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Many theoretical models depicting excitable cells stem from the Hodgkin�Huxley model. Over the past
few decades, quantitative studies on its electrophysiology and nonlinear dynamics have yielded consid-
erable progress. In this study, we employ a landscape and �ux theory to statistically explore the global
dynamic characteristics of the classical Hodgkin�Huxley neuron. We quantify the underlying landscape
and �ux to address global stability. Our results provide an intuitive understanding of a global picture
of the dynamic system. By quantifying the average curl �ux, we reveal that it serves as the dynam-
ical origin for the emergence of a new state and a dynamical indicator for bifurcation. In addition,
we quantitatively calculate the entropy production, identifying it as an essential thermodynamic in-
dicator for bifurcation. The time asymmetry of the cross-correlations can be directly computed from
existing experimental time series, o�ering a practical indicator for bifurcation analysis. This paper
presents our �ndings and their implications for a better understanding of the behavior of excitable
cells.

topics: non-equilibrium Hodgkin�Huxley (HH) neuron dynamics, landscape, curl �ux, critical transition

1. Introduction

The pioneering work of Hodgkin and Huxley
laid the foundation for unraveling the mysteries of
neuron excitability, providing a fundamental the-
oretical framework for investigating the electrical
properties of neurons [1�6]. Since then, research
in this �eld has expanded to explore the intrica-
cies of neuron behavior and the mechanisms un-
derlying neuronal activity. One aspect of this re-
search was the investigation of local bistability,
which has been extensively studied through the
combined use of numerical calculations and bifur-
cation theory. Speci�cally, the condition that the
direct current (DC) I is the only bifurcation pa-
rameter has been explored in detail [7, 8]. In addi-
tion, the introduction of the e�ective calcium con-
centration to modify the deterministic equations

allowed the exploration of bifurcation diagrams in
the [k+]�V plane ([k+] representing both extracel-
lular and intracellular potassium concentration [9]).
Recent research has focused on the study of a two-
bifurcation-parameter system [10], as well as the
exploration of multiparameter bifurcation [11]. Of
particular interest is the coexistence of stable qui-
escence and stable limit cycles localized in speci�c
ranges of bifurcation parameters, which has led to
the use of statistical methods to describe the nonlin-
ear dynamics of Hodgkin�Huxley neurons [12, 13].
Overall, the work of Hodgkin and Huxley has paved
the way for continued investigation into the complex
dynamics of neurons and their underlying mech-
anisms [14]. Besides, the Hodgkin�Huxley (HH)
model describes neurons that exhibit local bista-
bility and undergo a subcritical Hopf bifurcation,
which provides the possibility of state transitions
and forms the basis for the dynamical mechanism of
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bursting oscillations in neurons. One way to achieve
this is by adding stochastic noise [15�18]. Biologi-
cal neurons are constantly exposed to various types
of noise in their environment, and considering the
stochastic oscillations is necessary when studying
their dynamical mechanisms. Although stochastic
dynamics in the HH-model neurons have been par-
tially studied, quantifying and understanding the
physical mechanism of their global behavior to re-
veal the underlying phase transition mechanisms re-
mains challenging.
In this work, we investigate the local bistable

properties of the original four-dimensional
Hodgkin�Huxley equations under the in�uence of
noise. Additionally, we apply the recently developed
theory of landscape and �ux to reveal its stochastic
dynamical mechanisms [19�21]. Given that the
Hodgkin�Huxley neuron model is subject to noise,
the prediction of neuron trajectories becomes par-
tially infeasible. In such scenarios, it becomes more
meaningful to quantitatively assess the statistical
distribution of individual neuron states at di�erent
times and to characterize the overall distribution
within the whole state space. The landscape��ux
framework has been employed in non-equilibrium
systems, o�ering valuable insights into associated
behaviors [22�29]. This framework has proven to
be a useful tool for gaining a deeper understanding
of the dynamics and behavior of such systems.
However, only a limited number of studies have
used this theory to investigate the nonlinear
dynamical mechanisms of individual HH neurons.
Therefore, we explore state transitions using the
topographical structure of the potential landscape
and quantify the probabilistic �ux and entropy
production in the state space. By examining their
relationship with the bifurcation parameters of the
system, we analyze their roles and contributions in
state transitions and the emergence of new states.
We found that average �ux and entropy produc-
tion rate can serve as indicators of bifurcation.
We also calculate di�erences in cross-correlation
functions forward-in-time and backward-in-time
and discuss the observed behaviors and the degree
of time-reversal symmetry breaking. This provides
a practical indicator for bifurcation that can be
directly extracted from experimental time series.
Moreover, we analyze the behavior of the criti-
cal slowing down in bifurcation by investigating
the characteristic decay time of autocorrelation
functions and its correlation near the bifurcation.
By conducting these explorations, we enhance
our comprehension of the nonlinear dynamical
mechanisms exhibited by HH neuron models in
the presence of noise, facilitating quantitative
analysis. This research has substantial implications
for illuminating the behavior of individual neurons
and the overall functionality of the nervous system.
Drawing upon the intricate landscape structure of
its diverse states, we present a fresh perspective on
this fundamental aspect of neuronal excitability.

2. Methods

2.1. Stochastic Hodgkin�Huxley equations

The Hodgkin�Huxley (HH) model has made sub-
stantial contributions to the understanding of neu-
ronal electrophysiology, providing a foundational
framework for studying the electrical properties
of neurons. This model is characterized by a sys-
tem of four nonlinear ordinary di�erential equations
(ODEs). In the real world, neurons are constantly
in�uenced by noise, including external noise (such
as interference signals from the stimulus current)
and internal noise (such as stochasticity in ion chan-
nels). These noises a�ect the activity of neurons,
introducing randomness and uncertainty into the
neuronal system. When investigating neuronal be-
havior and information processing, it is crucial to
take these noise factors into account. Many previous
studies introduced current noise and subunit noise
to an HH neuron [30�32]. Due to ease of implemen-
tation and computational e�ciency, current noise
and subunit noise have become widely adopted as
approximations for modeling stochastic HH dynam-
ics. In our study, we incorporated these two types of
noise into the statistical HH model, which is mathe-
matically represented by a system of four stochastic
nonlinear equations

Cm
dV

dt
= −gK n4(V−VK)− gNa m

3h (V−VNa)

−gL(V−VL) + I + Γ1(x, t),

dm

dt
= αm(V )(1−m)− βm(V )m+ Γ2(x, t),

dh

dt
= αh(V )(1− h)− βh(V )h+ Γ3(x, t),

dn

dt
= αn(V )(1− n)− βn(V )n+ Γ4(x, t). (1)

Here, Γ1(x, t) = AV Γ (x, t), Γ2(x, t) = AmΓ (x, t),
Γ3(x, t) = AhΓ (x, t), Γ4(x, t) = AnΓ (x, t),
AΓ(x,t) = [AV , Am, Ah, An] is the scaling factors
matrix of Gaussian white noise, while Γ represents
Gaussian white noise, which is a type of stochastic
force. In this article, we transformed the third equa-
tion of (1) by multiplying both sides of it by 100,
obtaining the �nal form dh1

dt = αh(V )(100−h1) −
βh(V )h1 + Γ3(x, t) (where h1 = 100h). In (1),
V is the membrane potential, and I is de�ned as
I = Istim/A, denoting the stimulus current applied
per unit area of the cell membrane. The scaling
factor for potassium ion conductance, measured in
mS/cm2, is gK. The variable n is designated as
the activation variable for potassium (K+) chan-
nels, ranging from 0 to 1. This re�ects the probabil-
ity of each subunit in the channel being open. The
model assumes that a potassium channel consists
of four cooperative subunits, fully open only when
all are activated. This assumption is an e�ective
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simpli�cation that proves to be very e�ective in
many scenarios. The equilibrium potential of potas-
sium ions is represented by VK. Then, the term
gK n4(V−VK) naturally depicts the current across
the cell membrane caused by potassium ions. Ac-
cordingly, gNa is the scaling factor for sodium ion
conductance. The gating variables m and h are di-
mensionless and represent the activation variable
and the inactivation variable for sodium channels,
respectively. They also range from 0 to 1 and jointly
represent the opening and inactivation of sodium
channels, a concept validated by further research.
The equilibrium potential of sodium ions is repre-
sented by VNa, and gNa m

3h(V−VNa) is the compo-
nent of the current across the cell membrane caused
by sodium ions. Moreover, the term gL(V−VL) de-
notes additional factors in�uencing the generation
of positive or negative currents across the cell mem-
brane, where gL is the leak conductance � a con-
stant signifying the total conductance of other ions
across the membrane, and VL is the equilibrium po-
tential for the leak current, generally approximating
the resting membrane potential. The capacitance of
the neuronal membrane is represented by Cm.
In the above system of nonlinear ODEs, the quan-

titative description of αx and βx, where x can rep-
resent m, h, or n, takes the form

αm =
αm (V−vm)

1− e−(V−vm)/Kαm
,

βm = βm e−V/Kβm ,

αh = αh e−V/Kαh ,

βh =
βh

1 + e−(V−vh)/Kβh
,

αn =
αn (V−vn)

1− e−(V−vn)/Kαn
, βn = βn e−V/Kβn . (2)

