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The purpose of the following paper is to compare the applicability of Rayleigh hysteresis model and
Steinmetz law in the evaluation of power losses of selected soft magnetic materials under the in�uence of
low magnetizing �elds. Both approximations are relatively simple in terms of computational complexity,
thus they seem to be appropriate for technical applications that do not require extensive knowledge of
the physical properties of the material. The selected soft magnetic materials, i.e., steels and ferrites,
in the form of toroidal cores, were investigated in low magnetizing �elds with a computer-controlled
hysteresisgraph system. Both considered models were applied to the obtained power loss characteristics.
The quality of the description provided by each model was compared in terms of root-mean-square
deviation and determination coe�cient R2, which allowed us to choose the more suitable approximation.
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1. Introduction

Measurement and evaluation of power losses of
inductive components seem to be crucial in terms
of energy saving and reducing CO2 emission in mod-
ern industry. About 285 TWh is lost annually in dis-
tribution transformers of power grids only [1], not
taking into account losses of inductive components
massively widespread in electronic devices.
Modeling of power losses in medium and high

magnetizing �elds is relatively complex. It can be
performed utilizing elaborated physical models of
magnetic hysteresis, like the Preisach model or the
Jiles�Atherton model [2], by numerical integration
of the computed hysteresis loop. However, it seems
ine�ective in engineering practice where simplicity
of calculation is an important factor. Also, physical
models dedicated to hysteresis losses, like the Pry
and Bean model [3�5] or the Bertotti model [6�9],
are not easily applicable, as they require knowledge
of multiple microstructural parameters of the ma-
terial. Moreover, these models are based either on
special functions, like the modi�ed Bessel function
of the �rst kind in the Pry and Bean model, or
on the time derivative of the magnetic �ux density,
which is computable only for basic waveform shapes
(sinusoidal, triangular). For technical applications,
models based on elementary functions and not nec-
essarily involving microstructural parameters seem
to be more suitable. Fortunately, in the case of low

magnetizing �elds of the so-called Rayleigh region,
there is a possibility of utilizing such a model, as
power losses can be approximated with the Rayleigh
hysteresis model or Steinmetz law. Both are rela-
tively simple mathematical approximations, based
on second-order polynomial and power function, re-
spectively, so they meet the established requirement
of low computational complexity.
In the paper, the e�ectiveness of both approxima-

tions is compared on the set of measurement data
including low-�eld power losses of four soft magnetic
materials, i.e., two Ni�Zn ferrites and two struc-
tural steels. The quality of the approximation is ex-
pressed by means of normalized root-mean-square
deviation (NRMSD) between the model and mea-
surement data and determination coe�cient R2.

2. Investigated power loss models

The subject of investigation are two power loss
models applicable for low magnetizing �eld regions.
Both are simple mathematical approximations, con-
venient for technical applications.
The low magnetizing �eld region (Rayleigh re-

gion) is an initial part of the magnetization
curve, where the macroscopic magnetization pro-
cess is mostly governed by elastic de�ections and
translations of the domain walls, which give rise
to the reversible and irreversible components of
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magnetization, respectively [10]. Therefore, mag-
netic hysteresis occurs in this region, however, the
hysteresis loop exhibits a peculiar shape, sometimes
referred to as a lenticular loop [11, 12] or Rayleigh
loop [13, 14]. The shape results from both branches
of the loop being symmetrical second-order curves,
whose intersection points are vertices of the loop.
The commutation curve, composed of these ver-
tices, follows the second-order equation known as
Rayleigh law of magnetization [10, 13�15], i.e.,

B(H) = µ0

(
µiH + νRH

2
)
, (1)

where B is magnetic �ux density, H � magne-
tizing �eld, µi � initial relative magnetic perme-
ability, νR � so-called Rayleigh coe�cient, and
µ0 = 4π × 10−7 H/m � magnetic permeability of
free space. The linear term refers to a reversible
component of magnetization, while the quadratic
term describes an irreversible component giving rise
to the magnetic hysteresis.
The Rayleigh hysteresis model was �rst intro-

duced by Lord Rayleigh in 1887 [16]. The basis of
the model is the assumption of linear dependence
of relative magnetic permeability µ on the magne-
tizing �eld H [10, 13]

µ(H) = µi + νRH, (2)

which underlies the law of magnetization (1). More-
over, Rayleigh came to the realization that the
lenticular hysteresis loop observed in the weak mag-
netizing �eld could be also described with the
second-order equation, which for descending (up-
per) branch takes the form [10, 13, 14]

