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Correlated and uncorrelated Debye�Waller factors and correlation function in atomic vibrations
described by mean square relative displacement, mean square displacement, and displacement�
displacement correlation function, respectively, have been studied based on correlated and uncorrelated
Einstein models, including many-body e�ects. The impact of many-body e�ects in the derived analytical
expressions of the above-considered quantities is realized by using the e�ective potentials of the derived
Einstein models, which take into account the contributions of all nearest neighbors of vibrating atoms.
The Morse potential is used to describe the single-pair atomic interactions. The di�erence between the
correlated Debye�Waller factor and the uncorrelated one is considered to be the source of the corre-
lation e�ect described by the correlation function, which is temperature- and crystal-type-dependent.
The larger such di�erence is, the stronger the correlation e�ect it generates. The numerical results for
the Cu crystal agree with experimental results and with those calculated using other theories.

topics: correlated and uncorrelated Debye�Waller factors, correlation function, correlated and uncorre-
lated Einstein models, e�ective potentials and many-body e�ects

1. Introduction

Thermal atomic vibrations and disorders in ex-
tended X-ray absorption �ne structure (EXAFS)
spectroscopy and other related spectroscopy give
rise to Debye�Waller factors (DWFs) [1�26]. These
factors used in EXAFS and related spectra depend
on the temperature T as e−W (T ) and on the wave
number k (or energy). For EXAFS spectroscopy,
W (T ) ≈ 2k2σ2(T ), where σ2(T ) is the mean square
relative displacement (MSRD) of bond between ab-
sorber and backscatter atoms. The EXAFS DWF
is analogous to factor found in X-ray and neutron
di�raction or the Mössbauer e�ect, where W (T ) =
1
2k

2u2(T ). The di�erence is that the EXAFS DWF
refers to correlated averages over relative displace-
ments, as is the case of the MSRD σ2(T ), while
in X-ray absorption or neutron di�raction, u2(T )
refers to the mean square displacement (MSD) of
a given atom. Unfortunately, the MSRD or corre-
lated DWF σ2(T ) and the MSD or uncorrelated
DWF u2(T ) are closely related with one another
and from them, the displacement�displacement cor-
relation function (DCF) or correlation function
CR(T ) describing the correlation e�ects is gener-
ated. Accurate DWFs and other related functions

such as u2(T ) and CR(T ) are crucial to quantitative
treatment of the X-ray absorption spectra and dif-
ferent e�ects in EXAFS theory.
Many e�orts have been made to derive procedures

for studying DWFs of materials. Satisfactory proce-
dures are those of classical methods [2�6], which
have the advantages of simplicity and work very
well at high temperatures, except for limitations at
low temperatures due to the absence of zero-point
vibration. Importantly, the derived procedures in-
clude also quantum methods, which have the advan-
tages of working at both low and high temperatures.
These include, for example, the e�ective anhar-
monic single-particle potential method [7], the sin-
gle bond correlated Einstein model [8], the path in-
tegral e�ective potential [9], the full lattice dynami-
cal (FLD) approach [10, 11], the local force constant
theory [12], the dynamic matrix calculation [13], the
path-integral Monte Carlo calculation [14], the an-
harmonic correlated Einstein model (ACEM) [15],
the anharmonic correlated Debye model [16], and
many others. The e�orts undertaken have proven to
make signi�cant contributions to materials research,
for example [17�24]. Here, ACEM is successfully ap-
plied in the development of several methods such
as: EXAFS theory including anharmonic contribu-
tions [17], method for studying EXAFS of doping
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materials compared to Mössbauer studies [18], pres-
sure e�ects in EXAFS [19], thermodynamic prop-
erties of isotopes [20] and of semiconductors [21].
Moreover, based on DWFs, the e�ective methods
have been derived for studying strong anharmonic-
ity in tin monosul�de evidenced by local distortion,
high-energy optic phonons [22], melting curve, eu-
tectic point, Lindemann's melting temperature of
close-packed hexagonal (hcp) binary alloys [23], and
a semi-classical ACEM for hcp crystals [24]. Unfor-
tunately, there are still few works [25, 26] concerning
the uncorrelated DWF u2(T ) and the DCF or cor-
relation function CR(T ) describing the correlation
e�ects in atomic vibrations.
The purpose of this work is to derive the method

