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Finding analytic functions capable of representing various potential curves for diatomic molecules is
one of the important problems in spectroscopy. The ability to properly represent the form of the
potential curve at large internuclear distances is particularly valuable. In this paper, we study the
extrapolation properties of the Chebyshev polynomial expansion, reported by V.V. Meshkov and co-
authors in J. Chem. Phys. 140, 064315 (2014). Among its many useful features, this potential form
has a built-in asymptote, U∞ − C6/R

6 − C8/R
8 − . . . , so it is plausible to expect that the dispersion

coe�cients can be obtained by �tting the Chebyshev polynomial expansion form to the experimental
data.
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1. Introduction

The potential energy curve is an important part
of physical problems, the solution of which can
be reduced to the one-dimensional Schrödinger
equation. Such are the energy levels of diatomic
molecules, treated within the Born�Oppenheimer
approximation. Very often this approximation is
well justi�ed (even in high-resolution studies) for
isolated electronic states, whose potential curves
(PECs) are energetically separated and do not
cross. But even in the case of potential curves cross-
ing, the energy levels can be modeled by a set of cou-
pled Schrödinger equations, where the zero-order
Born�Oppenheimer PECs play the same important
role.
Being an unobservable object, the PEC can not

be measured experimentally. It can be calculated
by solving the multidimensional Schrödinger equa-
tion (SE) for electrons by �xed nuclei, but this ap-
proach can very rarely reach experimental accuracy
despite the tremendous improvement in modern
ab initio calculations. A more accurate approach is
to treat the PEC as an empirical object and to �t
it to the experimental data � the so-called inverse
problem. Before the widely available powerful com-
puters, this problem was solved analytically within
a semi-classical approximation by Rydberg, Klein,
and Rees [1�3]. The solution, the so-called RKR
curve, is obtained in a point-wise form (Ri, Ui),
where the highest energy Umax is equal to the high-
est observed level energy. It is beyond the scope
of the present paper to review all the properties of

the RKR potentials; it is su�cient to say that al-
though being moderately accurate (compared to ab
initio curves), these potentials lack any extrapola-
tion properties. After the pioneering works of Kos-
man and Hinze [4] and Vidal and Scheingraber [5],
a fully quantum mechanical method of solving the
inverse problem was introduced � the inverted per-
turbation approach (IPA). Since then, it has been
successfully implemented in many computer rou-
tines [6�12]. The IPA potentials are by their na-
ture accurate, i.e., through the radial SE, they re-
produce the experimental data within their uncer-
tainty. However, the problem with extrapolation
properties is not solved automatically by the IPA,
because in this method only agreement between ex-
periment and calculated energies is searched. As a
rule of thumb, the empirical IPA curve is accurate
within the region covered by the experimental data
(see Fig. 1).
To speak about extrapolation properties of a

PEC, it is necessary to search for an analytic func-
tion of R, U(R,a), parametrized by a set of pa-
rameters a. Within the inverse problem, a are �t-
ted based on experimental information about only
part of the PEC (Fig. 1). We speak about good
extrapolation properties of a PEC, when a can be
�xed from a limited data set, and the energy lev-
els outside this set can be accurately predicted by
the �tted parameters. Unfortunately, accurate ana-
lytic model U(R,a) for diatomic molecules, based
on general physical considerations, does not ex-
ist. There are simple models, like the Morse and
Lenard�Jones functions, which are parameterized
with a few parameters. These parameters can be
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Fig. 1. A scheme of a general potential curve for
better understanding of some concepts in this pa-
per. With red lines, experimentally levels are shown
and they de�ne the part of the PEC, covered by the
following data: [Rmin, Rmax] � the region of inter-
nuclear distances and [Umin, Umax] � the region in
energies. The Le Roy radius RLR is shown in blue,
and it marks the transition between the short- and
the long-range of the potential curve.

