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This study investigates the existence, stability, and propagation of fundamental, dipole, and tripole
modes in parity�time symmetric potentials with competing cubic and quintic nonlinearities. We discuss
such parity�time solitons in the presence of a focusing quintic nonlinearity and a defocusing cubic
nonlinearity. Assuming a �xed quintic nonlinearity coe�cient σ2 of 1, these solitons can exist and remain
stable within a suitable power range. Fundamental solitons can remain stable even for lower values of
σ1, while dipole and tripole solitons may only be stable for larger values of σ1. By employing appropriate
parameters, a signi�cant proportion of solitons can be stabilized. The stability and propagation of the
solitons are demonstrated through linear stability analysis and direct numerical simulations.
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1. Introduction

Non-Hermitian Hamiltonians with parity�time
(PT) symmetry have entirely real eigenvalue spec-
tra, given that the complex potential meets the nec-
essary condition, i.e., V ∗

PT (x) = V ∗
PT (−x) [1�5].

The real and imaginary parts of such potentials
must display symmetry and antisymmetry with re-
spect to position. Spatial solitons in these PT po-
tentials have been extensively studied in recent
years using various nonlinear media, including Kerr
media [3�9], saturable nonlinear media [10�12],
and non-local media [13�17], among others [18�24].
In addition, spatial solitons have been excited
in various PT-symmetric potentials, including
the Scar�-II potential, optical lattice potential,
harmonic-Gaussian potential, and super-Gaussian
potential. Properties such as stability, symmetry
breaking, and dynamic evolution have been widely
discussed. In recent years, various types of opti-
cal solitons have been extensively studied, includ-
ing bright solitons, gap solitons, dark solitons, vor-
tices, and vector solitons. These solitons are sup-
ported by complex PT-symmetric potentials. It is
widely accepted that linear PT-symmetric systems
have a critical property, namely the existence of a
threshold value for the strength of the imaginary
component of a complex potential, known as the
PT-symmetry breaking point. Once the threshold
is surpassed, the spectrum shifts from real-valued

to complex-valued. Article [25] provides a compre-
hensive review of nonlinear waves in PT-symmetric
physical systems. In addition to Kerr or cubic non-
linearity, beam propagation has also been stud-
ied in media with higher-order nonlinearity. The
presence of such nonlinearity signi�cantly modi-
�es beam propagation and can lead to completely
new phenomena. Beam stability is achieved with
higher-order nonlinearity. The inclusion of the quin-
tic nonlinearity results in the formation of a sta-
ble composite soliton, which is not observed in
Kerr media. The variational method is used to
examine the generation and nonlinear dynamics
of multi-dimensional optical dissipative solitonic
pulses with the complex cubic�quintic Ginzburg�
Landau equation [26]. In physical realizations, the
quintic nonlinearity arises from three-body in-
teractions in a dense Bose�Einstein condensate.
Observations of cubic�quintic optical nonlinear-
ity have been reported in the crystal, chalco-
genide glasses, and ferroelectric �lms [27�30]. Re-
cent studies have investigated the stability and evo-
lution of solitons in media with competing cubic
and quintic nonlinearities [31�37]. This article dis-
cusses multipole solitons in PT-symmetric poten-
tials with focusing cubic and de-focusing quintic
media [31]. It investigates the fundamental solitons
in the cubic�quintic nonlinear Schrödinger equa-
tion with PT-symmetric potentials [32]. Addition-
ally, it explores spatial solitons in non-parity�time-
symmetric complex potentials with de-focusing
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cubic and focusing quintic media [33]. This arti-
cle analyses stable solitons in the one- and two-
dimensional generalized cubic�quintic nonlinear
Schrödinger equation with fourth-order di�raction
and PT-symmetric potentials [34]. It also studies
one-dimensional gap solitons in quintic and cubic�
quintic fractional nonlinear Schrödinger equations
with a periodically modulated linear potential [35].
Additionally, it presents families of fundamental
and multipole solitons in a cubic�quintic nonlinear
lattice in fractional dimension [36]. This study ex-
amines gap solitons in parity�time-symmetric opti-
cal lattices with competing cubic and quintic non-
linearities [37]. The results of [37] indicate that all
dipole solitons are unstable, and only a small por-
tion of fundamental solitons are stable when the
strength of the focusing quintic nonlinearity is �xed.
After comparing the above-mentioned articles