enabling the calculation and analysis of correlated
and uncorrelated DWFs and then correlation func-
tion in atomic vibrations (i.e., σ2, u2, and CR, de-
scribed, respectively, by MSRD, MSD, and DCF),
including many-body e�ects. In Sect. 2 the analyti-
cal expressions have been derived for the correlated
DWF σ2(T ) based on the correlated Einstein model
(CEM) using a correlated atomic vibration (CAV)
and for the uncorrelated DWF u2(T ) based on the
uncorrelated Einstein model (UCEM) using a sin-
gle atomic vibration (SAV). The correlation func-
tion CR(T ) is generated from the di�erence between
the derived σ2(T ) and u2(T ). The many-body ef-
fects given in the derived analytical expressions of
σ2(T ), u2(T ) and CR(T ) are obtained based on the
CEM and UCEM e�ective potentials, which include
contributions of all nearest neighbors of the ab-
sorber and backscatter atoms in the case of CEM
and of a single atom in the case of UCEM. The
created method leads to the simpli�cation of the
operation of a many-body system in the EXAFS
theory to a useful one, which is a one-dimensional
model. The Morse potential is assumed to describe
the single-pair atomic interactions. The numerical
results for Cu (Sect. 3), i.e., for one of the intensively
studied crystals, are compared with: (i) experimen-
tal values taken from the measured Morse parame-
ters (MMP) [27], (ii) measured values [7, 27�29] for
σ2(T ), and also (iii) with values calculated using
other theories [25, 26] for the ratio CR/u

2, which
in fact show good agreement. Conclusions on the
obtained results are presented in Sect. 4.

2. Correlated and uncorrelated DWFs

and correlation function based

on CEM and UCEM

2.1. Relation of correlation function with
correlated and uncorrelated DWFs

The de�nition of MSRD or correlated DWF
σ2(T ) implies its close relation with the MSD or un-
correlated DWF u2(T) and the DCF or correlation

function CR(T). It can be written as

σ2 (T ) =

〈[
R̂0 · (ui−u0)

]2〉
= 2u2 (T )−CR (T ) ,

(1)

where ui−u0 included in the �rst equation of (1)
contains the atomic displacements of the i-th and
0-th sites de�ned by their displacements from those
of the equilibrium positions, R̂0 is the unit vector
pointing from the 0-th site towards the i-th site, and
the bracket ⟨. . . ⟩ denotes the thermal average.
Moreover, in the second equation of (1), the un-

correlated DWF or MSD u2(T) has been de�ned as

u2 (T ) =
〈(

u0 · R̂0
)2〉

=
〈(

ui · R̂0
)2〉

, (2)

and then the DCF of correlation function CR(T)
had to take the form

CR (T ) = 2
〈(

u0 · R̂
0
)(

ui · R̂
0
)〉

=

2u2 (T )− σ2 (T ) , (3)

which is apparently obtained by the di�erence be-
tween the correlated and uncorrelated DWFs.

2.2. E�ective potentials of CEM and UCEM

In order to specify the thermodynamic param-
eters, it is necessary to determine the local force
constants [7�21]. The e�ective potential applied in
the present theory can be expressed as a function of
the displacement x = r−r0 along the direction R̂0,
with r and r0 being the instantaneous and equilib-
rium distances between the absorber and backscat-
ter atoms. Thus, the expressions of the potencial for
the CEM using CAV (V C

eff(x)) and for the UCEM
using SAV (V S

eff(x)) have the following forms

V
C(S)
eff (x) ≈ 1

2
k
C(S)
eff x2, (4)

where the di�erence of the mentioned potentials is
caused by the di�erence between their e�ective lo-
cal force constants kCeff for the CAV model and kSeff
for the SAV model, used in the present theory.
Note that since atomic correlations do not involve

anharmonic contribution, the e�ective interatomic
interaction potential given by (4) only includes har-
monic terms.
The values of kCeff for the atomic correlated ef-

fective potential can be obtained by comparing the
potential V C

eff(x) of (4) to that de�ned for a single
bond pair in the center-of-mass frame [14] of the
absorber with mass M1 and the backscatter atoms
with mass M2. Therefore, we have