In (1)�(2), αm and βm represent the rates at which
activation of molecules opens or closes sodium ion
channels, respectively. The scaling factors for these
rates are denoted as αm and βm. The equilibrium
potentials for activation and inactivation processes
in sodium channels are represented by vm and
vh, respectively. Similarly, αh and βh denote the
rates at which inactivating molecules switch be-
tween open and closed states in sodium channels,
with associated constants αh and βh. For potassium
ion channels, αn and βn describe the rates of sub-
unit gate transitions, with vn indicating their equi-
librium potential. The constants related to these
rates and transitions in both sodium and potassium
channels are Kαm, Kβm, Kαh, Kβh, Kαn, and Kβn.
These parameters collectively de�ne the gating ki-
netics of the ion channels in the model.
Focusing on the sodium and potassium ion chan-

nel dynamics in neurons, the HH model accu-
rately simulates Na+ and K+ ion �ows during
action potentials and response to stimulus varia-
tions, elucidating action potential frequency modu-
lation. The HH model quantitatively explains action

potential generation and phenomena such as re-
fractory periods and anode break e�ects. Although
the HH model provides an idealized representation
of neuronal electrophysiological activity, and HH-
like models based on ion channels can capture var-
ious aspects of neuronal characteristics, it is evi-
dent that each neural system operates as a non-
equilibrium system that is constantly in�uenced by
input and stochastic disturbances. These random
noise sources, originating from the environment and
inherent system dynamics, play a crucial role in neu-
rophysiology [33, 34]. Therefore, analyzing stochas-
tic dynamic phenomena in neuronal models holds
the utmost signi�cance. In our investigation, we
augment the original system of nonlinear ODEs by
adding Gaussian white noise terms, resulting in a
series of Langevin equations (LEs) [15].

2.2. Landscape and �ux theory

When a biological system is functioning, it is in-
evitably subjected to intrinsic noise, which is in-
herent to any system operating above absolute zero
temperature. There are also external �uctuations
arising from the environment. To simplify our anal-
ysis, we use Gaussian white noise as a means of
simulating environmental e�ects. Consequently, the
inclusion of noise modi�es the dynamics described
by dx

dt = F (x) + Γ (x, t), where Γ (x, t) is Gaus-
sian white noise. Here, F (x) represents the driving
force of the system, which corresponds to the deter-
ministic HH equations described in (9) in the Ap-
pendix. The vector variable x represents the state
of the studied neuron in the phase space, speci�-
cally characterized by (V,m, h, n). The amplitude of
the noise can be determined by ⟨Γ (x, t)Γ (x, t′)⟩ =
2D(x) δ(t−t′) = 2DG(x) δ(t−t′), where D is the in-
tensity of the noise and G(x) is a di�usion matrix.
Deterministic dynamical equations change into a se-
ries of nonlinear Langevin equations. Correspond-
ingly, the main characteristics we explore will be
investigated using non-equilibrium statistical con-
cepts and methods, rather than chasing stochas-
tic trajectories that stem from diverse initial condi-
tions. The Langevin equation (LE) investigates the
statistical characteristics of the system's trajecto-
ries. We can equivalently transform it to the prob-
ability distribution of the entire state space at a
given time. It allows us to study the Fokker�Planck
di�usion equations that can be deduced from LEs
to explore such open systems [22, 35, 36], namely

∂P (x, t)

∂t
= −

∑
i

∂[Fi(x)P (x, t)]

∂xi

+
∑

i

∑
j

∂2[Dij(x)P (x, t)]

∂xi∂xj
. (3)

Here, Dij(x) = DGij(x). The detailed deriva-
tion is provided in the Appendix. It is notewor-
thy that, due to the application of additive and
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isotropic Gaussian white noise, for the sake of the-
oretical convenience, we consider the di�usion ma-
trix G(x) to be an identity matrix. By imposing
appropriate natural boundary conditions and ensur-
ing su�cient decay in the outer region, we can ex-
plore the asymptotic behavior of the Fokker�Planck
equation and derive the corresponding steady-state
probability distribution. We use Pss to represent
the aforementioned steady-state probability distri-
bution (small �ss� denotes statistical steady states).
Now, we de�ne a probabilistic �ux J that satis�es
J = FP − ∇ · (DGP ). Combining this with (3),
we obtain the probability conservation form of the

Fokker�Planck equation ∂P (x,t)
∂t + ∇ · J(x, t) = 0.

When the system reaches a steady state after a su�-
ciently long time under appropriate boundary con-
ditions, the probability density no longer changes
with time. Then, we can easily infer that the diver-
gence of the probabilistic �ux vanishes, i.e.,∇·Jss =
0. Since we apply additive Gaussian white noise to
the system to explore its global stability, the di�u-
sion matrix D is a constant matrix, indicating that
the divergence of D is zero (∇ ·D(x) = 0). We can
then deduce the driving force of the system accord-
ingly as

F =
Jss +D(∇Pss)

Pss
=

Jss

Pss
−D∇U, (4)

where ∇U represents the gradient of the potential
function U associated with the system. By analogy
to the Boltzmann law in equilibrium systems, we
de�ne the population probability potential U as

U = − ln
(
Pss

)
. (5)

The newly de�ned non-equilibrium potential U re-
�ecting the weight of the states o�ers a clear
physical interpretation and enables the evaluation
of global stability and behavioral characteristics.
The landscape, which corresponds to the three-
dimensional (3D) topographical structure of U ,
plays a crucial role in landscape and �ux theory.
The presence of basins and barriers within this
landscape allows for a comprehensive depiction of
global stability and the probability distribution of
all states. Based on the deductions mentioned ear-
lier, we successfully decompose the system's driving
force into two components. According to (4), the
�rst component is associated with the steady-state
probabilistic �ux Jss and the density of the proba-
bility distribution Pss, while the second component
is related to the gradient of the potential landscape
U . In a steady state, the probabilistic �ux has zero
divergences, indicating two representing scenarios:
(i) when the net input or output is zero, the system
maintains detailed balance, and (ii) when the �ux
is non-zero, but with zero divergences, the system
experiences a non-equilibrium state with broken de-
tailed balance. Non-zero, divergence-free �ux is a
hallmark of non-equilibrium systems [20]. It can be
viewed as a rotational and curl �ux. The dynam-
ics of non-equilibrium systems are co-determined
by both the non-equilibrium potential and the curl

�ux, resembling the motion of electrons in an elec-
tric �eld (characterized by the potential gradient)
and a magnetic �eld (re�ected by the curl �ux).

2.3. Non-equilibrium thermodynamics, average
probability �ux, and dissipative-dependent EPR

For non-equilibrium systems, an intriguing ques-
tion is the speci�c degree of departure from equilib-
rium. This can be characterized using several spe-
ci�c quantities. As discussed earlier, non-zero yet
divergence-free rotational �ux serves as a distinctive
signature of non-equilibrium systems, and substan-
tial evidence suggests its intimate correlation with
the existence of non-equilibrium energy pumps.
This �ux plays a pivotal role in maintaining the
stability of the limit cycle oscillations within non-
equilibrium systems [19�26, 37]. Inspired by this,
we can de�ne an average probabilistic �ux Jav =∫

dx |Jss|∫
dx

to quantify the global non-equilibrium ex-

tent of a system. Moreover, in non-equilibrium sys-
tems, energy consumption and dissipation are in-
evitable. The energy dissipation, which is associated
with the entropy production rate in the steady state
of the non-equilibrium system, serves as a global
physical characteristic for measuring the system's
departure from equilibrium. For non-equilibrium
systems, the change in entropy over time can be
divided into two parts, i.e.,

dS

dt
= − d

dt

∫
dx P (x, t) ln

(
P (x, t)

)
=∫

dx (J ·(DG)−1·J)
P

−
∫
dx (J ·(DG)−1·Feff )=

S′
t − S′

e, (6)

where the entropy production rate (EPR) S′
t =∫

dx (J·(DG)−1·J)
P is non-negative. It represents

the total entropy change in the system and
its surroundings and always obeys the second
law of thermodynamics. On the other hand, the
heat dissipation rate or the entropy �ow rate
S′
e =

∫
dx (J ·(DG)−1 · (F −D∇ ·G)) can be posi-

tive or negative, taking into account the energy and
information �ow between the system and its envi-
ronment, leading to an increase or decrease in the
system's entropy, respectively. Hence, the entropy
of a non-equilibrium system does not necessarily al-
ways increase or maximize, while the total entropy
production is always positive. We de�ne the e�ec-
tive force Feff as Feff = F−D∇·G [20�22, 25, 38].

2.4. Time irreversibility of the cross-correlation
function and critical slowing down

The average di�erence between the forward-in-
time and backward-in-time cross-correlation of two
random sequences enables us to evaluate the extent
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of detailed balance breaking and quantify the time
irreversibility of a non-equilibrium system [26, 37].
It can be calculated as

∆CC =

√
1

tf

∫ tf

0

dτ
(
CXY (τ)−CY X(τ)

)2

, (7)

where CXY (τ) and CY X(τ) present the forward-
in-time cross-correlation function and backward-in-
time cross-correlation function, respectively. Here,
CXY (τ) = ⟨X(0)Y (τ)⟩ =

∑
XiY jP ss

i Pij(τ)
(i, j are used to denote di�erent states); P ss

i is
the value of steady-state probability at state i;
Pij(τ) represents the probability of the system
transitioning from state i to state j within a
time interval τ . Additionally, CXY (τ)−CY X(τ) =
XAY B(P ss

A PAB(τ)−P ss
B PBA(τ)) = XAY BJss

ABτ ,
(when τ is small) [24, 26, 35]. Evidently, the dispar-
ity between the forward-in-time and backward-in-
time cross-correlation functions is intricately linked
to the level of the steady-state probabilistic �ux or
the degree of detailed balance breaking.
Neurons can demonstrate abrupt transitions or

systemic shifts, such as the shift from a resting state
to the �ring of an action potential. This occurrence
is commonly referred to as a critical transition. As
the system approaches a critical transition point,
the internal dynamics would undergo a state tran-
sition. During this phase, alterations in the auto-
correlation function often reveal notable features,
such as increased and prolonged temporal correla-
tions. This insight encourages the use of the auto-
correlation function analysis, o�ering clues into the
internal dynamics as the system approaches a crit-
ical state. This approach serves as a quantitative
measure of the critical slowing down behavior.

