotype di-
vided by the total number of the nucleotides in the
genome.

To make it clearer, keeping the bit as the unit,
consider a genome of 12 exemplary nucleotides:
ACTGAACTGACT. Then the entropy value can
be calculated as follows

S=- [pA logs (pa)+pc logs (pc)+pr logy (pr)
+pa logz(PG)} =- {% log, (5) + 1 logs (1)

+410g, (4) + L logy (§) | = 1.959. 2)

The information entropy values of the whole virus
genomes are presented as a function of the num-
ber of detected mutations (M), which is assumed
to be a function of time (¢) (this relationship is dif-
ficult to obtain, see Sect. 4). Please note that within
this context the entropy presented is related to the
nucleotide sequence in the virus DNA. Next, a lin-
ear fit, as the most likely one, was used to check if
there was a statistically significant decrease in such
defined entropy

S =AM + Shnitial, (3)

where A is a linear function slope, M is a mutation
number, and Sipyitia iS the initial value of entropy of
the reference virus (where M = 0).

Two regression methods were used: classical
least squares (CLS) and robust Bayesian regression
(RBR) method [7]. The validity of CLS method was
verified by the x? test with the number of degrees of
freedom. The latter, RBR, is dedicated to the situa-
tion when many outliers and a large scatter of data
are expected and is described in the Appendix.

3. Results

The Shannon entropy of the nucleotide sequence
was calculated and presented as a function of
mutation numbers for three viruses: SARS-CoV-2
in Fig. 1, HIV in Fig. 2, and influenza in Fig. 3. A
large scatter with many outliers is clearly visible,
but a general linear trend seems to be represented.
Therefore, a linear relationship from (3) was fitted
to all three portions of the data, using two different
statistical methods: CLS and RBR. In this paper,
we focus on analyzing the linear dependence, which
is motivated by results obtained by Vopson. Other
non-linear fits are, in our opinion, less likely, and for
this reason, will not be analyzed here.

Results of linear fits (slopes A) are presented in
Table I, both for the CLS and RBR method. All
results show the statistically significant decrease in
entropy as a function of mutation numbers — all
values of slopes are negative (A < 0). The largest
value of negative slope was calculated for influenza,
while the smallest (but still significant), for HIV
virus. Those results simply confirmed the Vopson’s
hypothesis [1-3].

266

1958
méﬁ%%% %% TR
gl
x 1956, ' 1 %%%%%%%%%éég
- T N PR LR
S I Y THEERE
& 1985 : R ER RS RN
1.9543—
1953:—
N B E N SR B PR B
20 40 80 80 100 720 740
NUMBER OF MUTATIONS
Fig. 1. Information entropy of SARS-CoV-2 virus

related to the number of mutations, based on the
NCBI database, with boxes closing on the first and
third quantile and both the mean and the median
marked inside of them. Outer whiskers symbolize
furthest away value that is within 1.5 length of a
box away from it. Visible points mark outliers that
are not within those bounds.
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Fig. 2. Information entropy of HIV virus related

to the number of mutations, based on the NCBI
database, with boxes closing on the first and third
quantile and both the mean and the median marked
inside of them. Outer whiskers symbolize furthest
away value that is within 1.5 length of a box away
from it. Visible points mark outliers that are not
within those bounds.

Results given by the CLS and RBR methods are
consistent — especially because of the large un-
certainties in the RBR method. Please note that
these methods are based on completely different ap-
proaches [7], thus presented results have better like-
lihood due to the mentioned consistency.

Negative but constant values of A result in a con-
stant entropy reduction, dS = A < 0 (see (3)).
Because the entropy change, due to the local form
of the second law of thermodynamics [8, 9], is
a sum of the entropy production, d;S (which is
always positive), and the entropy flux, d.S, the
total system’s entropy change is therefore given
by

dS = d.S+ d;S = A < 0. (4)
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TABLE I

Results of the best linear fit using classical least squares (CLS) and robust Bayesian regression (RBR) methods.
Linear functions (3) were fitted to the genetic information entropy functions of SARS-CoV-2, HIV, and influenza
viruses, presented in Fig. 1, Fig. 2, and Fig. 3, respectively. Presented values are equal to the linear slope (A)
from (3). All uncertainties represent one standard deviation.