V C
eff (x) = V (x) +

∑
j ̸=i

V

(
µ

Mi
x R̂12 · R̂ij

)
=

V (x) + 2V
(
−x

2

)
+ 8V

(
−x

4

)
+ 8V

(x
4

)
, (5)

where the �rst term on the right concerns only
absorber and backscatter atoms, the second one,
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containing the sum i over absorber (i = 1) and
backscatter (i = 2) and the sum j over their remain-
ing nearest neighbors, describes the lattice contri-
butions or many-body e�ect to the pair interaction
and depends on crystal structure type. Here, R̂ is
the bond unit vector. The second equation of (5) is
for the monatomic face-centered cubic (fcc) crystals,
in which the reduced mass µ = M1M2/(M1 +M2)
is replaced by M/2 because M = M1 = M2 stands
for the atomic mass.
The values of kSeff are obtained by using the poten-

tial V S
eff(x) of (4) and a method [30] for the single-

atom e�ective potential, which takes into account
only the in�uence of N nearest atomic neighbors of
the central atom as

V S
eff (x) =

N∑
j=1

V
(
xR̂

0
· R̂j

)
=

V (x) + V (−x) + 4V
(x
2

)
+ 4V

(
−x

2

)
, (6)

where R̂j are the unit vectors of the nearest neigh-
boring atoms with respect to the equilibrium posi-
tion of the central atom. The second equation of (6)
is for monatomic fcc crystals.
The advantage of applying the e�ective poten-

tials given by (5) for CEM and (6) for UCEM in
the present theory is the possibility of taking into
account many-body e�ects or lattice contributions.
This is achieved by including the contributions of
all nearest neighbors of the absorber and backscat-
ter atoms for the CEM and of a single atom for
the UCEM, where these derived e�ective potentials
are presented as one-dimensional. In this manner, a
complicated task of many-body system in EXAFS
theory is simpli�ed to one-dimensional model.
To describe a single-pair atomic interaction, we

use the Morse potential expanded up to second or-
der (harmonic term) around its minimum
V (x) = D

(
e−2αx − 2e−αx

)
≈ D

(
−1 + α2x2

)
,
(7)

where α describes the width of the potential, and
D is the dissociation energy.
Based on the atomic structure of the fcc crystal,

the e�ective local force constants kCeff of CEM and
kSeff of UCEM, given indirectly by the Morse poten-
tial parameters in (4), could be written here as
kCeff = 5Dα2, kSeff = 8Dα2. (8)

Note that the signi�cant di�erence between the
above kSeff and kCeff will lead to a di�erence of the
EXAFS quantities obtained from CEM and UCEM.

2.3. Analytical expressions of correlated and
uncorrelated DWFs as well as correlation function

Based on CEM, the analytical expression of the
temperature-dependent correlated DWF or MSRD
σ2(T ) using CAV has been derived and given by

σ2 (T ) ∼=
〈
x2

〉
= σ2

0

1 + z

1− z
, σ2

0 =
ℏωC

E

kCeff
, (9)

z = exp

(
−θCE

T

)
, θCE =

ℏωC
E

kB
, ωC

E =

√
kCeff
µ

,

(10)
where µ is the reduced mass of correlated vibrating
atoms and kB is the Boltzmann constant.
Similarly, based on UCEM, the analytical ex-

pression of the temperature-dependent uncorrelated
DWF or MSD u2(T) using SAV has been derived
and given in the form

u2 (T ) = u2
0

1 + z1
1− z1

, u2
0 =

ℏωS
E

kSeff
, (11)

z1 = exp

(
−θSE
T

)
, θSE =

ℏωS
E

kB
, ωS

E =

√
kSeff
M

,

(12)
where M is the mass of a composite atom.
In the above analytical expressions, the CEM

frequencies and temperatures are given by, respec-
tively,

ωC
E =

√
kCeff
µ

and θCE =
ℏωC

E

kB
, (13)

and the UCEM frequencies and temperatures are
given by, respectively,

ωS
E =

√
kSeff
M

and θSE =
ℏωS

E

kB
. (14)

