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The paper presents the results of validating the model of anhysteretic magnetization curve of anisotropic
soft magnetic materials utilizing the Boltzmann distribution of magnetic domain directions. It was
con�rmed that the editorial mistake in the original paper presenting the concept of anisotropic an-
hysteretic magnetization curve was reproduced in subsequent publications. Validation presented in the
paper covers an anhysteretic magnetization curve model for magnetic materials with axial anisotropy
and anisotropic grain-oriented electrical steels. However, the proposed correction of the model of the
anisotropic anhysteretic magnetization curve can be extended to other types of anisotropy.
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1. Introduction

The concept of an anhysteretic magnetization
curve [1] is very useful for modeling the magnetic
hysteresis loops of soft magnetic materials. It is
widely used in developing physical models of the
magnetization process [2] and for practical appli-
cations, e.g., in gyrator�capacitor models of in-
ductive components implemented with SPICE soft-
ware [3]. Moreover, the recently presented measur-
ing procedure enables accurate experimental deter-
mination of the anhysteretic magnetization curve of
cores made of soft magnetic materials [4]. For these
reasons, developing e�cient and accurate models
of the anhysteretic magnetization curve of both
isotropic and anisotropic soft magnetic materials
is crucial for theoretical analyses and practical
applications.

2. Model of the anhysteretic magnetization

curve of anisotropic materials

The commonly used model of the anhysteretic
magnetization curve of isotropic materials uti-
lizes the concept presented by D.C. Jiles and D.
Atherton [1] in 1984. In this model, atomic mag-
netic moments in the description of paramagnetic
materials were substituted by domain magnetic
moments to describe the magnetic behavior of

ferromagnetic material [2]. In this case, the Boltz-
mann distribution of domain magnetic moments
leads to the model of an anhysteretic magnetization
curve described by the Langevin function [2]

Mah (H) =Ms

[
coth

(
He

a

)
− a

He

]
, (1)

where Ms is saturation magnetization,
He = H + αM , H is a magnetizing �eld, α is
quantifying the interdomain coupling, M is the
total magnetization of the material, and a is given
as

a =
N kBT

µ0Ms
, (2)

where N is the number of domains in unit cubic
volume, kB is Boltzmann constant, T is tempera-
ture, and µ0 is magnetic constant.
In successive model development presented

by Ramesh et al. in 1997 [5], the anisotropy in
Maxwell�Boltzmann distribution was considered,
leading to the following equation

Mah (H) =Ms

∫ π

0
dθ eE(1)+E(2) sin(θ) cos(θ)∫ π

0
dθ eE(1)+E(2) sin(θ)

,
(3)

where energies E(1) and E(2) were determined for
axial anisotropy as [5]

E(1) =
He

a
cos(θ)− Kan

µ0Msa
sin2 (ψ−θ) , (4)

E(2) =
He

a
cos(θ)− Kan

µ0Msa
sin2 (ψ−θ) . (5)
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For anisotropic grain-oriented electrical steels, E(1)
and E(2) were determined as [6]

E (1) =
He

a
cos(θ)− Kan

µ0Msa

[
cos2(ψ−θ) sin2(ψ−θ)

+
sin4(ψ−θ)

4

]
, (6)

E (2) =
He

a
cos(θ)− Kan

µ0Msa

[
cos2(ψ+θ) sin2(ψ+θ)

+
sin4(ψ+θ)

4

]
, (7)

where Kan is the dominant part of anisotropy en-
ergy density. It should be highlighted that the edi-
torial mistake in the original publication presented
by Ramesh et al. [5] in 1997 was reproduced in
subsequent publications [6]. It can be easily deter-
mined that (3) can not be reduced to the Langevin
equation for average magnetic anisotropy density
equal to zero. Detailed analysis of the original
publication indicates that the proper form of (3)
should be [7]

Mah (H) =Ms

π∫
0

dθ e
E(1)+E(2)

2 sin(θ) cos(θ)

π∫
0

dθ e
(E(1)+E(2))

2 sin(θ)

.

(8)

After the above correction, (8) can be used to model
the anhysteretic magnetization of materials with ax-
ial and grain-oriented types of anisotropy.

3. Validation of the model

The results of experimental measurements, pre-
sented previously in the literature [8], were used
to validate the model. The in�uence of ax-
ial anisotropy, both parallel and perpendicular
to the magnetization axis, was presented by
G. Herzer [9]. The magnetic hysteresis loops of
FINEMET Fe73.5Cu1Nb3Si13.5B9 nanocrystalline
alloy were measured after annealing in the mag-
netic �eld. As a result, the soft magnetic alloy with
parallel anisotropy K|| and two alloys with perpen-
dicular anisotropy and values roughly estimated at
K1⊥ = 6 J/m3 and K2⊥ = 20 J/m3 respectively,
were produced [9]. Magnetic hysteresis of produced
ring-shaped samples with axial anisotropy was mea-
sured in quasistatic conditions with a hysteresi-
graph system at room temperature [9].