(e.g., [31�37]), we found that most of them have
studied the ground state and multipole solitons with
focusing cubic and defocusing quintic nonlinearity.
However, there are few studies on defocusing cu-
bic and focusing quintic nonlinearity. In particu-
lar, there has been relatively little exploration of
multipole solitons in PT potentials exhibiting both
focusing quintic and defocusing cubic nonlinearity.
This study discusses one-dimensional spatial optical
solitons in PT single potentials with focusing quin-
tic and defocusing cubic nonlinearity. The model
discussed in [31�37], i.e., one-dimensional nonlin-
ear Schrödinger equation, is used to explore multi-
pole solitons in PT single potentials. In this paper,
we will consider a complex single potential with
real part V (X) = V0 sech

2(X/X0) and imaginary
part W (X) = W0 sech(X/X0) tanh(X/X0). When
V0, X0, W0 are changed, the pro�le of the real
and imaginary components will be modulated. The
Schrödinger equation can describe the propagation
of a beam in nonlinear media. The nonlinearity in
this article is due to cubic and quintic nonlineari-
ties. The competing e�ects between these two non-
linearities play a signi�cant role in the existence and
stability of solitons. The focusing quintic nonlinear-
ity coe�cients (σ2) are �xed at 1, while the coe�-
cients of the cubic nonlinearity (σ1) are varied from
−1 to 0. The results indicate that solitons can exist
and be stable within a suitable power range. Fun-
damental solitons can remain stable even for lower
values of σ1, while dipole and tripole solitons may
only be stable for larger values of σ1. However, it
is important to note that these solitons are only
stable within a small range of existence when ap-
propriate parameters are employed. The stability of
stationary solutions is analysed through linear sta-
bility analysis, and their evolution is veri�ed using
the beam propagation method.
The paper is organized as follows: In Sect. 2, we

present the model and the method used for the
linear stability analysis. In Sect. 3, we present a
summary of extensive numerical results that outline
the stability domains for the fundamental, dipole-,

and tripole-bound states. These results are based
on the computation of eigenvalues for small pertur-
bations and are corroborated by direct simulations
of perturbed propagation dynamics of the solitons.
Finally, in Sect. 4, we conclude the results.

2. Theoretical model

This study examines the propagation of
one-dimensional spatial optical solitons in PT-
symmetric single potentials with competing
cubic�quintic nonlinearities. The mathematical
model used is the one-dimensional nonlinear
Schrödinger equation. Optical waveguides with bal-
anced gain and loss induce linear potentials, which
aids in stabilizing various types of self-trapped
modes. The propagation of the slowly varying
beam envelope ψ(X,Z) can be described by the
normalized nonlinear Schrödinger equation, which
is also discussed in [31�37],

i
∂ψ(X,Z)

∂Z
+
∂2ψ(X,Z)

∂X2
+ σ1 |ψ|2 ψ(X,Z)

+σ2 |ψ|4 ψ(X,Z) + VPT ψ(X,Z) = 0, (1)

where X and Z are the transverse coordinate and
scaled propagation distance, respectively; ψ(X,Z)
corresponds to the slowly varying amplitude of
the light �eld; σ1,σ2 are the coe�cients of the
cubic and quintic nonlinearity, respectively; and
VPT = V (X) + iW (X) is the PT-symmetric
potential. In the case of PT-symmetry, the poten-
tial satis�es the conditions V (X) = V (−X) and
W (−X) = −W (−X). Here, the function V (X)
describes the real refractive index and W (X)
represents the gain-or-loss distribution of the
potential.
Now we consider the solution of the form

ψ(X,Z) = ϕ(X) exp(iµZ), where µ is a real prop-
agation constant. Then we can obtain the following
equation
∂2ϕ

∂X2
+ σ1 |ϕ|2 ϕ+ σ2 |ϕ|4 ϕ+ VPT ϕ = µϕ. (2)

The modi�ed squared operator method [38] can be
used to obtain a localized solution for ϕ(X). The
stability of this solution was investigated using the
Fourier collocation method [39]. The solution of (2)
is given by small perturbations f(X), g(X), and is
taken to be of the form [31�37]

ψ(X,Z) = ϕ(X) exp(iµZ)

+ε
[
f(X,Z)eλZ + g∗(X,Z)e−λ∗Z

]
exp(iµZ).

