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The cumulative distribution functions can be used as the basis for hysteresis models. Here it is de-
scribed how, using only 3 parameters, including one representing the shape, hysteresis curves can be
constructed using symmetric distribution functions. The model is useful in the interpretation of mag-
netic Barkhausen noise data. The model also has a clear physical meaning because it represents the
distribution of coercivity inside the sample. An isotropic Stoner�Wohlfarth hysteresis was partially
modelled by a three-parameter cumulative distribution function of Gaussian hysteresis for the 1st and
3rd quadrants. Asymmetric distributions will provide better hysteresis adjustment, but these are four-
parameter models.

topics: hysteresis, magnetic Barkhausen noise (MBN), Stoner�Wohlfarth, cumulative distribution
function (CDF)

1. Introduction

Hysteresis modelling has been the subject of
many recent studies [1�7] because it allows, among
other things, a better understanding of the pro-
cesses related to the reversal of magnetization. The
main idea of this study is to use a function repre-
senting the shape of hysteresis. Cumulative distri-
bution functions (CDF) are a very reasonable choice
for describing the hysteresis form, as discussed in
this paper.
The inspiration for using the cumulative distri-

bution function comes from several sources, espe-
cially from the Benitez model [8] for the magnetic
Barkhausen noise (MBN). This model [8] assumes
that the envelope of the MBN signal can be divided
into two Gaussians and has previously been applied
to study the grain size e�ect [9]. The physical ba-
sis for the Benitez model [8] is that MBN can be
interpreted as a di�erential dB/dt [10]; see, for ex-
ample, the paper by H.J. Williams, W. Shockley,
and C. Kittel [11].
In the case of a soft magnetic material, even

in a quasi-static condition with a frequency near
zero, several di�erent processes take place inside the
hysteresis [12]: (i) irreversible rotation of domains,
(ii) irreversible domain wall displacement, (iii) cre-
ation and annihilation of domain walls, (iv) elim-
ination of �90◦ closure domains�, associated with
magnetostrictive e�ects. Thus, it is di�cult to cover
all these di�erent processes within a single model.
Besides, the fact that soft magnetic materials

have 3 easy axes (iron) or 4 easy axes (nickel) makes
it very di�cult to evaluate the magnetization pro-
cesses, also due to the di�culty of evaluating the
demagnetizing �eld [13, 14].

The sigmoidal shape of the hysteresis is due to
magnetocrystalline anisotropy. Otherwise, the hys-
teresis would be an ellipsoid, as assumed, for exam-
ple, in the superellipse model [15]. Cumulative dis-
tribution functions well re�ect the sigmoidal shape,
such as the error function, which is used to study
atomic di�usion processes [16].

One of the objectives here is to �nd a model with
a small number of parameters. For example, the
Jiles�Atherton (JA) model has 5 adjusting parame-
ters, as described in the Sablik�Jiles model for plas-
tic deformation [17]. However, even with 5 parame-
ters, the JA model was not able to �t or obtain the
experimental hystereses, which were modi�ed due
to the plastic deformation in electrical steels [18].
The reason is simple, namely the JA model im-
poses a Langevin function as the �skeleton� of the
curve. However, this is an unrealistic assumption.
Thus, the JA model can be considered a purely
phenomenological model. In other words, the JA
model only gives a geometric description of hystere-
sis. Therefore, other functions can be considered as
those representing the �hysteresis skeleton�. One of
such functions is the Gaussian distribution [19].

The Stoner�Wohlfarth (SW) model has been suc-
cessful in describing the complete hysteresis of 2:17
type SmCo magnets [20, 21], and the reason is that
the only reversal process in that case is coherent ro-
tation. Thus, as a starting point, the Gaussian CDF
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Fig. 1. Isotropic Stoner�Wohlfarth model.

Fig. 2. The dm/dh curve for the isotropic Stoner�
Wohlfarth model.

model will be compared with isotropic SW hystere-
sis. The derivative of any hysteresis is a distribution
function, and it represents portions of the sample
with reversal of magnetization promoted by a given
applied �eld.