Type of virus CLS RBR Reference
figure
SARS-CoV-2 | A= (-0.972+£0.018) x 107° | x> =7.6 x 10" | A= (—1.146£0.421) x 107° Fig. 1
HIV A=(-0.22340.024) x 107° | x> =1.6x10° | A= (—-0.433+0.338) x 107° Fig. 2
Influenza A= (—-1.80240.093) x 107° | x> =4.0 x 10'° | A= (—1.725+1.245) x 107° Fig. 3
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Fig. 3. Information entropy of influenza virus re-

lated to the number of mutations, based on the
NCBI database, with boxes closing on the first and
third quantile and both the mean and the median
marked inside of them. Outer whiskers symbolize
furthest away value that is within 1.5 length of a
box away from it. Visible points mark outliers that
are not within those bounds.

So, deS < —d;S < 0, which is consistent with
the Prigogine’s and Onsager’s theory of the non-
equilibrium thermodynamics [8-12]. Thus, the en-
tropy decrease of an evolving system, like a virus, is
something natural (assuming that the nucleotide se-
quence information entropy is representative of the
entropy in general).

4. Discussion

The second law of thermodynamics describes the
tendency of a thermodynamic system to increase its
entropy until it reaches a maximum at equilibrium
for all isolated systems [13]. It is important to note
that the change in entropy for equilibrium systems
is calculated as the difference in entropy between
two equilibrium states. This change can occur both
in reversible processes (i.e., those that can proceed
in the opposite direction, where dS = d@Q/T, and
the entropy of the system and the surroundings re-
mains constant) and irreversible processes (where
dS > dQ/T, and the entropy of the system and
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the surroundings increases) [12]. However, for non-
equilibrium state of the system, its entropy can lo-
cally decrease, as has been successfully explained
by Prigogine and Onsager [9-12], especially for liv-
ing things. Viruses are a very special case of such a
system: it is a self-organized structure, but the evo-
lution processes are narrowed mostly to virus—host
interactions.

The modern non-equilibrium thermodynamics
exceeded its second law. It allows us to analyze
different complex processes like the system multi-
plication [14], dissipative adaptation in driven self-
assembly [15], or the adaptive evolution of complex
systems [16]. All this make the second law of ther-
modynamics a much more useful tool than it was
used in the past [8]. This can be applied to analyze
the evolution of viruses as well.

To analyze this problem, the simple Shannon
information entropy of the sequence of DNA nu-
cleotide symbols was used. We are aware, however,
that the Shannon entropy defined in this way is a
basic measure of complexity that can be used to es-
timate the viral diversity and the existence of its
bias. But anyway, it was used in other viral stud-
ies as well [1-3, 17], so one can assume that this
method is simple but accurate. Please note also that
the main aim of the presented paper is to show the
preliminary results of our studies on the evolution
of three selected viruses. These are, in our opinion,
very promising and indicate the need to verify other
methods as well.

The presented study shows that the viruses’ in-
formation entropy reduction is constant but nega-
tive, i.e., dS = A < 0. The values of the linear
slope, A, are always negative and statistically signif-
icant, see Table I. This seems to be completely nat-
ural due to non-equilibrium thermodynamics. This
was originally confirmed by Melvin Vopson and col-
leagues [1-3], but for a much more limited amount
of data for the SARS-CoV-2 virus only. Therefore,
the presented analysis is a significant extension of
Vopson’s findings with deeper thermodynamic ex-
planations.

Usually, far-from-equilibrium evolutionary sys-
tems reach their stationary states, in which the
entropy change is zero, dS = 0 [10, 11]. This
was not observed for three analyzed viruses,
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namely SARS-CoV-2 (which is responsible for the
COVID-19 disease), HIV (which is responsible for
the AIDS disease), and influenza (which is respon-
sible for the flu). It should be noted that histori-
cally, the evolution of the influenza virus is much
longer than the evolution of the HIV virus. Analog-
ically, the evolution of HIV is longer than that of
the SARS-CoV-2 virus, which is the youngest virus
among those three cases. However, we cannot see
these evolutionary (time) differences when looking
at the entropy reductions (A) related to the num-
ber of mutations. One can expect that the oldest
virus would have A close to zero, while the youngest
virus would have a much stronger A. But looking
at Table I, one can observe relatively different situ-
ation, i.e., that the absolute A value is the highest
for influenza and the lowest for HIV. Therefore, the
hypothesis that time of evolution makes A — 0 can-
not be true in this specific case.