3. Results and discussion

3.1. Linear stability analysis of the
Hodgkin�Huxley model

To investigate the di�erent states of a single neu-
ron, we start with linear stability analysis and use
MATLAB to �nd numerical solutions. This anal-
ysis helps us predict the long-term behavior and
stability of the system under di�erent parameter
conditions. Explanations and default values of con-
stants in the HH equations, unless otherwise speci-
�ed, are provided in Table I [5, 39].
Linear stability analysis is a method used to

study the stability of deterministic dynamic systems
described by di�erential or di�erence equations. Nu-
merous researchers have extensively explored the
linear stability analysis of the HH model [7, 40].
Here, we summarize the key �ndings of the linear
stability analysis of the HH model.
The basic steps involve �nding equilibrium

points, linearizing dynamic equations, calculating
the Jacobian matrix, and determining eigenvalues

to assess stability. The Jacobi matrix is a matrix of
partial derivatives that describes the linearized dy-
namics of the model around an equilibrium point.
During linear stability analysis, the stability of the
equilibrium points is determined by examining the
real and imaginary eigenvalue parts of that the Ja-
cobi matrix. If all eigenvalues have negative real
parts, the equilibrium point is stable. If one or more
eigenvalues have positive real parts, the equilibrium
point is unstable. If there are eigenvalues with zero
real parts and non-zero imaginary parts, further
analysis may be required. Such equilibrium points
are considered non-hyperbolic, and the geometric
structure near these points may change. This be-
havior is known as a bifurcation at non-hyperbolic
point. The Jacobian matrix of the HH model (see
(10) and (11) in Appendix) can be represented as

JJacobi =


∂f1
∂V

∂f1
∂m

∂f1
∂h

∂f1
∂n

λmm′
∞ −λm 0 0

λhh
′
∞ 0 −λh 0

λnn
′
∞ 0 0 −λn

 , (8)

where λx = αx(V )+βx(V ) and x∞ = αx(V )
αx(V )+βx(V ) .

Here, x can be replaced with m, h, n. The de-
tailed derivation can be found in the Appendix.
In Table II, we present the eigenvalues denoted
as λi for i = 1, 2, 3, 4. To investigate the sta-
bility of the system, we apply the linear stabil-
ity analysis method. This analysis identi�es criti-
cal points where the stability of the system exhibits
a qualitative change, known as a bifurcation. We
can determine the system's stability under di�erent
conditions by examining the signs of the corre-
sponding eigenvalues λ. It is observed that when
I < 9.7796 µA/cm2 and I > 154.5266 µA/cm2, the
states of the system are stable. In other words, the
system will remain in its steady state under these
speci�c current conditions.

To gain a comprehensive understanding of the dy-
namic behavior and stability of the HH model, and
to visually illustrate the formation and evolution of
attractors, we employed the MatCont software to
generate a bifurcation diagram with the parameter
I as the bifurcation parameter.

Figure 1a presents a bifurcation diagram with
I as the bifurcation parameter, ranging from I =
−18 µA/cm2 to I = 200 µA/cm2. Solid gray lines
represent stable steady states, corresponding to sta-
ble resting states of neurons in physiology, denoted
as SRS, while dashed gray lines represent unstable
steady states, denoted as URS. As I increases, a
subcritical Hopf bifurcation, denoted as H1, occurs.
Stable limit cycle oscillations are shown by the max-
imum (solid orange line) and minimum (solid yel-
low line) V values, labeled as SLC. Unstable limit
cycle oscillations are also shown by the maximum
(scattered orange dots) and minimum (scattered
yellow dots) V values, labeled as ULC. The second
Hopf bifurcation point is marked as H2. This visual-
ization e�ectively elucidates the system's dynamic
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TABLE I
Explanations and default values of parameters.

Parameters Explanation Default values

Cm neuronal membrane capacitance 1.0 µF/cm2

gNa sodium conductance 120 mS/cm2

gK potassium conductance 36 mS/cm2

gL leak conductance 0.3 mS/cm2

VNa equilibrium potential of sodium ions 115 mV

VK equilibrium potential of potassium ions −12 mV

VL reversal potential for the leak current 10.599 mV

αm
constant related to the transfer rate of activating molecules (closed → open),

denoted as αm

0.1 ms−1

βm
constant related to the transfer rate of activating molecules (open → closed),

denoted as βm

4.0 ms−1

vm equilibrium potential of activating molecules 25.0 mV

Kαm dimensionless constant related to αm 10.0

Kβm dimensionless constant related to βm 8.0

αh
constant related to the transfer rate of inactivating molecules (open → closed),

denoted as αh

0.07 ms−1

βh
constant related to the transfer rate of inactivating molecules (closed → open),

denoted as βh

1.0ms−1

vh equilibrium potential of inactivating molecules 30.0 mV

Kαh dimensionless constant related to αh 20.0

Kβh dimensionless constant related to βh 10.0

αn
constant related to the transfer rate of each subunit gate (closed → open),

denoted as αn

0.01 ms−1

βn
constant related to the transfer rate of each subunit gate (open → closed),

denoted as βn

0.125 ms−1

vn equilibrium potential of each subunit gate 10.0 mV

Kαn dimensionless constant related to αn 10.0

Kβn dimensionless constant related to βn 80.0

TABLE II
Numerical results for stability analysis.

I V0 m0 h0 n0 λ1 λ2 λ3 λ4

0.0000 0.0000 0.0529 0.5961 0.3177 −4.6753 −0.20 + 0.38i −0.20− 0.38i −0.1207

5.0000 3.2667 0.0772 0.4794 0.3687 −4.5975 −0.10 + 0.52i −0.10− 0.52i −0.1292

9.7796 5.3459 0.0973 0.4062 0.4018 −4.7643 0.5862i −0.5862i −0.1385

120.0000 19.8776 0.3661 0.0886 0.6175 −8.7149 0.15 + 0.97i 0.15− 0.97i −0.2810

154.0000 21.9132 0.4189 0.0706 0.6429 −9.4024 0.0024 + 1.0618i 0.0024− 1.0618i −0.3104

154.5266 21.9419 0.4197 0.0704 0.6432 −9.4121 1.0629i −1.0629i −0.3109

155.0000 21.9677 0.4204 0.0702 0.6436 −9.4208 0.0021 + 1.0640i 0.0021− 1.0640i −0.3113

180.0000 23.2537 0.4544 0.0609 0.6588 −9.8554 −0.11 + 1.11i −0.11− 1.11i −0.3310

behavior as the parameter I varies, including the
presence of stable and unstable periodic solutions
and their relationship to stable and unstable steady
states.
At the top corner of panel (a), the nested inset

plot depicts the phase states of the system for dif-
ferent bifurcation parameter ranges. The dark blue
vertical line marks the boundary between stable
steady states and stable limit cycles, labeled I0. The

purple vertical line represents the I value of H1,
denoted as I1, while the red vertical line, marked
as I2, indicates the boundary between stable limit
cycles and stable resting states at H2. Through
calculation, we obtain I0 = 6.2645 µA/cm2, I1 =
9.7796 µA/cm2, and I2 = 154.5266 µA/cm2.
These three vertical dividing lines delineate dis-
tinct states within the system. In Fig. 1a, B repre-
sents the bistable region of the classical HH model,

107



H. He et al.

Fig. 1. Deterministic bifurcation diagram. (a) Overall bifurcation diagram with I as the bifurcation param-
eter. The solid orange line shows the maximum V value within the stable limit cycle (SLC), while the solid
yellow line shows the minimum V value within SLC. The solid gray line represents a stable resting state,
denoted as SRS. The dashed gray line represents an unstable resting state, denoted as URS. The scattered
orange dots denote the maximum value of V within the unstable limit cycle (ULC), while the scattered yellow
points represent the minimum value of V within ULC. Here, H1 is the �rst Hopf bifurcation point and H2 is
the second Hopf bifurcation point. The axes embedded above are a simpli�ed diagram of the overall bifurcation
plot. The dark blue vertical line is marked as I0, the purple vertical line is marked as I1, and the red vertical
line is marked as I2. MPI signi�es the region I < I0, where neurons are in a stable resting state, while MPII
represents the stable resting state when I > I2. The region between I0 and I1 is denoted as B, indicating the
bistable region where neurons oscillate between SRS and SLC. MLC denotes the parameters region that the
system undergoes a mono-stable limit cycle, which is between I1 and I2. (b) Local dynamical bifurcation detail
illustration of the bistable region in the HH model. The dark blue vertical dashed line indicates the limit point
bifurcation of cycles (LPC) at the boundary, where one stable limit cycle and one unstable limit cycle merge
into a single limit cycle. The coordinate area inserted in the upper right corner is an enlarged illustration of
the yellow rectangular area to the right of the dark blue LPC. It includes a pink vertical dashed line indicating
LPC at the boundary, where two unstable limit cycles merge into one unstable limit cycle, while the blue
vertical dashed line represents the period-doubling bifurcation, labeled PD. The green vertical dashed line
marks another occurrence of LPC. The �uorescent green vertical dashed line represents the Neimark�Sacker
(NS) bifurcation. (c) Dynamical evolution diagram of the HH neuron near H1 without noise. The blue solid
line with arrows indicates the evolution direction of the dynamic state near H1 as I gradually increases, while
the green solid line with arrows represents the dynamic evolution path as I gradually decreases. The solid
gray line represents a stable resting state. The scattered orange dots show the maximum value of V during
oscillations of ULC, providing a simpli�ed representation of di�erent ULC. The solid orange line represents
the maximum value of V during stable limit cycle oscillations, providing a simpli�ed representation of di�erent
SLC. The relative positions of I0 and I1 are marked with dark blue and purple crosses, respectively.
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and MLC signi�es a singular stable limit cycle re-
gion. Additionally, we denote the region I < I0 as
MPI and the region I > I2 as MPII, corresponding
to regions of stable resting states.
Figure 1b provides an enlarged view of the dashed