B↘(H) = µ0

[
(µi+νRHm)H +

νR
2

(
H2

m−H2
)]

,

(3)

and for ascending (lower) branch

B↗(H) = µ0

[
(µi+νRHm)H − νR

2

(
H2

m−H2
)]

,

(4)

where Hm is the amplitude of the magnetizing �eld.
Later, on the basis of (3) and (4), equations describ-
ing speci�c parameters of the hysteresis loop were
formulated, including coercive �eld, magnetic rema-
nence, and energy loss density in the magnetization
cycle. Due to the hysteresis loop being described by
continuous functions that can be integrated, it is
possible to provide an analytical formula for power
loss. Total energy loss density corresponds to the
surface area of the hysteresis loop [7, 10]

wH =

Bm∫
−Bm

dB H(B), (5)

with Bm being the maximum value of magnetic �ux
density. Note that (5) originates from the calcula-
tion of loop area AH , so geometrically it is a prod-
uct of the double integral over the surface limited
by the B↘(H) and B↗(H) functions. The form of
total energy loss given by (5), most often provided
in the literature, is obtained by changing the order

of integration. However, in the Rayleigh region, the
straight dependence between magnetic �ux den-
sity and magnetizing �eld is known, as B↘(H)
and B↗(H) are given by (3) and (4), respectively.
Therefore, the natural order of integration is more
suitable. As the domain of integration can be con-
sidered as area AH limited by magnetizing �eld ex-
trema Hm and −Hm and branches of the hysteresis
loop B↘(H) and B↗(H), (5) can be expressed by
means of the double integral over the area AH en-
closed by hysteresis loop

wH =

∫∫
AH

dH dB =

Hm∫
−Hm

dH

B↘(H)∫
B↗(H)

dB =

Hm∫
−Hm

dH
(
B↘ (H)−B↗(H)

)
. (6)

After substitution, one can obtain

wH =

Hm∫
−Hm

dH µ0

(
µiH + νRHmH +

νR
2
H2

m

−νR
2
H2 − µiH − νRHmH +

νR
2
H2

m − νR
2
H2

)
,

(7)

which leads to

wH = µ0αR

Hm∫
−Hm

dH
(
H2

m−H2
)
=

µ0νR

(
H2

m 2Hm−2H3
m

3

)
=µ0νR

(
2H3

m−2

3
H3

m

)
.

(8)

This �nally results in the expression of dependence
between energy loss density wH and magnetizing
�eld amplitude Hm in the Rayleigh region [7, 13]

wH (Hm) =
4

3
µ0νR H3

m. (9)

Therefore, the expression for power loss during dy-
namic magnetization in a low magnetizing �eld re-
gion takes the form

PH (Hm) = fVe
4

3
µ0νR H3

m, (10)

where f is the magnetizing �eld frequency, and Ve

� e�ective volume of the magnetic material.

The Steinmetz law, in its basic form, was orig-
inally introduced in 1890 [17]. The dependence of
the energy loss density on the maximum magnetic
�ux density takes the form of a simple power func-
tion [17, 18]

wH(Bm) = αBη
m. (11)

Exponent η is called the Steinmetz exponent (origi-
nally reported to be 1.6 [17]), and α is a proportion-
ality factor. Thus, the power loss can be expressed
as

PH(Bm) = fVeαB
η
m. (12)
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TABLE I

Main magnetic properties of the investigated
soft magnetic materials: Ni0.36Zn0.64Fe2O4 (A),
Ni0.36Zn0.67Fe1.97O4 (B), X30Cr13 (C), and
13CrMo4-5 (D).

Material A B C D

Bm [T] 0.325 0.260 1.280 1.590

Hc [A/m] 45 95 785 670

Br [T] 0.120 0.087 0.940 1.245

µi [−] 600 250 100 80

Ve [cm3] 21.04 22.44 2.52 2.52

On the basis of the original Steinmetz law, numer-
ous modi�cations were developed to better adapt
it to the nonlinear character of the magnetiza-
tion process [19]. A further extension of the power-
function-based approximation are models based on
the Widom scaling procedure [20, 21]. However, in
the case of a low magnetizing �eld, the magnetic
�ux density waveform is relatively less distorted
from the shape of the magnetizing waveform. There-
fore, the nonlinearity of the magnetization process
is less meaningful, and expression (12), based on
the original Steinmetz equation, might be utilized
for power loss approximation.