Consequently, the correlation function CR(T ) de-
scribing the correlation e�ect is calculated using (3)
based on the above expressions for the uncorrelated
DWF u2(T ) and correlated DWF σ2(T ). The de-
rived correlation function has the form

CR (T ) = 2u2
0

1 + z1
1− z1

− σ2
0

1 + z

1− z
, (15)

where σ2
0 , z and u2

0, z1 are de�ned in (9)�(10) and
(11)�(12), respectively.
Hence, the correlation function CR(T ) describing

the correlation e�ects of atomic vibrations in the
materials results from the di�erence between the
correlated DWF σ2(T ) and the uncorrelated DWF
u2(T ). It has the same unit as DWF, behaving as
a thermodynamic parameter. Actually, the reason
causing this correlation e�ect can be attributed to
the di�erence between the local force constants kCeff
and kSeff , as well as the di�erence between the re-
duced mass µ in CEM using CAV and the mass
M of a composite atom in UCEM using SAV. This
property will be discussed in detail through the nu-
merical results presented in Sect. 3 for Cu as a fcc
crystal.
Note that the functions σ2(T ), u2(T), and CR(T)

obtained above include many-body e�ects or lattice
contributions because they contain the e�ective lo-
cal force constants kCeff and kSeff describing the cor-
related and uncorrelated DWFs which actually in-
clude many-body e�ects.
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3. Numerical results and discussions

Now, the expressions derived in the previous sec-
tions are applied to the numerical calculations for
Cu in the fcc phase. Using the Morse potential pa-
rameters of Cu [31], i.e., D = 0.3429 eV, α =
1.3588 Å−1, and its measured Morse parameters,
i.e., (MMP) [27] D = 0.33 eV, α = 1.38 Å−1, the
e�ective local force constants kCeff , k

S
eff , as well as the

correlated Einstein frequencies ωC
E and temperature

θCE , and the uncorrelated Einstein frequency ωS
E and

temperature θSE with respect to CAV in CEM and to
SAV in UCEM, respectively, have been calculated.
Some of the results are included in Table I.
The calculated results for the above-considered

quantities of Cu written in Table I show the sig-
ni�cant di�erences between the CAV model (with
upper index �C�) and the SAV model (with upper
index �S�). The e�ective local force constant for the
SAV model (kSeff) is much larger than the one (kCeff)
for the CAV model. The reasons for this di�erence
can be attributed to the di�erence in the number
and mass of vibrating particles, because in the CAV
model, there is only half of them compared to the
SAV model. Actually, in the center-of-mass frame
of single bond pair for the CAV model, the crys-
tal behaves as it consists of quasi-atoms having a
reduced mass that equals only half the composite
mass of the atom, as shown in (5), and their number
is only half the atomic number for the SAV model,
because each quasi-atom is constructed from a pair
of composite atoms. This di�erence also leads to the
result, in which the values of correlated Einstein fre-
quency ωC

E and temperature θCE obtained from the
CAV model are larger than, respectively, ωS

E and
θSE , obtained from the SAV model (Table I). Here,
the value of θCE = 234K calculated using the present
theory (Table I) is close to the experimental result
of 232 K [3, 29].
Figure 1 illustrates the e�ective potentials

V
C(S)
eff (x) of Cu calculated using the present the-

ory for the CAV and SAV models, which agree
well with the experimental values (Exper.) obtained
from MMPs [27]. Here, the SAV potential V S

eff(x)
is bigger than the CAV potential V C

eff(x) because
the e�ective local force constant for the SAV model
(kSeff) is larger than the one (k