rectangular region in panel (a), including a further
magni�ed illustration that illustrates multiple bi-
furcations from stable resting states to stable limit
cycles. Discrete orange and yellow dots represent,
respectively, the maxima and minima of the unsta-
ble limit cycles, while vertical dashed lines mark the
locations of bifurcations. The limit point bifurca-
tion is a critical phenomenon in nonlinear dynami-
cal systems. It involves the transition of equilibrium
or periodic solutions (limit cycles) from stable to
unstable states, or vice versa. This process can give
rise to new stable solutions or the disappearance
of existing ones. The term �limit point bifurcation
of cycles� (LPC) speci�cally denotes this behavior
in the context of periodic solutions (limit cycles).
The emergence of LPC indicates a change in the
characteristics or numbers of limit cycles. In panel
(b), LPC at I = I0 = 6.2645 µA/cm2 (dark blue
vertical dashed line) indicates the merging of the
stable limit cycle and the unstable limit cycle into
a single limit cycle. LPC at I = 7.9220 µA/cm2

(green vertical dashed line) represents the merging
of a unstable limit cycle with a relatively large am-
plitude with another an unstable limit cycle with
relatively small amplitude into an unstable limit
cycle with an amplitude between the two. LPC at
I = 7.8465 µA/cm2 (pink vertical dashed line) is
similar to LPC at green vertical dashed line, in-
dicating the merging of two unstable limit cycles
into one unstable limit cycle. For simpli�cation, we
will refer to LPCs occurring at di�erent currents by
their colors. For example, LPC corresponding to a
dark blue vertical dashed line is simpli�ed as a dark
blue LPC. PD denotes the period doubling (�ip) bi-
furcation, happening at I = 7.8495 µA/cm2 (blue
vertical dashed line). When switching from the PD
point to another branch, the period of the unsta-
ble limit cycle undergoes a sudden doubling. And
NS, i.e., the Neimark�Sacker (secondary Hopf) bi-
furcation, occurs at I = 8.1882 µA/cm2 (mint green
vertical dashed line) [41, 42]. In the upper right cor-
ner of panel (b), the inserted subplot provides an
enlarged illustration of the yellow rectangular area
to the right of the dark blue LPC. This is to get
a clearer representation of the detailed dynamics
within the interval 7.8 < I < 8.21 µA/cm2 and to
o�er a clearer distinction of bifurcation positions in
this range.
Dynamical evolution trends near H1 are depicted

in panel (c). The solid gray line represents the sta-
ble resting state. The scattered orange dots rep-
resent the maximum values of V during the os-
cillations of the unstable limit cycles, providing a
simpli�ed representation of the di�erent unstable
limit cycles. The solid orange line represents the
maximum values of V during stable limit cycle

oscillations, simplifying the representation of dif-
ferent stable limit cycles. As the bifurcation pa-
rameter I gradually increases from a value be-
low I0 = 6.2645 µA/cm2 and goes across I1 =
9.7796 µA/cm2 (corresponding to the �rst Hopf
bifurcation point H1), the system evolves overall
along the direction of the blue arrow, switches from
the stable resting state represented by the solid gray
line to H1, and then to the unstable limit cycle
indicated by the scattered orange dots, and ulti-
mately reaches the stable limit cycle represented by
the solid orange line. In this process, the Hodgkin�
Huxley neuron undergoes a sequence of bifurca-
tions: from a stable resting state to H1, further to
NS (where I = 8.1882 µA/cm2), then to the pink
LPC, followed by PD (where I = 7.8495 µA/cm2),
and then to the green LPC, further reaching the
dark blue LPC, and eventually entering the stable
limit cycle oscillations. The HH neuron will evolve
in the direction of the green arrow in Fig. 1c, se-
quentially undergoing processes starting from the
stable limit cycle represented by the solid orange
line, to the unstable limit cycle represented by the
scattered orange dots, and eventually reaching the
stable resting state represented by the solid gray
line. During this whole process, a series of bifur-
cations will take place (see Fig. 1b): the system
�rst reaches the dark blue LPC, through PD to
the green LPC, then to the pink LPC, further to
NS, and it eventually reaches a stable resting state.
This explains why, without noise, the system only
reaches limit cycles after passing H1 by gradually
increasing the current I. When I0 < I < I1 is ful-
�lled, a coexistence of SRS and SLC emerges, in-
volving: a large amplitude stable limit cycle, one to
three small-amplitude unstable limit cycles, and a
stable resting state. Particularly, in the region be-
tween pink LPC and the green LPC, where multi-
ple unstable limit cycles appear, we designate it as
the w interval. The complex dynamics within this
interval are key features that distinguish the classic
HH model from a series of simpli�ed HH models,
such as the Morris�Lecar (ML) model [7]. Eventu-
ally, the unstable limit cycle disappears at I1. At
the endpoint zone MPII, a single steady-state so-
lution exists. This result demonstrates that when
the stimulus current is too high, the cell becomes
inactive or dies, illustrating the importance of pa-
rameter regulation for cellular dynamics. The dis-
cussions presented above are conducted under the
conditions of deterministic equations.

3.2. Landscape and �ux of a Hodgkin�Huxley
neuron

We now explore the application of the landscape�
�ux approach to neuronal dynamics by investi-
gating the HH model with Gaussian white noise
(see (1)). When we apply Gaussian white noise
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Fig. 2. The underlying potential landscapes and patterns of curl �ux distribution evolve as the bifurcation
parameter I increases under varying intensities of Gaussian white noise. Values of stimulus current I and noise
intensity D are shown at the top of each panel. Panels (a)�(d) show 3D landscapes under di�erent stimulus
currents and �uctuation strengths. Panels (e)�(h) show 2D dimensional contour plots of the landscapes and
steady-state �uxes under di�erent stimulus currents and �uctuation strengths. In panels (a) and (d), the red
�cross� indicates the single stable attractor corresponding to the deterministic equations. In panels (b) and (c),
the red circles represent the stable limit cycles of the deterministic equations under the condition of a given
stimulus current and noise intensity. Panels (e)�(h) illustrate the distribution of non-equilibrium driving forces
under the conditions corresponding to the top ones. The white arrows represent the steady-state probabilistic
curl �ux, while the black arrows depict the landscape gradient distribution.

simultaneously in each dimension, then we use a
one-dimensional array AΓ = [AV , Am, Ah, An] to
scale the magni�cation of the same noise intensity in
di�erent dimensions. We establish the correspond-
ing probabilistic di�usion equation to obtain statis-
tically steady-state probability distributions in the
state space of the system. As the HH model is inher-
ently four-dimensional, directly visualizing its po-
tential landscape poses challenges. Thus, we focus
on two key variables in the model, namely V and
h1, while integrating the remaining variables to de-
pict the comprehensive features of a single neuron
on a global scale.
Figure 2 shows the three-dimensional and two-

dimensional (2D) potential landscape, as well as
the driving forces' distribution of the HH neuron
for di�erent values of the bifurcation parameter
I, with the dimension noise ampli�cation matrix
set to AΓ = [1.0, 0.0001, 1.0, 0.0001]. Notably, for
computational convenience, we have introduced the
variable h1 = 100h to facilitate the depiction of
the corresponding potential landscape. When I =
5 µA/cm2 and D = 0.32, we evenly distributed 20×
23 initial points across the (V, h1) plane and tracked
their trajectories from t = 0 to t = 108 315 000. Sub-
sequently, we collected sample points from all tra-
jectories between t = 2500 000 and t = 108 315 000
to compute the probability distribution P . Then,
we further calculated the probability distribution
P for all trajectories between t = 3000 000 and
t = 108 315 000 and compared the results of these
two computations. We found that P was the same
for both calculations. Therefore, we hypothesize