(3)

Now substituting the expression in (1) and linearis-
ing, one gets the following coupled set of linear
eigenvalue equations

L̂

{
f

g

}
= λ

{
f

g

}
, (4)
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Fig. 1. (a) The dependence of the power P on the propagation constant µ. (b) The solid and dashed curves
are, respectively, for real and imaginary parts of fundamental solutions when P = 2.1 at σ1 = −0.5. (c) Linear
stability eigenvalues when P = 2.1 at σ1 = −0.5. (d, e) Stable or unstable propagations of fundamental modes
when P = 2.1 and P = 1.7 at σ1 = −0.5, respectively. (f) Unstable propagation of fundamental soliton for
the lower value of σ1, where σ1 = −1, P = 1.7. (g) Stable area in green with di�erent values of σ1. The other
parameters are chosen as V0 = 4, X0 = 2, W0 = 0.5.

where

L̂ =

{
L̂1 L̂2

−L̂∗
2 −L̂∗

1

}
, (5)

while L̂1 = ∂XX +2σ1 |ϕ|2+3σ2 |ϕ|4+VPT −µ, and
L̂2 = σ1ϕ

2 + 2σ2ϕ
3ϕ∗. The symbol �∗� represents

a complex conjugation. The perturbed solution will
grow exponentially with Z, resulting in an unstable
localized mode if real(λ) ̸= 0. On the other hand,
the localized modes are completely stable only when
real(λ) = 0 for every λ (i.e., the system possesses
solely imaginary eigenvalues).

3. Stability and evolution of solitons

This discussion concerns the solitons under the
focusing quintic nonlinearity and various cubic non-
linearities in the presence of a PT potential. Specif-
ically, let us consider a PT potential with the
real part V (X) = V0 sech

2(X/X0) and imaginary
part W (X) = W0 sech(X/X0) tanh(X/X0). When

X0 = 1, the PT potential is the complex Scarf II po-
tential, considered in [1�5]. The pro�le of the real
and imaginary components can be modulated by
changing the value of X0. The same applies to V0
and W0. Additionally, the values of σ1 and σ2 vary
to form these solitons. The stability and propaga-
tion properties of the solitons are then described in
detail.
Firstly, we will discuss the fundamental solitons.

The properties of fundamental solitons are depicted
in Fig. 1. The focusing quintic nonlinearity has a
�xed coe�cient of σ2 = 1 throughout this paper,
while the coe�cient of the cubic nonlinearity σ1 is
varied and ranges from −1 to 0. To maintain gener-
ality, let σ1 = −0.5, which makes the quintic nonlin-
earity focusing and the cubic nonlinearity defocus-
ing. The parameters V0 = 4, X0 = 2 and W0 = 0.5
are chosen. The dependence of the propagation con-
stant µ on the power P (i.e., P =

∫∞
−∞ dx |ϕ|2)

is shown in Fig. 1a. This fundamental soliton fam-
ily exists in the domain where 3.10 ≤ µ ≤ 3.92,
while the solitons are stable within the area where
3.32 ≤ µ ≤ 3.92. The stable area is plotted with
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a green solid curve. The curve meets either the
Vakhitov�Kolokolov (VK) [40, 41] or anti-VK [42]
criteria, which serve as necessary conditions for the
solitons' stability created by any defocusing or fo-
cusing nonlinearity. Solitons exist within a stable
range of power, as shown by the curve. This range
is bounded by minimum and maximum values, i.e.,
Pmin ≤ P ≤ Pmax.
Figure 1b presents the soliton pro�le, where the

solid and dashed curves correspond to the real parts
and imaginary sections of fundamental solutions at
P = 2.1, respectively. It is evident that the solitons
with a power of P = 2.1 are within the stable area.
Figure 1c shows the linear-stability spectrum of this
stable soliton where the real parts of all eigenvalues
are zero when P = 2.1. The numerical study exam-
ines the nonlinear evolution of stable and unstable
PT solitons under perturbation. Figure 1d, e shows
the stable and unstable propagation of soliton mode
propagation perturbed with random noise added at
a level of 5% of the soliton amplitude at (d) P = 2.1
and (e) P = 1.7. In the stable case shown in Fig. 1d,
the soliton intensity remains unchanged during evo-
lution. In the unstable case depicted in Fig. 1e, the
soliton intensity experiences a decrease after sta-
ble propagation for a certain distance. It should be
noted that the largest real part of the correspond-
ing eigenvalue is very small, with max(Re(λ)) being
0.0011 when P = 1.7. Hence, a weak instability cor-
responding to a very small growth rate is observed.
Speci�cally, for soliton families to exist un-