�tted from a very small set of experimental data.
Still, these models are not accurate, they are not
�exible enough to be appropriate even for sim-
ple, single-minimum PECs, so their extrapolation
properties in most cases are irrelevant. Another
extreme are the point-wise cubic-spline potentials
(Ri, Ui) [6], where Ui are the �tted parameters. This
form is very �exible. It can be used to model not
only �regular� single-well PECs [13], but also those
with two minima [14], shelf-regions [15], and even
more irregular shapes [16]. However, the uncertainty
of the parameters Ui that are outside the experi-
mental data increases with energy separation. So,
although accurate, this representation cannot pre-
dict energy levels very far from the data set used.
Only for a very weakly interacting pair of atoms

one can write a simple analytic expression based on
the dispersion coe�cients Ck [17, 18],

ULR(R) = U∞ −
∑

k=6,8,...

Ck

Rk
. (1)

So, when constructing analytic models with good
extrapolation properties, it is desirable to require
that they tend to (1) at large internuclear distances.
Of course, these properties will only be useful when
the experimental data reach the so-called �long-
range� region, where (1) becomes valid, so that one
can determine the parameters of ULR. No strict def-
inition can be given, but it is estimated to be the
region outside the so-called Le Roy radius RLR [18].
The long-range expansion (1) can be attached in
a piece-wise manner to existing potential forms, like

in [7, 13]. There, for R < RLR a short-range model is
used, while for R ≥ RLR � equation (1). Of course,
one may require the transition to be continuous
and smooth up to some derivative. Alternatively,
one may search for a single potential function, such
that
U(R,a)

R→∞−−−−→ ULR(R). (2)

Such forms are, for example, the Morse�Lenard�
Jones (MLJ) [6], Morse-long-range (MLR) [19, 20],
and Chebyshev polynomial expansion (CPE) [10]
potentials. However, having proper asymptotic be-
havior is not su�cient for the potential form to have
good extrapolation properties. This can be under-
stood from the following qualitative considerations.
The gradual transition between short- and long-
range parts introduces correlations between U∞,
Ck, and the rest of the parameters. If the experi-
mental data only reaches the transition region, these
correlations may increase the uncertainties of the
long-range parameters (thus leading to worse ex-
trapolation). Pure long-range parameters may be
�tted only if the experimental data goes deeply into
the long-range region. So, the way analytic poten-
tial approaches (1) is also important. If it happens
too slowly (for R ≫ RLR), one would need data
very close to the dissociation limit to �t the proper
long-range parameters, but in such cases, the ex-
trapolations may not be necessary anymore. If the
transition happens for R ≪ RLR, such potentials
most likely will not be realistic and �exible enough
(like the Lenard�Jones form).
In our recent paper, we studied the extrapola-

tion properties of the MLR potential [21]. For given
set of experimental data (about 3500 frequencies of
laser-induced lines to the ground X state of Ca2),
we constructed various types of MLR potentials
that di�er in the number of short-range parameters
and in various �xed parameters (details in [21]). It
turned out that while the value of the dissociation
limit U∞ may be �xed quite tightly, the leading dis-
persion coe�cient C6 may be determined only when
near asymptotic levels (v′′max = 38) are included in
the data set, and even then its uncertainty is com-
parable with the ab initio calculations (of the order
of few percent). The uncertainties in C8 and C10

are larger. When the near asymptotic levels were
gradually excluded from the �tted data set, the rel-
ative uncertainty of C6 very soon exceeded 100%
(v′′max = 30).
In this paper, we are going to examine the ex-

trapolation properties of the CPE potential. The
methodology described in [21] is very time consum-
ing, since it is based on �tting thousands of MLR
potentials to the experimental frequencies. There-
fore, we present a simpler approach here, namely the
CPE form will be �tted to the set of points (Ri, Ui)
of the same X state potential in Ca2 as in [13]. We
think this is a more e�cient way to start the analy-
ses and to draw some important conclusions before
the whole machinery from [21] is applied.
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2. Chebyshev polynomial expansion

potential

In the original paper [10], the CPE potential is
de�ned such that it approaches zero as R → ∞.
Here, we adopted other traditional convention in
spectroscopy, namely U(Re) = 0, so to the original
de�nition we have added the energy at the asymp-
tote Uinf as follows

U(R) = Uinf +

N∑
k=0

ckTk(yp)