C
eff) for the CAV model

(Table I). This means that the atomic interaction
described by the SAV model or the CEM is stronger
than the one for the CAV model or the UCEM.
This discrepancy also leads to the di�erence be-
tween other quantities such as ωC

E , θ
C
E (calculated

using CEM) and ωS
E , θ

S
E (calculated using UCEM),

written in Table I. Such properties can be under-
stood because the number and the mass of atoms
in the SAV model are larger than those of the quasi-
atoms in the CAV model.
Figure 2 illustrates the temperature dependence

of the Debye�Waller factors: correlated DWF or
MSRD σ2(T ), uncorrelated DWF or MSD u2(T ),

Fig. 1. E�ective potentials V
C(S)
eff (x) of Cu, calcu-

lated using the present theory for CAV in CEM and
for SAV in UCEM, and compared to the experimen-
tal values (Exper.) [27].

TABLE I

The values of kC
eff , k

S
eff , ω

C
E , θ

C
E , ω

S
E , θ

S
E for Cu, cal-

culated using the present theory and compared to
the experimental values (Exper.) obtained from the
MMPs [26].

Quantities Present Exper. [26]

kC
eff [N/m] 49.7867 50.3450

kS
eff [N/m] 79.6587 80.5520

ωC
E (×1013) [Hz] 3.0628 3.0799

ωS
E (×1013) [Hz] 2.7394 2.7547

θCE [K] 233.9531 235.2611

θSE [K] 209.2540 210.4239

and correlation function DCF CR(T ) obtained from
the di�erence, and also σ2(T ) and u2(T ) of Cu cal-
culated using the present theory. They are all lin-
ear with T at high temperatures, beginning from
the Einstein temperature where the classical limit
applies, and they contain zero-point energy contri-
butions at low temperatures, which is a quantum
e�ect. Here, the calculated results of σ2(T ), u2(T ),
CR(T ) agree well with experimental values (Exper.)
obtained from MMPs [26] and with the measured
values for σ2(T ), labeled as Exper. (1) [28], Ex-
per. (2) [29], Exper. (3) [27], Exper. (4) [7]. More-
over, the values of σ2(T ) are greater than those of
u2(T ), and that makes the damping factor in the
EXAFS and other related spectroscopy for the SAV
model greater than for the CAV model.
Note that the di�erence between the obtained

correlated DWF σ2(T ) and the uncorrelated one
u2(T ) of Cu, shown in Fig. 2, is the source causing
the correlation e�ect described by CR(T ). Hence,
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Fig. 2. Temperature dependence of correlated
DWF σ2(T ), uncorrelated DWF u2(T ) ,and corre-
lation function CR(T ) of Cu, calculated using the
present theory. The results are compared to the ex-
perimental values (Exper. (MMP)) obtained from
MMPs [26] and the measured values for σ2(T ): Ex-
per. (1) [28], Exper. (2) [29], Exper. (3) [27], Ex-
per. (4) [7], at di�erent temperatures.

Fig. 3. Temperature dependence of the ratios
CR/u

2 and CR/σ
2 of Cu, calculated using the

present theory. The results are compared to ex-
perimental values (Exper. (MMP)) obtained from
MMPs [27], as well as to the results calculated us-
ing the force constant model (FCM) [25] and Debye
model (DM) [26] for the ratio CR/u

2.

the correlation e�ect of Cu clearly depends on this
di�erence appearing in di�erent crystals. Figure 2
also shows that the larger di�erence between σ2(T )

and u2(T ) generates stronger correlation e�ect than
the lesser one. Here, the correlation function CR(T )
(Fig. 2) at high temperatures is stronger than at low
temperatures. Moreover, the correlation e�ect has
resulted only from the e�ective local force constants
of the harmonic interatomic interaction potential,
which clearly proves that it is a harmonic e�ect.
The ratio CR/u

2 is often considered in studying
EXAFS correlation e�ects [25, 26]. Figure 3 illus-
trates temperature dependence of the ratios CR/u