that the system reaches a non-equilibrium steady
state after t = 3000 000 time steps. Unless stated
otherwise, we collected sample points for analysis
by tracking trajectories from 20 × 23 initial points
on the (V, h1) plane, starting from t = 3000 000
onwards. As depicted in Fig. 2a, when Gaussian
white noise is introduced and in the context of a
long-time limit, the uniqueness of the steady-state
solutions in the deterministic equation diminishes.
Instead, the �nal distribution of the global states
assumes a funnel-shaped con�guration. The stable
resting state solution of the deterministic equation
(marked by a red cross in the �gure) resides at a
local minimum of U , which indicates the maximum
probability within the overall state distribution. In
panel (e), the corresponding driving forces of the
system under the conditions outlined in panel (a)
are elucidated. The black arrows signify the force
arising from the negative gradient of the potential
landscape, consistently propelling the system's in-
stantaneous state towards states of higher probabil-
ity. Globally, the gradient force continually attracts
the system toward the lowest point of the potential
landscape funnel. The white arrows symbolize the
probabilistic curl �ux, which can be observed rotat-
ing around the single stable attractor, attempting
to perturb the instantaneous state in conjunction
with the gradient force. This e�ectively disrupts
the point attractor and holds the capacity to trig-
ger the emergence of new states. Besides, through
the combined action of probabilistic curl �ux, the
system is not solely dragged by the gradient force
directly to the bottom of the funnel. Instead, it
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spirals down towards the attractor basin. This il-
lustrates the essential interplay between both fac-
tors in maintaining the dynamics of non-equilibrium
systems.
In Fig. 2b and c, the potential landscapes associ-

ated with a singularly stable limit cycle oscillation
are illustrated. The topography of these landscapes
resembles a Mexican hat, with the steady-state
curl �ux in the ring valley prominently overshad-
owing the in�uences exerted by the steady-state
non-equilibrium potential's negative gradient. This
dominance of probabilistic �ux plays a vital role
in sustaining the stability of the periodic oscilla-
tory behavior. In two panels (b) and (c), the red
circles represent the limit cycles of stable peri-
odic oscillations under each respective input cur-
rent (I = 120 µA/cm2 in (b), and I = 154 µA/cm2

in (c)) in the absence of noise. Panels (f) and (g)
depict the distributions of driving forces in non-
equilibrium systems, corresponding to those illus-
trated in (b) and (c). In panels (f) and (g), the
white arrows denote the curl �ux components of
the non-equilibrium driving forces, whereas black
arrows represent the negative gradient part of these
driving forces. The red circles in these panels also
denote the limit cycles for stable periodic oscilla-
tions, speci�c to each input current in the noise-
free setting. Notably, in the vicinity of these limit
cycles, the probabilistic curl �ux is observed to align
parallelly. This observation provides a detailed ex-
planation of the previously mentioned phenomenon,
namely the stability of the periodic oscillations is
maintained due to the steady-state curl �ux within
the ring valley signi�cantly surpassing the in�uence
of the steady-state non-equilibrium potential's neg-
ative gradient.
As the bifurcation parameter I increases, neu-

ronal behavior switches from periodic oscillations
to a non-�ring state, which biologically corre-
sponds to neuronal inactivation or even cell death.
Figure 2d depicts the potential landscape topogra-
phy at the electrical current I = 155 µA/cm2, which
is just after the second Hopf bifurcation point H2,
where neurons are incapable of discharging. The to-
pography is similar to that explained in panel (a),
but with a noticeably larger and broader funnel
structure at the same noise intensity of D = 0.32.
It is conceivable that in a range where the cur-
rent value I exceeds the second Hopf bifurcation
point H2, the landscape funnel would become pro-
gressively sharper and narrower as the I values
increase, for the same noise intensity. Panel (h)
describes the distribution of the system's driving
forces corresponding to (d). In a low-noise envi-
ronment, the probabilistic �ux continues to be ro-
tational; however, the role of the negative gradi-
ent of the steady-state non-equilibrium potential
grows more pronounced compared to the circula-
tory e�ect. The system state would follow a down-
ward spiral trajectory to the lowest point of the po-
tential landscape funnel con�guration, marked by

the red cross in panels (d) and (h). This point
corresponds to the resting state of the neuron at
the input current I = 155 µA/cm2 in a noise-free
scenario.

3.3. A quantitative assessment of the system's
stability and robustness under a noisy background

Next, we investigate the impact of noise on neu-
rons within the MPI parameter set (i.e., in the re-
gion I < I0). The noise intensity coe�cients are
denoted by AΓ = [100.0, 0.0001, 0.1, 0.0001]. When
I = −10 µA/cm2, as depicted in Fig. 1, the deter-
ministic HH neuron is in the MPI parameter regime
and will remain in the resting state without external
stimulation. We collected simulated time series data
of the membrane potential V under noise intensities
D = 0.45 and D = 0.01 at I = −10 µA/cm2. It was
observed that noise with the intensity of D = 0.45
could trigger action potentials in the HH neuron,
while noise with an intensity of D = 0.01 could not
facilitate the generation of action potential. This
indicates that su�ciently high noise intensity can
help the HH neuron to depart from the resting
state and �re an action potential earlier compared
to the deterministic HH neuron. Subsequently, we
will focus on exploring the underlying dynamics of
the HH neuron at noise intensities that can facil-
itate action potential �ring in the MPI parameter
set. As an example in our investigation, we will use
the noise intensity D = 0.45 at I = −10 µA/cm2.
Figure 3a illustrates the transition of HH neurons
under the MPI parameters from a resting state to
spike generation in the presence of su�ciently in-
tense �nite noise. Starting from the resting state
corresponding to I = −10 µA/cm2, the dynamic
process lasts su�ciently long. After reaching a sta-
tistically steady state, we gather all trajectories and
states that occurred in the dynamic process in the
su�cient time. The collection of all trajectories and
states is plotted as a �nal two-dimensional mapping
of the potential landscape. The white dashed line
signi�es a threshold division, where the points on
the left are directly pulled back to the resting state
by the system's driving force, while the points on
the right complete a cycle under the driving force,
indicating the generation of action potential. This
illustrates the neuron's sensitivity to a threshold.
This corresponds to a phenomenon commonly ob-
served in fast-spiking cells when subjected to appro-
priate current stimulation, characterized by inter-
mittent switching between low-frequency periodic
�ring and a resting state [43]. When noise leads
the HH neurons to go beyond the threshold, the
phase trajectory can follow a circular path back to
the resting state under the in�uence of curl �ux.
Subsequently, the system further assesses the pos-
sibility of crossing the threshold again based on
the real-time noise contributions. Another action
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potential occurs when the neuron's parameters suc-
cessfully go cross the threshold again. However,
if the noise fails to assist the neuron in crossing
the threshold, it can directly return to the rest-
ing state rather than completing a circular path.
As a result, competitive dynamic emerges between
the resting state and the circular limit cycle un-
der sustained noise in�uence. The unpredictability
of noise presents a challenge in maintaining continu-
ous, sustained discharges, ultimately resulting in an
overall low-frequency �ring pattern. Hence, a com-
petitive dynamic emerges between the resting state
and the circular limit cycle under sustained noise
in�uence.
Figure 3b illustrates the probabilistic �ux dis-

tribution of the system once it reaches a statis-
tically steady state, where the distribution aligns
nearly parallel to the direction of the system's driv-
ing force F . In the low noise limit, the potential
function linked to the gradient part of the driving
force resembles a Lyapunov function in determinis-
tic dynamics. The points where the gradient of this
potential function hits zero act as attractors in de-
terministic dynamics. Here, the resting state and ac-
tion potential correspond to stable points and limit
cycles, respectively. The gradient force guides the
system's trajectories toward the bottom region of
the potential function, i.e., stable points and limit
cycles. The driving force linked to the probabilistic
�ux facilitates transitions between di�erent states in
the system. Additionally, due to su�ciently small
noise, the numerical value of the gradient force is
typically orders of magnitude smaller than the driv-
ing force associated with the probabilistic �ux. This
results in a distribution of the probabilistic �ux
closely resembles the overall driving force distribu-
tion of the system. The oscillation period can be
approximated by the loop integral of Jss/Pss along
the circular oscillation path [19].
It can be seen from (5) that the smaller the

value of U , the greater the probability of the cor-
responding state. The resting state precisely sits at
the lowest point of the entire potential landscape,
marked as Urest. The population probability poten-
tial U corresponding to the threshold can be repre-
sented using the minimum value of U on the white
dashed line, labeled Uthresh. When a neuron transi-
tions from the resting state to �ring an action po-
tential, it needs to jump from the lowest level to the
height of Uthresh of the potential landscape. We use
∆U = Uthresh − Urest to measure the barrier height
between two states. Figure 4a illustrates the trend
of the corresponding barrier height as the bifurca-
tion parameter changes. When subjected to noise of
the same intensity, the resulting green curve repre-
sents a �tting curve of the data points, which takes
the form of a exp(−b x) + c (where a, b, and c are
constants greater than zero). This indicates that as
the stimulation current increses, the barrier height
between the resting state and the �ring action po-
tential exhibits exponential reduction, making the

Fig. 3. The impact of noise on HH neuron dynam-
ics. (a) HH neurons under MPI parameters compete
between action potentials and subthreshold oscilla-
tions near the threshold. The white cross signi�es
the resting state. The black and red lines depict
distinct driving force streamlines from two points
near the threshold. The white dashed line separates
the resting state from spikes, depicting the neuron's
threshold (I = −10 µA/cm2, D = 0.45). (b) The
distribution of probabilistic �ux throughout the en-
tire process. The direction of the black arrows rep-
resents the direction of the system's probabilistic
�ux.

transition from the resting state to the action poten-
tial easier. Therefore, the barrier height between the
resting state and the action potential measures the
di�culty of transitioning between these two states,
serving as a quanti�cation criterion to estimate the
robustness of the resting state.
Under substantial Gaussian white noise, the HH

neuron departs from its deterministic resting state,
overcoming the height of the potential landscape,
∆U , to reach the threshold potential for generat-
ing an action potential. This critical period, from
the starting point until just beyond the thresh-
old potential, moments before the action poten-
tial is initiated, represents the minimum duration
needed for the HH neuron to escape its resting state,
or represents the initial transition time from the
resting state to the onset of an action potential.
Concerning the potential landscape's topography,
this duration signi�es the time required to depart
from the resting state's lowest point and reach
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Fig. 4. Quanti�cation of the transition di�culty
of Hodgkin�Huxley neurons from the resting to the
action potential state under MPI parameters. (a)
Change in barrier height versus bifurcation param-
eter I for the resting-to-action potential transition
(D = 0.245). (b) The logarithm of the mean �rst
pass time needed to reach the action potential from
the resting state as a function of barrier height
(D = 0.245).