One has to note, however, that only for the SARS-
CoV-2 virus we have full genetic information, be-
cause this virus (and its mutations) was sequenced
from the very beginning. This is not the case for
HIV and influenza, which infected humanity before
DNA sequencing was discovered. Therefore, this can
create a potential bias, which strongly changes re-
sults from Table I. The only way is to continue the
entropic observation of these viruses and include
other types of them.

A more probable explanation is that viruses, as a
quasi-living and time-discrete systems, cannot reach
their stable stationary state. Viruses are unstable
by nature, always mutate and evolve in relatively
cyclic way. Those mutations generate fluctuations
that are responsible for a globally constant entropy
production, according to the fluctuation—dissipation
theorem. However, it should be noted that this the-
orem is suitable for systems close to thermodynamic
equilibrium. In our case, viruses can be treated as
systems far from equilibrium, and the fluctuation
theorem may be discussed in more detail [18]. This
hypothesis, however, requires further studies.

5. Conclusions

The presented analysis fully confirmed the re-
sults of Vopson and his colleagues [1-3]. The infor-
mation entropy of nucleotides decreases when the
number of mutations increases and this is observed
for three independent viruses: SARS-CoV-2, HIV,
and influenza. This is consistent with the theories
of Prigogine and Onsager, where the self-adapting
dissipative systems, far from thermodynamic equi-
librium, reduce their entropy values. The reduction
of virus information entropy is purely linear, which
means that all three viruses did not reach their
stationary states. This indicates that, in the case
of viruses as well, one can refer to complex sys-
tems that are non-stationary and that reduce their
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entropy at the cost of an increase in the entropy of
their environment. The decreasing entropy of such a
system leads to the possibility of self-organisation.
However, it was impossible to determine whether a
relatively young virus, like SARS-CoV-2, has higher
entropy decrease than much older ones (HIV, in-
fluenza), or not. In our analysis, no stabilization of
the entropy decrease at some minimal value was ob-
served; but due to the lack of genetic information
about the HIV and influenza first mutations (a long
time ago), this comparison is now practically im-
possible. The presented analysis, however, can help
in better prognosis of viruses’ mutation directions,
which can be potentially helpful for medicine and
society.

Appendix:
Robust Bayesian regression method

As a result of the conducted analyses, we ex-
pect a large number of points significantly deviating
from local maxima both on the entropy axis and the
number of mutations. This may affect the reliabil-
ity of the fits obtained by the classical least squares
method. To ensure the correctness of global trend
results, it was decided to use the Bayesian method,
which effectively deals with the problem of outliers
and a significant spread of the analyzed data. The
algorithm’s operation scheme is described below [7]:

e Acquiring experimental data;

e Selecting the fitting model function T;(z;)
(e.g., polynomial), with initially established
parameters \ and variable z (for linear fitting
Ti(zi) = M+ Ao xy);

e Proposing initial parameter values;

e Creating equations for minimizing function
variability based on point statistical weights
g;, taking into account the discrepancy be-
tween experimental and theoretical data,
R; = T; — y;, where T;(x;) represents the pro-
posed fitting model function;

e Obtaining new values A’ from these equations;

e Comparing the discrepancies of A and )\ val-

ues with the accuracy-defining parameter e,
suggesting that discrepancies of one order of
magnitude are smaller than a significant digits
of \;

Obtaining the result or creating new equa-
tions (i.e., entering next iteration).

The statistical weight function of a point is defined
as

R2

1 o2

‘ exp ( 5 > -1
203,

where og; denotes the original uncertainty of the
i-th point. More information about this method can
be found in literature [7].
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