1 +

(
R

Rref

)n , (3)

where

yp =
Rp −Rp

ref

Rp +Rp
ref − 2Rp

min

. (4)

The parameters Rref , Rmin, n, and p are �xed,
Tk are Chebyshev polynomials of the �rst kind. The
�tted parameters are Uinf and ck. In [10], the au-
thors advise Rref to be �xed close the equilibrium
distance and Rmin to be the smallest distance where
the potential is intended to be used. In the original
paper, it is shown that when p = 2 and n = 6,
the CPE form asymptotically transforms into (1),
where the dispersion coe�cients are combinations
of ck,

C6 = −R6
ref

N∑
k=0

ck, (5)

C8 = 2(R2
ref −R2

min)R
6
ref

N∑
k=0

k2ck. (6)

A similar expression exists for C10 in [10], how-
ever, the signs of long-range coe�cients are opposite
there, because in the de�nition of ULR(R), they ap-
pear with positive signs. In the same paper, the au-
thors demonstrate a �t to the experimental energy
levels of the Be2 ground state. There, (5) and (6)
were used to limit the variation of ck by constrain-
ing the dispersion coe�cients close to their ab initio
values. This is always a winning strategy when re-
liable theoretical calculations exist. In this study,
however, we will study unconstrained �ts of all ck
and will examine whether (5) and (6) can converge
to reasonable values for C6 and C8. In other words,
we will test whether the build-in asymptotic behav-
ior in the CPE may be used to determine C6, C8,
and Uinf .

3. Methodology

As an input data we use an equidistant set of 200
points (3.6 ≤ R ≤ 25 Å) generated from the point-
wise potential for the Ca2 X state [13]. The number
of points should be large enough to correctly repre-
sent the shape of the potential, both in short- and

TABLE I

Values for Uinf [cm−1] and their uncertainties, av-
eraged over the successful �ts. The �true� value
from [13] is 1102.06(1) cm−1.

N
R ∈ [3.6, 10]

[Å]
R ∈ [3.6, 15]

[Å]
R ∈ [3.6, 21]

[Å]

10 1102.40(120) 1102.30(8) 1102.13(3)
11 1103.40(140) 1102.24(7) 1102.11(3)
12 1104.10(200) 1102.17(10) 1102.08(3)
13 1102.80(330) 1102.07(15) 1102.06(2)
14 1102.20(430) 1102.08(14) 1102.06(3)
15 1102.08(291) 1102.09(21) 1102.06(3)

the long-range regions. Points from the repulsive
branch (R smaller than 3.6 Å) are intentionally not
included, because their values are much less certain,
and we want to avoid the results from the present
test to be in�uenced by them. The original poten-
tial consists of a short range cubic-spline section
(for R < 9.44 Å) and a pure long range exten-
sion (1) for R ≥ 9.44 Å with Uinf = 1102.06 cm−1,
C6 = 1.0023 × 107 Å6/cm, C8 = 3.8 × 108 Å8/cm,
and C10 = 5.1× 109 Å10/cm. This potential is able
to reproduce all experimental data from [13] within
their uncertainty (about 0.01 cm−1). The highest
energy levels have v′′ = 38, and their outermost
classical turning points lie at about 20 Å. The choice
of points re�ects the R values covered by the exper-
imental data, but we believe this does not in�uence
the main conclusions from this study. What is im-
portant is that we are certain of the values of Ui in
the short-range at least to within ±0.05 cm−1 and
we have a pure long-range function beyond 9.44 Å.
In [13], the uncertainties of the �tted long-range
parameters were estimated to be 0.01 cm−1 for Uinf

and 0.033 × 107 Å6/cm for C6. For C8, the uncer-
tainty is about 1× 108 Å8/cm.
The calculated points were �tted by the CPE

form (3) with p = 2, n = 6. The parame-
ters are: N ∈ [10, 15], Rref ∈ [4.0, 4.6] Å, and
Rmin ∈ [2.5, 3.1] Å. In this way, we have ensured
the proper long-range behavior and allowed for rea-
sonably wide variation of the �xed parameters.
For every N , a total of 100 CPE potentials were