Uthresh for the �rst time. We refer to this duration as
the ��rst-passage time�. By recording the �rst pas-
sage time repeatedly and calculating the average,
we will get the mean �rst passage time (MFPT)
� denoted as Tmfp. It o�ers another quanti�ca-
tion of the stability of the system. Figure 4b illus-
trates the natural logarithm of Tmfp vs the bar-
rier height ∆U . Under the same noise intensity, the
�tted curve exhibits an exponential trend (�tted
formula a exp(bx), where both a and b are greater
than 0). This indicates that as the barrier height in-
creases, the required evolution time becomes longer,
and the transition between di�erent states becomes
harder. Looking from left to right at the panel (b),
the system becomes more and more stable. The
quantitative �tting here shares a resemblance with
the Arrhenius law observed in equilibrium systems.
For the MLC parameter set of the HH neuron,

the comparative analysis between panels (b) and
(c) in Fig. 2 reveals varying heights of the cen-
tral island in the potential landscape, correspond-
ing to di�erent noise intensities and bifurcation pa-
rameters. To quantitatively determine the stability

of the system's limit cycle attractor, we relied on
3D potential landscapes to establish two barrier
heights, which aided us in tracing the range of the
limit cycle's path distribution in the state space.
One barrier is the di�erence in population proba-
bility potential between the highest point on the
central island in a Mexican hat and the lowest
point along the circular path � it is denoted as
Barrier1 = U0 − Umin; the other is the di�erence
between the highest point of the central island and
the value of U at the maximum along the circu-
lar path, i.e., Barrier2 = U0 − Umax. For di�erent
bifurcation parameters under the same noise inten-
sity, the height of the central island is correlated to
the size of the corresponding red circle in the 2D
phase space shown in panels (b), (c), (f) and (g)
in Fig. 2. A larger circular area indicates the need
for greater noise assistance or more statistical data
points to reach the high points within the central
island. Statistically, under the same noise intensity,
it's easier to reach the central island with a smaller
circular area, which naturally results in a smaller
formed barrier height. Here, we study the stabil-
ity of the system's limit cycle attractor under vary-
ing noise intensities applied to the same bifurcation
parameter.
In Fig. 5a, the variations of two barrier heights,

Barrier1 and Barrier2, vs the �uctuations of noise
intensity are presented. The solid line corresponds
to the di�erence in barrier heights along the upper
boundary of the attractor of the limit cycle, labeled
Barrier1. In contrast, the dashed line represents the
Barrier signifying the lower boundary of the limit
cycle. Both Barrier1 and Barrier2 decrease as the
noise intensity scaling coe�cient D increases. Panel
(b) illustrates the relationship between the average
�rst-passage time τ of the limit cycle attractor and
barrier heights. The escape time increases with the
barrier height. Thus, for the same input stimulus
current, higher applied noise leads to smaller bar-
rier heights and shorter average �rst-passage times
from the limit cycle attractor, indicating greater in-
stability of the limit cycle.

3.4. Entropy production, average probabilistic
flux, and phase transitions

Considering the phase transition of the HH neu-
ron with Gaussian white noise, we use the stim-
ulus current I as a changing parameter for com-
parison with a deterministic bifurcation diagram.
Figure 6a displays the system's EPR and the aver-
age probabilistic �ux Jav variations with I under
�nite-amplitude Gaussian white noise. Here, the
scales of the two y axes for �ux (on the right)
and EPR (on the left) are di�erent. Before reaching
the initial bifurcation point I1, Jav maintains rela-
tively low values. It undergoes an abrupt increase
at I1, marking a discontinuous phase transition.
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Fig. 5. Barrier heights and escape time in
Hodgkin�Huxley neurons under MLC parameters.
(a) Barrier heights U0 − Umin and U0 − Umax vs
noise intensity for I = 120 µA/cm2. (b) Compari-
son of escape time with barrier heights for various
noise intensities.

Subsequently, Jav gradually decreases to zero at I2,
indicating a continuous phase transition within the
system. However, as shown in Fig. 3, under su�-
cient �nite noise conditions, the system experiences
a transition period between the resting state and ac-
tion potentials before I1, corresponding to zone B
in the deterministic bifurcation diagram. This sug-
gests that due to noise in�uence, the system under-
goes oscillations even before I1. Why doesn't Jav
undergo a sudden change earlier?
We divided the entire state space into a grid

of small 200 × 200 squares and tracked all trajec-
tory points once the non-equilibrium steady state
was reached. By calculating the average absolute
values of the probabilistic �ux Junit for each grid
and summing these values throughout the sys-
tem, we obtained the total absolute values of the
probabilistic �ux Jtotal. Dividing this by the to-
tal number of squares in the state space, we can
get the average probabilistic �ux Jav over the en-
tire state space. When the HH neuron is in�u-
enced by limited noise and is su�ciently distant
from the Hopf bifurcation point H1 within the MPI
parameter set, it will generate intermittent irregu-
lar action potentials (see Fig. 3). When the resting
state coexists with periodic oscillations, reaching

a non-equilibrium steady state, we partition the en-
tire state space into two parts: the annular funnel
region where the static points are situated, and the
circular path formed by the limit cycle. To roughly
estimate the average �ux Jav in this bistable state,
we distinquish it into Jav−funnel in the annular fun-
nel region and Jav0 along the circular path. In the
circular depression area where the resting state re-
sides (we refer to Fig. 2e and h), Jav−funnel exhibits
no signi�cant changes compared to Jav−I−smaller

observed when the periodic oscillations have not
appeared. We isolated the circular path by exclud-
ing the funnel region around the resting state and
computed the average probabilistic �ux along this
circular path using Jav0 = (

∮
dl J)/(

∮
dl). Subse-

quently, by dividing this value by the number of the
spatial grid squares excluding the area around the
resting state, we obtained Jav1 for the entire state
space.
Interestingly, Jav0 exhibits a magnitude compa-

rable to Jav after the phase transition (I is within
the MLC range). The subsequent Jav1, on the con-
trary, is approximately four orders of magnitude
smaller than Jav. Due to the limited noise and small
stimulation current, the distribution of the resulting
limit cycle in the state space is narrow. This limited
spread prevents the formation of explicit central is-
lands, as Fig. 2b and c, because trajectories cor-
responding to the intermediate region within the
circular path cannot be reached. Although this is
not a fundamental defect, the system, in�uenced by
limited noise intensity and within a �nite computa-
tional time (recorded at time t = 108 315 000), fails
to reach states with a particularly small probability
distribution near the vertices of the central islands.
Consequently, this explains why the average prob-
abilistic �ux Jav1 across the entire state space does
not undergo an immediate abrupt change when the
resting state coexists with periodic oscillations in
the system. EPR also experiences a sudden change
at I1 and then gradually approaches zero at I2. This
is due to the close relationship between the calcula-
tion of EPR and the probabilistic �ux.
When looking at Fig. 2e�h and Fig. 3b, the gradi-

ent part of the system's driving force continuously
directs the system state towards the bottom region
of the potential landscape, stabilizing point attrac-
tors and limit cycles if they exist. Meanwhile, the
curl �ux, because of its rotational nature, tends to
destabilize point attractors. Greater curl �ux may
render the original state less stable and can even
alter the landscape's topography, �nally generating
new states, leading to a phase transition (as ob-
served in Figs. 2e, 2f, and 3b). Together, these three
mentioned panels of the �gures capture the di�er-
ent stages of the entire process. Figure 2g and h
vividly illustrates the less pronounced changes in
the curl �ux during a continuous phase transition.
Hence, the curl �ux plays a dynamic role in driv-
ing phase transitions or bifurcations/catastrophes
in non-equilibrium systems.
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Fig. 6. EPR and the average probabilistic �ux Jav. The solid red line represents the mean value of EPR
across the entire state space. In contrast, the dashed blue line re�ects the relationship between the system's
average probabilistic �ux Jav and the bifurcation parameter. The noise intensity is set at D = 0.1. The two
vertical dashed lines correspond to the two Hopf bifurcation points, I1 and I2, in the deterministic bifurcation
diagram. (b) First derivative of the average curl �ux with respect to the stimulus current. (c) First derivative
of EPR with respect to stimulus current.