2

and CR/σ
2 of Cu, calculated using the present the-

ory. These results show percentages of the corre-
lation e�ects contributing to the thermodynamic
properties of fcc crystals, e.g., to MSD or uncor-
related DWF and to MSRD or correlated DWF, re-
spectively. They are constant at high temperatures,
beginning from the Einstein temperature. This in-
dicates that at these high temperatures, the tem-
perature dependence of σ2(T ), u2(T ), and CR(T )
of Cu is similar. The result for CR/u

2, calculated
using the present theory, is found to be in reason-
able agreement with those calculated using the force
constant model (FCM) CR/u

2 = 0.415 [25] and the
Debye model (DM) CR/u

2 = 0.387 [26]. Moreover,
the ratio CR/u

2 presented in Fig. 3 is greater than
CR/σ

2. This shows that the correlation e�ect com-
pared to MSD or uncorrelated DWF is larger than
the one compared to MSRD or correlated DWF.

4. Conclusions

In this work, a method has been derived, enabling
the calculation and analysis of the temperature-
dependent correlated DWF σ2(T ), uncorrelated
u2(T ), and the correlation function CR(T ) in atomic
vibrations of materials based on CEM and UCEM,
including many-body e�ects.
The many-body e�ects shown in the derived ana-

lytical expressions of the correlated DWF σ2(T ),
uncorrelated DWF u2(T ), and correlation func-
tion CR(T ) have been achieved by using CEM and
UCEM, i.e., models including the contributions of
all nearest neighbors of the absorber and backscat-
ter atoms (for CEM) and a single atom (for UCEM),
as well as formulate their e�ective potentials in the
useful form of one-dimensional model.
The present theory has signi�cantly simpli�ed a

complicated many-body system task into a one-
dimensional model, as well as provided a method
for determining the uncorrelated DWF or MSD and
correlation function that is simpler than those using
X-ray absorption or neutron di�raction and other
theories.
The correlation e�ect has been described based

on only the e�ective local force constants of the
harmonic e�ective potentials obtained by the CAV
model used in CEM and the SAV model used in
UCEM, which clearly proves that it is a harmonic
e�ect.
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The di�erence between the correlated DWF de-
termined by CEM and the uncorrelated DWF de-
termined by UCEM is considered to be the source
causing the correlation e�ect. It has the same di-
mension as DWF, and is temperature and crystal
types dependent. The larger this di�erence is, the
stronger correlation e�ect it generates.
The reasons for the di�erence in the thermody-

namic properties of crystals described by the corre-
lated DWF σ2(T ) for the CAV model used in CEM
and by the uncorrelated DWF u2(T) for the SAV
model used in UCEM are attributed to the di�er-
ence in their e�ective local force constants caused
by the di�erence in the number and the mass of vi-
brating atoms between these models, where for the
SAV model they are double compared to those for
the CAV model.
The ratios CR/u

2 and CR/σ
2 provide percent-

ages of the correlation e�ects contributing to the
thermodynamic properties of crystals described by
the functions u2(T ) and σ2(T ), respectively. Their
constant values at high temperatures indicate the
similarity in temperature dependence of the consid-
ered values, e.g., the correlated DWF σ2(T ), the
uncorrelated DWF u2(T ), and the correlation func-
tion CR(T ), at these high temperatures.
The present theory avoids the intensive FLD cal-

culations required by a many-body system task, yet
it provides a good agreement of the calculated re-
sults of σ2(T ), u2(T ), and CR(T ) of Cu with the
experimental ones obtained from the MMPs, the
measured values for σ2(T ), as well as values calcu-
lated using FCM and DM for CR/u

2 of Cu. This
illustrates the simplicity, advantages, and e�ciency
of the present theory in EXAFS data analysis, es-
pecially in studying the correlated DWF σ2(T ), the
uncorrelated DWF u2(T), and the correlation func-
tion CR(T) in EXAFS theory.
This theory can also be applied to the study of

the considered quantities of other fcc crystals that
were not considered in this work, and it can also be
generalized to research these values of other crystal
structures based on the calculation of the CAV and
SAV local force constants of these materials.
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