der a particular power P , the cubic nonlinearity
strength σ1 must not go beyond a threshold of
σmin ≤ σ1 ≤ 0. The fundamental solitons are lin-
early stable only within a speci�c portion of their
existence region. Numerical simulations indicate
that power attains a maximum and a minimum
value when σ1 is between −1 and 0. No fundamen-
tal solitons exist when power exceeds the maximum.
While if the power is less than the minimum, the
fundamental soliton can exist for any value of σ1 be-
tween −1 and 0. For instance, when P = 2.1, such
fundamental solitons can exist if σ1 is lower than
the threshold, i.e., for −1 ≤ σ1 ≤ 0, these solitons
remain stable within the region of −0.63 ≤ σ1 ≤ 0.
Numerical calculations indicate that fundamental
solitons do not exist when P > 2.96, while all fun-
damental solitons can exist for any value of σ1 from
−1 to 0 when P < 1.95. It is important to note that
the stability and propagation properties of the soli-
tons are highly sensitive to the values of σ1. Gener-
ally, when σ1 is increased, Pmin decreases more than
Pmax, resulting in an expansion of the stable exis-
tence area. Conversely, when σ1 is decreased, Pmin

increases more than Pmax, leading to a shrinkage of
the stable existence area. This implies that the sta-
bility region is narrower for lower values of σ1 and
wider for larger values of σ1. Thus, the instability
can be increased for lower values of σ1. Figure 1f il-
lustrates the unstable propagation of the fundamen-
tal soliton with σ1 = −1 and P = 1.7. Evidently, the

soliton intensity experiences a sudden decrease af-
ter stable propagation for a certain distance. Higher
instability leads to shorter distances.
To analyse the stable properties of these soli-

tons, we plotted the stable area for the fundamental
solitons with varying values of σ1. Figure 1g dis-
plays the stable area in green. Figure 1g illustrates
that fundamental solitons can remain stable even
for lower values of σ1. It is evident that the soli-
tons shown in Fig. 1e, f are not within the stable
region. Furthermore, we aim to elucidate the e�ect
of the potential's form on the stability regions of
solitons and their impact on the spatial shape of
nonlinear modes, as well as the in�uence of com-
peting nonlinearities. The purpose of this investi-
gation is to examine the role of the PT-symmetric
potential on the nonlinear mode characteristics. To
achieve this, we perform calculations using di�er-
ent values of the parameters. In general, we observe
that the amplitude of the real parts of the funda-
mental solutions increases with an increase in V0,
however, it decreases with an increase inW0 and X0

at a particular power. Conversely, the amplitude of
the imaginary part exhibits the opposite behaviour.
In general, the stability regions of solitons will be
enlarged for higher values of V0 and lower values
of W0. Most importantly, the power P of the sta-
ble soliton decreases with the decrease in X0, and
the stable region of solitons expands. For instance,
when X0 = 1.5, the solitons are stable within the
area where 0.55 ≤ P ≤ 2.15, given the parameters
V0 = 4, W0 = 0.5, σ1 = −0.5. There are additional
stable solitons for various values of σ1 ranging from
−1 to 0, and the stable region has expanded. Under
the same conditions, the solitons are more stable for
lower values of X0.
Next, we will explore the dipole instances, as de-

picted in Fig. 2, which illustrates typical images
of dipole solitons. For the value of σ1, we chose
−0.2, while other parameters were selected as fol-
lows V0 = 4, X0 = 2, W0 = 0.5. The power curve of
the dipole solitons is presented in Fig. 2a, revealing
a clear pattern of increase in power of the dipole
solitons with the propagation constant µ. Dipole
soliton exists in the domain where 0 ≤ P ≤ 4.70,
and the solitons are stable within the area where
0.50 ≤ P ≤ 1.54. The dipole soliton exists within a
speci�c domain, and it stabilizes within a de�ned
zone, as demonstrated by the solid green curve.
The solid and dashed curves in Fig. 2b display, re-
spectively, the real and imaginary components of
dipole solutions at power level P = 1. Addition-
ally, Fig. 2c exhibits the linear stability spectrum
of the stable soliton where the real portions of all
eigenvalues are zero. It is evident that the dipole
solitons with power P = 1 exist within the sta-
ble region. Furthermore, we have conducted a nu-
merical analysis of the nonlinear evolution of both
stable and unstable dipole solitons under pertur-
bation. In Fig. 2d and Fig. 2e, the stable and un-
stable propagations of dipole solitons are shown
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Fig. 2. (a) The dependence of the propagation constant µ on the power P . (b) The solid and dashed curves
are for real and imaginary parts of dipole solutions when, respectively, P = 1 at σ1 = −0.2. (c) Linear stability
eigenvalues when P = 1 at σ1 = −0.2. (d, e) Stable or unstable propagations of nonlinear dipole modes when
P = 1 and P = 1.8 at σ1 = −0.2, respectively. (f) Unstable propagation of dipole soliton when P = 1 at
σ1 = −0.5. (g) Stable area in green with di�erent values of σ1. The parameters are chosen as V0 = 4, X0 = 2,
W0 = 0.5.