2. Isotropic and anisotropic

Stoner�Wohlfarth model and its derivative

The isotropic Stoner�Wohlfarth (SW)
model [22, 23] is a case where there are only
3 parameters; 2 are the scale parameters related
to the abscise and ordinate, and the shape of the
hysteresis is due to texture � isotropic in the
case of Fig. 1. It is observed, even for this very
simple case, that the dM/dH curves only could
be represented by an asymmetrical distribution
(see Fig. 2).
In other words, the distributions obtained with

the dM/dH curves de�ne the shape of the
hysteresis. Then, by observing the derivative of

Fig. 3. Textured Stoner�Wohlfarth model; n=10.

Fig. 4. The dm/dh curve for textured isotropic
Stoner�Wohlfarth model; n = 10.

experimental hysteresis, a compatible distribution
can be chosen, and thus, the hysteresis can be
better modelled. In this paper, M is the magne-
tization, and H is the applied �eld, while m is
the reduced magnetization m = M/Ms, and h is
the reduced �eld h = H/HA, where HA is the
anisotropy �eld, and Ms is the saturation magne-
tization. The Stoner�Wohlfarth model uses dimen-
sionless parameters m and h.
Figures 3 and 4 show the hysteresis calculated

with n = 10 and its derivative, respectively. As
aforementioned, this is a 3-parameter model, with
the texture given by n = 10 and Mr/Ms = 0.917,
because Mr/Ms = n + 1/n + 2. In the case of
the isotropic SW model, f(α) = 1 [22]. For the
anisotropic SW model, the magnetization m(h)
needs to be altered according to the distribution,
i.e.,

m∥ =

2π∫
0

dα f(α) cos(α−φ) sin(α)

2π∫
0

dα f(α) sin(α)

. (1)
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Here, in Figs. 3 and 4, n=10 [23] was used with the
distribution given by

f(α) = cosn(α). (2)

The conclusion from both Figs. 2 and 4 is that
the distributions dM/dH obtained from SW hys-
teresis are asymmetrical. Thus, it is quite possi-
ble that the Gaussian function is not the best
option for representing the hysteresis in Figs. 1
and 3 because Gaussian instead has a symmetrical
distribution.
As a title of curiosity, a �perfect square� hystere-

sis would be obtained with n = ∞. By making
dM/dH, then for n = ∞ instead of the distribu-
tion, the line would appear at the point h = 1.
Thus, by increasing n, the squareness of the hystere-
sis increases, as well as the sharpness of the corre-
sponding distribution. Thus, by di�erentiating the
hysteresis curve, it is possible to establish methods
for determining the squareness, which is a relevant
parameter in some applications [24].

3. Cumulative distribution function:

Gaussian case

The integral of a distribution function is its cu-
mulative distribution function (CDF), here denoted
by Φ,

Φ =

∫
dx e−x2

. (3)

The most commonly used distribution is the �nor-
mal� or Gaussian distribution. But there are many
others, such as Cauchy�Lorentz, which is also sym-
metrical. In the case of the Gaussian distribu-
tion (3), there is a solution for the in�nite integra-
tion interval given by

Φ =

∞∫
−∞

dx e−x2

=
√
π (4)

� a famous result �rst obtained by Laplace. Note
that (3) can be solved numerically by means of a
Taylor series expansion.
Then, if the integral is to be equal to unity

or 100% by de�nition, it is necessary to divide it
by

√
π. If a constant a multiplies x2, as in the fol-

lowing expression

Φ =

∞∫
−∞

dx e−ax2

=

√
π

a
, (5)

then for obtaining the normalization
∫
dx f(x) = 1,

it is necessary to divide the integral (5) by
√
π/a.

As a consequence, the error function is de�ned
as

erf(x) =
2√
π

x∫
0

dt e−t2 . (6)

Fig. 5. E�ect of parameter s on the hysteresis
curve of the CDF Gaussian hysteresis model. All
curves used the same scale parameter p = 0.5. Thus,
all hysteresis have the same Hc.