�tted by generating random values for Rref and
Rmin within the given intervals. In each �t, the
original data set (Ri, Ui) was modi�ed by adding
to each Ui a random shift with a standard devia-
tion σi = 0.05 cm−1. This way the spread of the
�tted parameters will account for the uncertainties
in Ui. The whole procedure was repeated for three
data sets: R ∈ [3.6, 10] Å, R ∈ [3.6, 15] Å, and
R ∈ [3.6, 21] Å. The �t was considered successful if
the dimensionless standard deviation

σ̄ =

√√√√ 1

m

m∑
i=1

(
U exp
i − Ufit

i

σi

)2

(7)
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TABLE II

Values for C6 × 107 [Å6/cm] and their uncertain-
ties averaged over the successful �ts. The �true� value
from [13] is C6 = 1.003(33)× 107 Å6/cm.

N
R ∈ [3.6, 10]

[Å]
R ∈ [3.6, 15]

[Å]
R ∈ [3.6, 21]

[Å]

10 2.8(15) 2.3(3) 1.7(3)
11 3.4(21) 2.0(4) 1.5(4)
12 6.0(47) 1.5(7) 1.1(5)
13 1.6(80) 0.6(12) 0.8(6)
14 0.5(107) 1.0(14) 0.8(5)
15 0.7(60) 1.0(12) 0.7(7)

did not exceed 1.5. Actually, only when N = 10, the
number of successful �ts was 95�98. For N > 10, all
100 �ts were successful.
The computer routine to realize the above men-

tioned ideas was written in Python. We used the
numpy linalg.svd function to optimize the �tted
parameters in a least-squares-approximation sense.
One of the great advantages of the CPE model is
that it is linear with respect to the �tted param-
eters. Therefore, all �ts converged within few it-
erations. The calculations for one interval (a to-
tal of 500 �ts) took few minutes on a decent
computer.

4. Results

The mean values of the collected Uinf , C6, and
C8 and their standard deviations are summarized
in Tables I�III. Values for C10 were also calculated,
but their uncertainties were so large that we have
omitted them in the tables. In general, the esti-
mated uncertainties grow with the number of ck
parameters � a sign of increasing correlations be-
tween �tted parameters.
The values of the dissociation energy Uinf

(Table I) agree quite well with the original value of
1102.06(1) cm−1. One should keep in mind that for
the �rst interval R ∈ [3.6, 10] Å, only a tiny part
of the �tted points belongs to the long-range re-
gion (R > 9.44 Å). For information, U(R = 10Å) ≈
1088 cm−1 and corresponds to v′′ = 32. When the
�tted interval extends further into the long-range
region, the �tted Uinf approaches the �true� value.
For the third interval, apparently, the correlation
with the ck parameters is almost broken, since the
uncertainty remains independent of the number of
parameters N . However, models with N = 10�12
are not �exible enough and give slightly overesti-
mated predictions.
The situation with the dispersion coe�cients is

quite di�erent. In general, the uncertainties for
C6 and C8 are huge. The values for the leading

TABLE III

Values for C8 × 108 [Å8/cm] and their uncertain-
ties averaged over the successful �ts. The �true� value
from [13] is C8 = 3.8(10)× 108 Å8/cm.

N
R ∈ [3.6, 10]

[Å]
R ∈ [3.6, 15]

[Å]
R ∈ [3.6, 21]

[Å]

10 −51(38) −37(11) −22(10)

11 −75(59) −27(14) −11(15)

12 144(152) −6(27) 4(16)
13 6(268) 30(55) 19(18)
14 36(370) 11(70) 19(27)
15 18(214) 9(117) 21(41)