The entropy production rate (EPR) quanti�es ir-
reversible processes within a system, indicating its
tendency to move towards higher entropy states.
When a non-equilibrium system reaches a statisti-
cally steady state after a su�ciently long time, the
numerical value of EPR equals the system's heat
dissipation rate or entropy �ow rate S′

e. This equiv-
alency allows EPR to describe the energy transfer
within the system. Within the range of I0 < I < I1,
as genuine limit cycles are not formed, neurons can
only physiologically engage in low-frequency dis-
charges, and therefore, EPR undergoes a sudden
change only at I = I1.
As for the second Hopf bifurcation point I2, we

calculated the �rst derivatives of the �ux and EPR
around I2, as shown in Fig. 6b and c. We found that
both the �rst derivatives of EPR and the �ux show
discontinuous changes at I2, indicating a second-
order phase transition at I2. The physical meaning
of the transition is that the neuron's steady states
change from stable periodic oscillation to a stable
resting state as the stimulus current increases. EPR
can be considered as the thermodynamic origin of
bifurcation or phase transition points in a non-
equilibrium system. Both Jav and EPR can serve as
order parameters for bifurcations and phase transi-
tions at I1 and I2 of the system.

3.5. Time irreversibility of the cross-correlation
function and critical slowing down

For the practical side, the average �ux and
EPR are not always easy to quantify directly
from experimental observations such as time se-

ries. However, the non-equilibrium nature can be
extracted directly from the time asymmetry of the
cross-correlations of the observables. If we consider
a neuron operating under the in�uence of noise, re-
ceiving a constant stimulus current and reaching a
statistically steady state as a non-equilibrium state,
we can calculate the di�erence in two-point cross-
correlation functions for the forward and reverse
times. This method helps quantify the extent of de-
tailed balance breaking and irreversibility of time
within the system.
Figure 7a displays a time series plot of the neu-

ron membrane potential V and the parameter h1,
representing the inactivation of sodium channels.
With relatively small noise applied and operated
at I = 10 µA/cm2 within the MLC range, V
and h1 demonstrate overall stable periodic oscil-
lations. However, setting the di�usion coe�cient
matrix AΓ to [100.0, 0.0001, 0.1, 0.0001] results in
maximal noise intensity imposed on V , leading to
more pronounced jagged �uctuations between ac-
tion potentials compared to those observed in h1.
Figure 7b shows the forward-in-time and backward-
in-time cross-correlation functions between V and
h1. The black line represents the correlation func-
tion proceeding forward in time � denoted as CV h1,
while the blue line corresponds to the function re-
verse in time � denoted as Ch1V . The lines exhibit
an approximate phase-complementary periodic os-
cillation and gradually diminish in amplitude to-
ward zero. Figure 7c illustrates the time-evolving
trend of the di�erence between forward-in-time and
backward-in-time cross-correlation functions � de-
noted as CV h1−Ch1V . Similarly, there are displayed
periodic-like oscillations, with the amplitude grad-
ually decreasing towards zero. It is important to
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Fig. 7. Quati�cation of the time irreversibility and
the degree of detailed balance breaking. (a) Trajec-
tories of the membrane potential V and h1 (I =
10 µA/cm2, D = 0.04, and h1 = 100h). (b) Time-
forward CV h1 (black) and time-reverse Ch1V (blue)
cross-correlation function between V and h1. Panel
(c) represents the di�erence between forward-in-
time and backward-in-time cross-correlation func-
tions, CV h1−Ch1V , plotted vs t. (d) Illustration of
the average di�erence of CV h1−Ch1V , denoted as
∆CC, in relation to I. The solid green line indicates
the change in ∆CC vs the bifurcation parameter I.
The purple vertical dashed line corresponds to the
current I1 at the �rst Hopf bifurcation point, H1,
while the red vertical dashed line represents I2 at
the second Hopf bifurcation point, H2. The dark
blue vertical dashed line corresponds to the cur-
rent I0.

note that in panels (a), (b), and (c), the condition
t = 0 does not represent the initial time of recording
the trajectory. Instead, it signi�es a point in time
reached after the system has been running for a suf-
�ciently long time to attain a statistically steady
state.

Figure 7d displays the variation of the average
di�erence CV h1 − Ch1V , denoted as ∆CC, with
respect to the bifurcation parameter I. The two

Fig. 8. The phenomenon of critical slowing down
near the subcritical Hopf bifurcation point H1 in
the Hodgkin�Huxley neuron. (a) The two-point au-
tocorrelation function of h1 and its �tting line (D =
0.045 and I = 5.4709 µA/cm2). (b) The natural log-
arithm of τ0 vs I (black solid line). The dark blue
dashed vertical line is I0 = 6.2645 µA/cm2. The red
dashed vertical line is I2 = 154.5266 µA/cm2.

dashed lines represent the stimulus currents I1 and
I2 corresponding to the two Hopf bifurcation points.
The forward-in-time and backward-in-time cross-
correlation functions serve as quanti�able indicators
of detailed balance breaking and time irreversibility,
respectively. Their experimental application, such
as in the use of �uorescence correlation spectroscopy
in single-molecule enzymology [44, 45], may be a
practical method for identifying potential bifurca-
tions or non-equilibrium phase transitions in HH
neurons. Comparing this with Fig. 6, ∆CC exhibits
a similar overall trend to Jav and EPR, however,
it shows an earlier signi�cant change near I0. This
aligns with the boundary between the MPI and
B regions in the deterministic bifurcation diagram
(Fig. 1a), suggesting that ∆CC might be a more
e�ective predictor of phase transitions compared to
Jav and EPR.
For neurons capable of transitioning from a rest-

ing state to spike �ring, it is theoretically possi-
ble to provide an indicator regarding the charac-
teristics of the critical slowing down as the neuron
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approaches the �rst Hopf bifurcation point H1 from
its resting state, as well as the H2 Hopf bifurca-
tion point from the resting state. To observe the
phenomenon of the critical slowing down within a
�nite observation window, we require appropriate
noise intensity and an observation interval su�-
ciently close to H1 and H2. Adjusting these factors
can enhance the accuracy and visibility of observ-
ing neuronal state transitions. We set D = 0.045
and AΓ = [1.0, 0.0001, 1.0, 0.0001] for our investiga-
tion. We used MATLAB to compute and normalize
h1's two-point autocorrelation function. Then, we
applied the �cftool� toolbox to �t the resulting curve
using the function exp(−x/τ0) cos(wx), w = 2πT ,
where τ0 represents a coherence time for the oscil-
lation [26, 46, 47]. Figure 8a illustrates the curve
of autocorrelation function for I = 5.4709 µA/cm2.
The red line signi�es the �tted curve, which dis-
plays the remarkable proximity to the original data.
Through this �tting process, we determined the
value of τ0. In Fig. 8b, we plotted the natural loga-
rithm of τ0 vs the current I. The natural logarithm
of τ0 exhibits a dramatic change at I0 and I2, indi-
cating a strong correlation between critical slowing
down and Hopf bifurcation for the classical HH neu-
ron model. Therefore, critical slowing down, aver-
age �ux, EPR, and irreversible cross-correlation can
provide indicators for bifurcation from the �uctua-
tion, dynamics, thermodynamics, and time asym-
metry perspectives.

4. Conclusions

In this study, we thoroughly investigated the
local bistability properties of the original four-
dimensional Hodgkin�Huxley equations under the
in�uence of noise. Combined with landscape and
�ux theory, we conducted a comprehensive analysis
of the stochastic dynamics of a single HH neuron,
revealing the characteristics of potential landscapes
and non-zero curl �ux after it reaches a statistically
steady state. We decomposed the driving force of
the system into two parts: one closely related to the
gradient of the probability distribution potential U ,
in short as the gradient force, and the other asso-
ciated with the steady-state probabilistic �ux Jss

and the steady-state probability distribution den-
sity Pss. The gradient force tends to drag the real-
time system state toward states with a larger proba-
bility distribution, e�ectively stabilizing the system
state on stable attractors in non-equilibrium sys-
tems. The component associated with the steady-
state probabilistic �ux Jss, exhibiting a rotational
characteristics, is dedicated to driving and sustain-
ing periodic oscillations.
We explored how strong noise triggers oscillations

prematurely, leading to a competitive coexistence
between neuronal quiescence and spike discharges.
Despite su�cient noise, the dominating rotational

force driving the emergence and sustenance of sta-
ble oscillations dominates over the gradient force.
Moreover, by evaluating the barrier height in co-
existence states, we quanti�ed the stability of the
resting state and further investigated the stability
of limit cycles in regions exclusively characterized
by stable periodic oscillations.
Through computation of the entropy production

rate (EPR) and the average probabilistic �ux Jav,
we discovered that both Jav and EPR serve as quan-
titative indicators for bifurcations or phase transi-
tions in the HH neurons. As it is not easy to di-
rectly measure these two metrics in experiments,
we further discussed the average di�erence be-
tween forward-in-time and backward-in-time cross-
correlations and the critical slowing down, which
can be directly measured in experiments. Moreover,
the average di�erence between forward-in-time and
backward-in-time cross-correlations tends to un-
dergo a break earlier than EPR and Jav, marking it
as an earlier warning signal for bifurcation or phase
transition points. In the original HH model, there
exists a subcritical Hopf bifurcation rather than
a saddle-node bifurcation, and the critical slowing
down is closely associated with the subcritical Hopf
bifurcation.
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Appendix

A1. The classical Hodgkin�Huxley equations and
the Jacobian matrix in their deterministic form

The deterministic Hodgkin�Huxley model can be
written as

Cm
dV

dt
= −gKn

4(V−VK)− gNam
3h(V−VNa)