at P = 1 and P = 1.8, respectively. Figure 2d
demonstrates the robustness of dipole solitons as
their intensity remains unchanged during evolution.
However, in the unstable case shown in Fig. 2e, the
soliton intensity decreases after stable propagation
over a certain distance. The maximum real part
of the corresponding eigenvalue is extremely small,
with max(Re(λ)) being 0.0025 at P = 1.8. Such a
weak instability is indicative of a very small growth
rate. The e�ect of competing cubic and quintic non-
linearities varies depending on the value of σ1. In
general, it is easy to generate dipole solitons for
any value of σ1 ranging from −1 to 0 for a spe-
ci�c power P . However, the stable region is narrow
in a speci�c section of their existence area. For in-
stance, when given P = 1, in order for these dipole
solitons to exist and remain stable, σ1 should be
within the range of −0.35 ≤ σ1 ≤ 0. Dipole solitons
become unstable when σ1 < −0.35. We vary σ1 over
the range of −1 to 0, observing the typical unstable
propagation of the dipole soliton for lower values
of σ1. Figure 2f illustrates this phenomenon with
σ1 = −0.5 and P = 1. It is evident that the soliton

intensity undergoes changes during its propagation.
In general, dipole solitons tend to be unstable for
lower values of σ1 but are relatively stable for larger
values. This can be observed by comparing Fig. 2d
and Fig. 2f.
In summary, Fig. 2g displays the stable area in

green for these dipole solitons with varying values
of σ1. Figure 2g shows that dipole solitons may only
be stable for larger values of σ1. It is clear that the
dipole solitons in Fig. 2e, f are not within the sta-
ble area. In this study, we investigate the impact of
competing nonlinearities on the stability of solitons,
as well as the in�uence of the PT-symmetric po-
tential on the nonlinear mode characteristics. The
amplitude of the real parts of the dipole soliton so-
lutions generally increases with an increase in V0
but decreases with an increase in W0 and X0 at a
particular power. Conversely, the amplitude of the
imaginary part exhibits the opposite behaviour. In
general, the power decreases as X0 decreases under
the same conditions. The stability regions of soli-
tons will be enlarged for higher values of V0 and
lower values of W0, while they will shrink with the
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Fig. 3. (a) The dependence of the power P on the propagation constant µ. (b) The solid and dashed curves
are for, respectively, the real and imaginary parts of tripole solutions when P = 2 at σ1 = −0.2. (c) Linear
stability eigenvalues when P = 2 at σ1 = −0.2. (d, e) Stable or unstable propagations of nonlinear tripole
modes when, respectively, P = 2 and P = 2.6 at σ1 = −0.2. (f) Unstable propagation of tripole soliton when
P = 2 at σ1 = −0.5 . (g) Stable area in green with di�erent values of σ1. The parameters are chosen as V0 = 4,
X0 = 2, W0 = 0.5.

decrease in X0. For example, when X0 = 1, there
are no stable dipole solitons when σ1 ≤ −0.38, given
the parameters V0 = 4 and W0 = 0.5. Generally,
the stability region is narrower for lower values of
σ1 and wider for larger values of σ1. Thus, the in-
stability can be increased for lower values of σ1. It
should be noted that all solitons are a�ected by ran-
dom noise, which is added at a level of 5% of the
soliton amplitude at the input.
Finally, we will now consider the tripole cases.