long-range coe�cient (Table II) seem to have rea-
sonable uncertainties only for R ∈ [3.6, 21] Å.
They are an order of magnitude larger than those
from [13], but a direct comparison is not correct
since there the unceratinty is based on the ex-
perimental errors of the measured line frequencies,
whereas here on the ±0.05 cm−1 uncertainty of the
potential points Ui. The goal of the present study is
not to compare the two models, but to draw general
conclusions of the extrapolation properties of the
CPE form. Contrary to the value of Uinf , we cannot
observe with con�dence that the obtained C6 val-
ues converge to the �true� one when the R-interval
or N is increased. One can see that C6 systemati-
cally decreases with N , so the correlation between
C6 and ck is still strong. It might be broken by even
larger intervals of R, but such cases are beyond the
scope of our study, since we examine the extrapola-
tion properties of CPE, and the interval R > 21 Å
is already outside the experimental data.
It seems to be impossible to obtain a reasonable

value for C8. In [13], its relative uncertainty was also
signi�cantly larger than that of C6. Here, however,
is is almost always larger than 100%. The correla-
tion with C6 from Table II is visible � larger C6

are combined with larger and negative C8.
The simulations show that despite the built-in

long-range form, by �tting the CPE form to data
points which (for R ≥ 9.44 Å) follow exactly the
long-range expression (1), we cannot retrieve the
�true� dispersion coe�cients. To assess where the
long-range expression (1) becomes valid for the CPE
potentials, in Fig. 2 we plotted six of the �tted
CPE potentials (with N = 15, �tted in the inter-
val R ∈ [3.6, 15] Å) together with the long-range
potentials (1) with parameters C6, C8, and C10 cal-
culated from the �tted ck as shown in [10] and Uinf

from the �t. It is clear that the CPE potentials in-
deed converge to (1), but this happens at too large
internuclear distances.
We also performed calculations with

0.01 cm−1 noise on data points in the largest
interval R ∈ [3.6, 21] Å. This corresponds to a
very optimistic estimation of the accuracy of the
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Fig. 2. Fitted CPE potentials with 15 coe�cients ck (blue line) compared with the long-range part (1), where
dispersion coe�cients are calculated from the �tted ck values according to [10].

experimental points, especially for larger R. As ex-
pected, the values for Uinf for N = 13�16 be-
come 1102.06(1) cm−1, which is in excellent agree-
ment with [13]. However, for C6 the calculations
led to values in the interval (0.7(3)�0.8(2)) ×
107 Å6/cm. These results are still in agreement
with [13], but systematically lower. The results
for C8 (20(9)�25(14))× 108 Å8/cm � higher than
in [13] � are also expected to compensate for the
smaller C6.

5. Conclusions

To determine the long-range coe�cients from a
limited range of internuclear distances, one de�-
nitely needs data at large R, where only the lead-
ing term dominates the PECs. This will allow to
�x its value and, as a consequence, the values of
the higher power coe�cients. It seems to us that
in the case of CPE, the experimental data did not
cover large enough R-range for this to happen. Of
course, it is possible to �x the value of C6 and/or
C8 according to the theoretical predictions, which
are usually accurate within a few percent (at least
for C6). This will immediately improve the values of
the other �tted coe�cients. A similar approach was
adopted in the original work [10]. We believe that
using the theoretical dispersion coe�cients is always
a good starting point, unless detailed analyses show
that they can be improved by �ts of experimental
data. Based on the presented simulations, the CPE
form cannot be used in such analyses, because the
long-range form is achieved at too large R.
Actually, there are few examples in the literature

where dispersion coe�cients have been determined
purely experimentally. None of them, to our best
knowledge, uses a single analytic potential function
with built-in long-range behavior. At the moment,

the MLR function [19] seems to be the most suit-
able [21], but there is still room for improvement.
Based on our experience so far, we think that the de-
sired analytic form should be simple, should ensure
smooth transition to the long-range expression at
distances about the Le Roy radius [18], and all other
contributions to the potential should approach zero
beyond RLR exponentially, as the asymptotic ex-
pression for the exchange energy suggests [22].
Of course, depending on the accuracy of the

experimental data, the simple form (1) may
by enriched with higher power terms, exchange
terms [13, 22], or damping functions [23], to ac-
count for the part of the potential not entirely
in the pure long-range region. For data very close
to the asymptote (very large R), one may need
to include retardation corrections [24]. However,
adding more parameters to the model can in-
crease the correlations between them. Therefore a
good practice is to extend the model only when
the experimental data are sensitive to the new
parameters.
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