−gL(V−VL) + I,

dm

dt
= αm(V )(1−m)− βm(V )m,

dh

dt
= αh(V )(1−h)− βh(V )h,

dn

dt
= αn(V )(1−n)− βn(V )n. (9)

During the linear stability analysis, stochastic forces
of the system are neglected and all equations on the
left-hand side are set to zero. The corresponding
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expressions on the right-hand side are denoted in
order as f1, f2, f3, f4. Then, the Jacobian matrix in
the deterministic form is as follows

JJacobi =


∂f1
∂V

∂f1
∂m

∂f1
∂h

∂f1
∂n

∂f2
∂V

∂f2
∂m

∂f2
∂h

∂f2
∂n

∂f3
∂V

∂f3
∂m

∂f3
∂h

∂f3
∂n

∂f4
∂V

∂f4
∂m

∂f4
∂h

∂f4
∂n

 (10)

Next, let us illustrate the procedure using ∂f2
∂V and

∂f2
∂m as examples. The remaining terms can be de-
rived by similar methods, i.e.,

∂f2
∂V

=
∂

∂V

[
αm(V )(1−m)− βm(V )m

]
=

∂

∂V

[
αm(V )−mαm(V )− βm(V )m

]
=

˙αm(V )− [ ˙αm(V )+ ˙βm(V )]m =

˙αm(V )[ ˙αm(V )+ ˙βm(V )]
αm(V )

αm(V ) + βm(V )
=

[
αm(V )+βm(V )

][ ˙αm(V )[αm(V )+βm(V )]

[αm(V ) + βm(V )]2

−αm(V )[ ˙αm(V )+ ˙βm(V )]

[αm(V ) + βm(V )]2

]
= λmṁ∞

∂f2
∂m

=

−[αm(V ) + βm(V )] = −λm (11)

In the above equations, λm = αm(V ) + βm(V ) and

m∞ = αm(V )
αm(V )+βm(V ) . The same procedure can be

applied to derive other elements of the Jacobian ma-
trices.

A2. From Langevin equations (LEs) to
Fokker�Planck equations

The system dynamics satisfy the following equa-
tion

dxi

dt
= fi(x, t) +

m∑
j=1

gijΓi(t). (12)

The �rst two moments of the Langevin force com-
ponent Γi(t) are given by

⟨Γi(t)⟩ = 0,

⟨Γi(t1)Γj(t2)⟩ = 2Di δijδ(t1 − t2), (13)

where i, j = 1, 2, ..., n. The multiplication factor gij
in (12) eliminates the variations of stochastic forces
to the variable x. In (13), δij satis�es

δij =

{
1, ifi = j,

0, ifi ̸= j.
(14)

To deduce an equation satis�ed by the system's dis-
tribution function P (x, t) from the Langevin equa-
tion (LE), it is essential to compute the various or-
der transition moments Mn(x, t, τ). As an example,
we consider the one-dimensional case

Mn(x, t, τ) = ⟨
(
x(t+τ)− x(t)

)n⟩ (τ ≪ 1). (15)

Starting from (12), the stochastic dynamics can be
described by dx

dt = f(x, t) + g(x, t)Γ (t). From here,
it is easy to get

x(t+τ)−x(t) =

t+τ∫
t

dt′
[
f(x(t′), t′)+g(x(t′), t′)Γ (t′)

]
.

(16)

Assuming that the integrands f and g can be ex-
panded in terms of x(t′)−x(t), it holds

f(x(t′), t′)=f(x(t), t′)+f ′(x(t), t′)(x(t′)−x(t)) + . . .

g(x(t′), t′)=g(x(t), t′)+g′(x(t), t′)(x(t′)−x(t)) + . . .

(17)

Substituting the expression (17) into (16) yields

x(t+ τ)− x(t) =

∫ t+τ

t

dt′ f(x(t), t′)

+

∫ t+τ

t

dt′ f ′(x(t), t′)
(
x(t′)−x(t)

)
+ . . .

+

∫ t+τ

t

dt′ g(x(t), t′)Γ (t′)

+

∫ t+τ

t

dt′ g′(x(t), t′)
(
x(t′)−x(t)

)
Γ (t′) + . . .

(18)

Repeatedly using (18) for the x(t + τ) − x(t) term
in the expression gives

x(t+ τ)−x(t) =

∫ t+τ

t

dt′ f(x(t), t′)

+

∫ t+τ

t

dt′ f ′(x(t), t′)

∫ t′

t

dt′′ h(x(t′), t′′)

+

∫ t+τ

t

dt′ f ′(x(t), t′)

∫ t′

t

dt′′ µ(x(t′), t′′)Γ (t′′)

+ · · ·+
∫ t+τ

t

dt′ g′(x(t), t′)Γ (t′)

+

∫ t+τ

t

dt′ g′(x(t), t′)Γ (t′)

∫ t′

t

dt′′ h(x(t′), t′′)

+

∫ t+τ

t

dt′ g′(x(t), t′)Γ (t′)

∫ t′

t

dt′′ µ(x(t′), t′′)Γ (t′′)

+ . . . (19)

To understand the statistical properties of x(t)
and obtain higher-order correlations such as
⟨x(t1)x(t2)x(t3)x(t4) . . . ⟩, we make the practical as-
sumption that the random variable Γ (t) follows a
Gaussian distribution. That means,

⟨Γ (t1)Γ (t2)Γ (t3) . . .Γ (t2n−1)⟩ = 0,

⟨Γ (t1)Γ (t2)Γ (t3) . . .Γ (t2n)⟩ =

(2D)n
n∑
i

[δ(ti1−ti2)δ(ti3−ti4) . . . δ(ti2n−1−ti2n)].

(20)
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By combining the statistical properties of the
Langevin force mentioned above by (13) and (20)
with (19), we can calculate the higher-order transi-
tion moments (see (15)). The �rst-order transition
moment is given by

M1(x, t, τ) = ⟨x(t+ τ)−x(t)⟩ =[
f(x, t) +Dg′(x, t)g(x, t)

]
τ +O(τ2). (21)

Here, O(τ2) represents the higher-order in�nitesi-
mal of τ . Similarly, one can obtain

M2(x, t, τ) = ⟨[x(t+τ)−x(t)]2⟩ =

2Dg2(x, t)τ +O(τ2), (22)

and

Mn(x, t, τ) = ⟨[x(t+τ)−x(t)]n⟩ ≤ O(τ2) (23)

for n ≥ 3. Assuming that the process under inves-
tigation is a Markov process, and using ρ(x, t) to
represent its distribution function and p to repre-
sent the probability of being in a certain state, the
following relations are derived

ρ(x, t+ τ) =

∫
dx′ p(x, t+ τ |x′, t)ρ(x′, t), (24)

ρ(x, t+ τ)− ρ(x, t) =
∂ρ(x, t)

∂t
τ +O(τ2). (25)

In p(x, t+τ |x′, t) =
∫
dy δ(y−x) p(y, t+τ |x′, t), let

expand the term δ(y−x), namely

δ(y−x) = δ(x′−x+y−x′) =∑∞

n=0

(y−x′)n

n!

(
∂

∂x

)n

δ(x′−x). (26)

After substituting it into the previous integral iden-
tity (24), we get the result

p(x, t+τ |x′, t) =[
1 +

∑∞

n=1

1

n!

(
− ∂

∂x

)n

Mn(x
′, t, τ)

]
δ(x′−x),

(27)

where

Mn(x
′, t, τ) =

∫
dy (y − x′)np(y, t+τ |x′, t). (28)

Substituting (27) into (24) and comparing with
(25), one gets

∂ρ(x, t)

∂t
= LKM ρ(x, t), (29)

LKM =

∞∑
n=1

(
− ∂

∂x

)n

Dn(x, t), (30)

Dn(x, t) = lim
τ→0

Mn(x, t, τ)

n!τ
. (31)

Since p(x, t|x′, t) is the transition probability at
time t′ with an initial distribution satisfying
ρ(x, t) = δ(x − x′), this transition probability also
follows
∂p(x, t|x′, t)

∂t
= LKM p(x, t|x′, t). (32)

This is the Kramers�Moyal forward equation. Com-
paring the high-order moment equation Mn here
with the previously de�ned one, it is easy to obtain

D1(x, t) = f(x, t) +Dg′(x, t)g(x, t),

D2(x, t) = Dg2(x, t),

Dn(x, t) = 0, (n ≥ 3).
(33)

Thus, the Kramers�Moyal equation with trunca-
tion at the second order of partial derivatives is

∂ρ(x, t)

∂t
= − ∂

∂x
[f(x, t) +Dg′(x, t)g(x, t)] ρ(x, t)

+D − ∂2

∂2x

[
g2(x, t)ρ(x, t)

]
. (34)

This is the Fokker�Planck equation for a one-
dimensional variable system.
The Fokker�Planck equation corresponding to

the multi-variable Langevin equations can be de-
rived using a similar approach, i.e.,

∂ρ(x, t)

∂t
= −

∑
i

∂

∂xi

[
Di(x, t)ρ(x, t)

]
+
∑
i

∑
j

∂2

∂xi∂xj
[Dij(x, t)ρ(x, t)], (35)

Di(x, t) = lim
τ→0

⟨xi(t+τ)− xi⟩
τ

=

fi(x, t) +D
∑
k

∑
l

gkl
∂

∂xk
gil, (36)

Dij(x, t) = lim
τ→0

⟨[xi(t+τ)−xi][xj(t+τ)−xj ]⟩
τ

=

D
∑
k

gikgjk. (37)
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