3. Investigated materials and measurement

methodology

Four soft magnetic materials were selected for
the experiment. Two of them were ferromagnetic
ceramic materials (ferrites) of chemical composi-
tion Ni0.36Zn0.64Fe2O4 and Ni0.36Zn0.67Fe1.97O4,
utilized for magnetic cores of wideband transform-
ers and inductive coils. The other two were struc-
tural alloy steels X30Cr13 and 13CrMo4-5, used in
the power industry. The main magnetic properties
of the materials are summarized in Table I. In the
case of ferrites, the presented data are provided ac-
cording to the speci�cation of the manufacturer �
POLFER S.A. Maximummagnetic �ux density Bm,
coercive �eld Hc, and magnetic remanence Br pro-
vided for steels were previously measured in the sat-
uration region (Hm = 5 kA/m). Initial magnetic
permeability µi of steels was previously determined
for the frame-shaped samples used in magnetoelas-
tic investigation [22, 23].
Investigated materials were formed into toroidal

cores, providing a closed magnetic circuit within
the sample in order to reduce the demagnetizing
�eld [7]. Each sample was characterized by the ef-
fective volume Ve, calculated on the basis of geo-
metrical dimensions of the sample.
The measurements were performed with a dig-

itally controlled hysteresisgraph system. Dynamic
magnetic characteristics of all four materials were

investigated with the linearly changing magnetiz-
ing �eld (triangle waveform). The magnetizing �eld
frequency for ferrites was 1.0 Hz, while for steels, it
was 0.1 Hz. Such low frequencies allowed to signi�-
cantly reduce the eddy current losses [24], especially
in the case of steels. Thus, equation (5), in this case,
describes the pure magnetic hysteresis losses.

For each material, a family of several hysteresis
loops was measured with increasing values of the
magnetizing �eld amplitude Hm. The limits of Hm

corresponding to the Rayleigh region for investi-
gated materials were established according to the
values previously presented in paper [25]. Among
other parameters, measured loops were character-
ized by the power loss PH , which allowed us to ob-
tain the characteristics of PH as a function of max-
imum magnetic �ux density Bm. All measurements
were performed in standard laboratory conditions.

4. Results and discussion

On the basis of experimental results, the charac-
teristics of power loss PH were determined for the
investigated materials. In order to provide a clear
reference for both models, the dependence of PH on
maximum magnetic �ux density Bm is presented.

The Rayleigh model coe�cients of investigated
materials were already determined in the previ-
ous research [25]. As can be seen in (12), only the
Rayleigh coe�cient νR a�ects the modeled value
of power loss PH . Coe�cients of the Steinmetz
law (10) were determined by means of linear re-
gression. Applying natural logarithm to both sides
of (12) leads to the expression

ln(PH) = ln (fVeα) + η ln (Bm) , (13)

thus reducing the problem to linear dependence
y = b + ax. Linear regression provides directly the
value of η = a, while α is given as

α =
eb

fVe
. (14)

The determined values of coe�cients are pre-
sented in Table II. The values of Steinmetz expo-
nent η signi�cantly exceed the original value of 1.6.
However, it has to be noted that the presented re-
sults were obtained with a non-sinusoidal magnetic
�ux density waveform. This may lead to the in-
creased exponent η, as well as to a more rapid failure
of the model in approximation of power losses with
Bm increasing further outside the Rayleigh region,
where the nonlinearity of the magnetization process
is getting more signi�cant.

Model curves calculated with designated coe�-
cients were applied to the experimental results and
are presented in Figs. 1�4. The lower values of power
loss for steels result from a much lower e�ective vol-
ume Ve of the steel cores used in the experiment
(Table I).
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Fig. 1. Results of measurement and modeling of
power loss PH with Rayleigh model and Steinmetz
law for Ni0.36Zn0.64Fe2O4 ferrite.

Fig. 2. Results of measurement and modeling of
power loss PH with Rayleigh model and Steinmetz
law for Ni0.36Zn0.67Fe1.97O4 ferrite.

TABLE II

Determined values of coe�cients of Rayleigh
model [25] and Steinmetz law for investigated materi-
als: Ni0.36Zn0.64Fe2O4 (A), Ni0.36Zn0.67Fe1.97O4 (B),
X30Cr13 (C), and 13CrMo4-5 (D).

Material

Rayleigh model Steinmetz law

µi

[−]
νR

[m/A]

α

[−]
η

[−]
A 644 10.45 881.63 2.35

B 285 1.90 2634.63 2.34

C 69 0.16 23456.43 2.69

D 64 0.79 5336.49 2.41

Fig. 3. Results of measurement and modeling of
power loss PH with Rayleigh model and Steinmetz
law for X30Cr13 steel.