Figure 3 displays typical images of tripole solitons.
Here, σ1 is set to −0.2, while the other parameters
are as follows: V0 = 4, X0 = 2,W0 = 0.5. In Fig. 3a,
we can observe the power curve of the tripole soli-
tons. The tripole soliton family exists within the
domain 0 ≤ P ≤ 7.0, while the solitons are sta-
ble within the area 0.78 ≤ P ≤ 2.23. The stable
area is displayed as a green solid curve. Figure 3b
shows the real (solid curves) and imaginary (dashed
curves) parts of tripole solutions when P = 2. Fig-
ure 3c shows the linear-stability spectrum of the sta-
ble soliton, where the real parts of all eigenvalues
are zero when P = 2. The stable region consists

of tripole solitons with power P = 2. To con�rm
the �ndings of the linear stability analysis, we nu-
merically simulated equation (1) to propagate the
stationary solution. We perturbed tripole solitons
with a 5% random noise and summarized the sub-
sequent soliton evolutions in Fig. 3d, e. The results
show that the intensity of the stable soliton mode
propagation remains constant, while in the unsta-
ble case, it decreases. The power value of P = 2
in Fig. 3d falls within the stable region. However,
the power value of P = 2.6 in Fig. 3e does not fall
within the stable region. In the unstable case, the
maximum real part of the corresponding eigenvalue
is very small, with a maximum of Re(λ) = 0.0034
when P = 2.6. Therefore, the growth rate is low
for weak instability. When considering a particu-
lar power P , it is possible to form tripole solitons
for any value of σ1 from −1 to 0. However, their
existence is limited to a narrow stable region. The
competition between cubic and quintic nonlineari-
ties changes as σ1 varies from −1 to 0. For exam-
ple, tripole solitons remain stable when P = 2 and
σ1 varies between −0.41 and 0, but they become
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unstable when σ1 decreases. Figure 3f displays the
typical unstable propagation of a tripole soliton for
a lower value of σ1, where σ1 = −0.5, P = 2. Upon
comparison with Fig. 3d, f, it becomes clear that the
tripole soliton can indeed be stable for a larger value
of σ1. However, for a lower value of σ1, it becomes
di�cult for the tripole soliton to remain stable.
To summarise, Fig. 3g displays the stable area in

green for tripole solitons with varying values of σ1.
Figure 3g shows that tripole solitons may only be
stable for larger values of σ1. It is evident that the
tripole solitons illustrated in Fig. 3e, f are outside
the stable region. In this study, we also investigate
the impact of the PT-symmetric potential on the
nonlinear mode characteristics and stability prop-
erties. Our �ndings indicate that, in general, the
amplitude of the real parts of the tripole soliton
solutions increases with an increase in V0 but de-
creases with an increase in W0 and X0 at a partic-
ular power. Conversely, the amplitude of the imag-
inary part exhibits the opposite behaviour. Under
the same conditions, the stability regions of solitons
will be enlarged for higher values of V0 and lower
values ofW0. It is di�cult to form stable solitons for
very low values ofX0. Generally, the power of stable
solitons decreases as X0 increases. Tripole solitons
exist when the power exceeds the minimum and is
less than the maximum at a certain σ1. The sta-
bility region is narrower for lower values of σ1 and
wider for larger values of σ1.
Furthermore, we conducted numerous numeri-

cal simulations with alternative parameters, which
yielded comparable �ndings. Solitons are able to ex-
ist, remain stable within a suitable power range, and
sustain stability for a larger value of σ1. A consid-
erable proportion of solitons can be stabilized by
employing appropriate parameters.

4. Conclusions

In conclusion, this study examines the existence,
stability, and propagation of fundamental, dipole,
and tripole modes in PT potentials with compet-
ing cubic and quintic nonlinearity. The case of PT
solitons under focusing quintic nonlinearity and var-
ious defocusing cubic nonlinearity is discussed. The
competing e�ect between cubic and quintic non-
linearities plays a signi�cant role in the existence
and stability of both fundamental and multi-pole
PT solitons. The focusing quintic nonlinearity coef-
�cients (σ2) are �xed at 1, while the coe�cients of
the cubic nonlinearity (σ1) are varied from −1 to 0.
The results indicate that solitons can exist and be
stable within a suitable power range, with greater
stability observed for larger values of σ1. Funda-
mental solitons can remain stable even for lower
values of σ1, while dipole and tripole solitons may
only be stable for larger values of σ1. These solitons
may be stable within a small range of existence by

employing appropriate parameters. Linear stability
analysis was conducted to investigate the stabil-
ity of these stationary solutions. Additionally, di-
rect numerical simulations were used to explore the
propagation of these solutions.
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