The in�uence of grain-oriented anisotropy on the
magnetic hysteresis loop of 0.30 mm-thick lamina-
tion of high-permeability grain-oriented electrical
steel (with 3% silicon content) was presented by
F. Fiorillo et al. [10]. Measurements were carried
out at the Epstein frame according to the techni-
cal standard [11]. The anisotropy of grain-oriented
electric steel was estimated at KGO = 100 J/m3.

TABLE I

The parameters of the anhysteretic magnetization
curve of soft magnetic material with parallel and per-
pendicular axial anisotropy.

Parameter Parallel Perpend. 1 Perpend. 2

Ms [A/m] 9.985× 105

α 10−6

Kan [J/m3] 380.7 6.147 9.952

a [A/m] 0.653 0.452 7.754

TABLE II

The parameters of the anhysteretic magnetization
curve of soft magnetic material with grain-oriented
anisotropy in rolling (RD) and transverse (TD)
direction.

Parameter RD TD

Ms [A/m] 1.435× 106 1.077× 106

α 6.179× 10−6

Kan [J/m3] 22.42

a [A/m] 22.415 24.056

The identi�cation of the parameters of the anhys-
teretic loop was carried out during the optimization
process. For the modeling, two assumptions were
taken:

1. the anhysteretic curve is located inside the
magnetic hysteresis loop B�H of electric steel;

2. magnetic hysteresis is relatively small in the
case of high-permeability grain-oriented elec-
trical steel (with 3% of silicon content) mea-
sured by F. Fiorillo et al. [10].

A target function F for the optimization was the
sum of squared di�erences between the model and
experimental results,

F =

n∑
i=1

[
Ban model(Hi)−Bmeas(Hi)

]2
, (9)

where Ban model(Hi) was the result of modeling
and Bmeas(Hi) was the result of measurements �
both for the value of magnetizing �eld equal to Hi.
The values of �ux density of the anhysteretic curve
Ban model(Hi) were calculated for given values of
magnetizing �eld Hi both during the increasing and
decreasing of the magnetizing �eld H.
The di�erential evolution optimization algo-

rithm [12] was used in the model parameters iden-
ti�cation process. The di�erential evolution algo-
rithm is robust on local minima and enables an
e�cient identi�cation process. Calculations were
performed with the Octave software [13]. For the
calculations of integrals in (8), the Gauss�Kronrod
quadrature method [14] was utilized.
The results of modeling of anhysteretic magneti-

zation curves for soft magnetic materials with both
axial and grain-oriented anisotropy are presented
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Fig. 1. Results of modeling of anhysteretic magne-
tization curves of soft magnetic materials: (a) with
axial anisotropy, perpendicular K⊥ and parallel K||
to the magnetizing �eld H, (b) with grain-oriented
anisotropy KGO in the rolling direction (RD) and
transverse (TD) direction. Results of modeling �
black line, results of B(H) loops measurements �
red line.

in Fig. 1, whereas the model parameters of the an-
hysteretic curves are presented in Tables I and II
for the above types of anisotropy, respectively.

The presented results clearly indicated that the
model proposed by (4)�(8) very well reproduces the
character of the anhysteretic magnetization curve
of soft magnetic materials for both axial and grain-
oriented anisotropy. This fact is especially impor-
tant for the grain-oriented electric steel magnetized
in the transverse direction, with its sophisticated
shape of anhysteretic magnetization curve.

It should also be highlighted that the presented
model enables accurate calculation of axial average
anisotropy energy densityKan for perpendicular ax-
ial anisotropy. This good agreement is con�rmed by
the equation presented by G. Buttino [15]

Kan =
B2

s

2µ0µr
. (10)

On the other hand, it was observed that the calcu-
lated saturation magnetization Ms for electric steel
is di�erent in the rolling direction (RD) than in the
transverse direction (TD). This phenomenon can
be explained by the fact that in an anhysteretic
curve model, saturation magnetizationMsshould be
considered technical saturation, not physical satu-
ration [16].

4. Conclusions

The modeling results con�rm that the corrected
Maxwell�Boltzmann distribution-based model very
well reproduces the character of a hysteretic curve
for magnetic materials with axial and grain-oriented
anisotropies. This good agreement was con�rmed
on the basis of experimental results presented pre-
viously in the literature.
However, a detailed analysis of achieved model

parameters indicates that the physical background
of the proposed model of the anhysteretic mag-
netization curve of anisotropic soft magnetic ma-
terials needs development and explanation. This
explanation is especially necessary in the area of
saturation magnetization of grain-oriented electrical
steels with rolling direction and transverse direction
anisotropy, as well as in the case of materials with
axial anisotropy parallel to the magnetizing �eld di-
rection.
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