Fig. 4. Results of measurement and modeling of
power loss PH with Rayleigh model and Steinmetz
law for 13CrMo4-5 steel.

In the case of Ni�Zn ferrites (Figs. 1 and 2),
both models seem to approximate measured power
losses relatively well. The Steinmetz law is slightly
more consistent with experimental data. For steels
(Figs. 3 and 4), the situation is more diversi�ed.
The Rayleigh model provides a signi�cantly worse
approximation, especially for points near the end
of the measurement range. However, as it was pre-
viously presented in [25], the transition from the
lenticular loop to the sigmoidal loop of investigated
steels is much more rapid than in the case of ferrites
and takes place in the �elds much below the coercive
�eld of the material. This results in a less accurate
approximation of magnetic parameters, including
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TABLE III

Statistical metrics of Rayleigh model and Steinmetz
law for investigated materials: Ni0.36Zn0.64Fe2O4

(A), Ni0.36Zn0.67Fe1.97O4 (B), X30Cr13 (C), and
13CrMo4-5 (D).

Material

Rayleigh model Steinmetz law

R2

[−]
NRMSD

[%]

R2

[−]
NRMSD

[%]

A 0.972 5.48 0.995 2.34

B 0.972 5.45 0.995 2.30

C 0.876 11.97 0.998 1.50

D 0.918 9.66 0.997 1.99

power loss, for the �elds near the Rayleigh region
limit. On the other hand, the Steinmetz law was
proven to be valid also for the �elds beyond the
Rayleigh region, so the decrease in approximation
quality near the region limit does not occur.

The quality of approximation for both models was
evaluated with two statistical metrics. The deter-
mination coe�cient R2 was calculated according to
the following formula [26]

R2 = 1−

n∑
i=1

(
PHi−P̂Hi

)2

n∑
i=1

(
PHi− 1

n

n∑
i=1

PHi

)2 , (15)

where PHi is the experimental value, P̂Hi � value
estimated by the model, and n � number of
measurement points. Root-mean-square deviation
(RMSD) normalized by the range of measured val-
ues � NRMSD � is expressed as [26]

NRMSD =
1

∆PHi

√√√√ 1

n

n∑
i=1

(
PHi−P̂Hi

)2

, (16)

where ∆PHi is the range of measured values of PHi.
The metrics characterizing both models were calcu-
lated for each investigated material. The resulting
values are summarized in Table III.

The presented results indicate that for all investi-
gated materials, the Steinmetz law provides better
approximation in terms of both R2 and NRMSD.
Again, the di�erence is especially signi�cant for
steels. Values of NRMSD for Steinmetz law are
in this case �ve to eight times lower than for the
Rayleigh model. However, both models allow us to
relatively well estimate the power loss PH with R2

over 0.9 (except for the Rayleigh model for X30Cr13
steel). The advantage of Steinmetz law results par-
tially from the direct �tting of the model curve
to the experimental data, while coe�cients of the
Rayleigh model are determined on the basis of �t-
ting the Rayleigh law of magnetization (1) to the
commutation curve. Such indirect determination of
model coe�cients might negatively in�uence the
quality of approximation.

5. Conclusions

The experimental data presented in the paper al-
lowed us to compare the power loss approximation
capability in low magnetizing �elds of two simple
mathematical models: the Rayleigh model of hys-
teresis and Steinmetz law. Both models were ap-
plied to the set of experimental data obtained for
two di�erent kinds of soft magnetic materials: fer-
rimagnetic Ni�Zn ferrites and ferromagnetic struc-
tural steels.
The modeling results indicate that both models

approximate the power loss in the Rayleigh region
with satisfying quality. For ferrites, the determina-
tion coe�cient R2 is relatively high, slightly prefer-
ring Steinmetz law. In the case of steels, the di�er-
ence in the quality of description is more prominent,
and the statistical metrics of the Rayleigh model
are signi�cantly worse than those of Steinmetz law.
The reason is probably a more rapid transformation
of the hysteresis loop shape with increasing �eld
amplitude, which does not follow the Rayleigh de-
scription well, but is in good agreement with the
Steinmetz equation developed for a wider range of
magnetizing �elds, including high permeability re-
gion.
Despite the fact that both investigated models

can be considered satisfyingly accurate in the esti-
mation of power losses of soft magnetic materials in
low magnetizing �elds, further investigation is still
required to validate the models for a higher range of
magnetizing �eld frequency. Also, the investigation
of modi�ed versions of Steinmetz law seems to be
interesting and may lead to further improvement of
the approximation quality.
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