Therefore, the cumulative distribution of a Gaus-
sian is given by the error function (erf), as follows

y =
1

2
erf

(
x√
2

)
. (7)

Cumulative distribution functions can be used as
hysteresis models, especially if the applied �eld al-
lows for proximity of sample saturation and, thus,
the hysteresis has a sigmoidal shape. In the case
of applied �elds distant from saturation, the hys-
teresis has an ellipsoid shape, and then the sig-
moidal hysteresis models are not valid. Thus, the
CDF model may not be suitable for describing mi-
nor loops. When plotted on the graph, (7) has a
sigmoidal shape. For (7), the center of hysteresis
at (0, 0) is obtained for y1 = y2 = y − 0.5, and
x1 = x− 0.5 and x2 = x+ 0.5.
The standard deviation s of the Gaussian func-

tion can be taken into account, as seen in

y =
1

2
erf

(
x

s
√
2

)
. (8)

Also, the shift parameter p promotes an alteration
in the hysteresis shape, and it is de�ned as xp =
x + p and xp = x − p, as seen in (8). Coercivity
is related to the parameter p, whereas permeability
is associated with the parameter s. For example,
increasing s has the e�ect of reducing permeabil-
ity, as observed in Fig. 5. The e�ect of the p pa-
rameter on hysteresis is depicted in Fig. 6. This is
only a 3-parameter model (in contrast with the JA
5-parameter hysteresis). A mean-�eld parameter, as
in the SW�CLC†1 model [20], can also be included if
necessary, increasing the number of parameters to 4.
It should be noted that in this model, for the same
p, the coercivity is the same, as can be observed in
Figs. 5 and 6.

�1CLC � Callen�Liu�Cullen

22



Cumulative Distribution Functions as Hysteresis. . .

Fig. 6. E�ect of parameter p on the hysteresis
shape of the CDF Gaussian hysteresis model. It
should be noted that, for same p, same coercivity.

In the CDF Gaussian hysteresis model, the scale
parameter of the abscise is p, whereas the shape
parameter is s. Thus, a third parameter related to
the ordinate � Ψ � is de�ned in

y = Ψ
1

2
erf

(
x

s
√
2

)
. (9)

The model is useful for application in the analy-
sis of Barkhausen magnetic noise data. Any other
probability function, such as, for example, Voigt or
Lorentzian, can also be used as the basis for sim-
ilar hysteresis models. The physical interpretation
of the parameter p is that it represents the coer-
cive �eld. The model, therefore, has a clear physical
meaning, namely, it gives the distribution of the co-
ercive force inside the sample, which may concern
di�erent regions (groups of grains) or individual
grains.
Another possibility for a symmetrical distribution

is the raised cosine distribution [25], i.e.,

y =
1

2Sc

[
1 + cos

(
x

Sc
π

)]
, (10)

and the respective CDF distribution given as

Φ =
1

2

[
1 +

x

Sc
+

1

π
sin

(
x

Sc
π

)]
. (11)

Here, Sc denotes the hysteresis shape parameter for
the raised cosine distribution. The Laplace distri-
bution [26] is also a possibility, i.e.,

y =
1

2SL
exp

(
− |x|
SL

)
, (12)

Φ =
1

2
exp

(
x

SL

)
for x ≤ 0, (13)

Φ = 1− 1

2
exp

(
− x

SL

)
for x ≤ 0. (14)

It should be noted that the CDF of the Laplace
distribution is di�erent for x < 0 and for x > 0
(see (13) and (14)). For the Laplace distribu-
tion, SL is the shape parameter. Both the raised

Fig. 7. SW isotropic hysteresis compared with the
CDF Gaussian hysteresis model. Model parameters:
s = 0.79, Ψ = 1.96, and p = 0.48.

cosine distribution and the Laplace distribution
are easy to integrate and do not present a very
complicated CDF.

4. Models comparison

In Fig. 7, the comparison of the CDF Gaussian
hysteresis model with the isotropic SW hysteresis
is presented. The �tting parameters are s = 0.79
and Ψ = 1.96. The parameter p was set to 0.48,
because in the SW isotropic model, the coercivity
is 0.48. In Fig. 7, it is noted that the adjustment
is only partial. However, by making the p param-
eter �exible, it was possible to model the 1st and
3rd quadrants of the SW isotropic curve, as seen
in Fig. 8.

5. Additional comments

The comparison of the two models in Fig. 7
shows the limitation of the CDF Gaussian hysteresis
model. However, a reasonable �tting was presented
in Fig. 8 for the 1st and 3rd quadrants of the hys-
teresis.
Modelling a hysteresis is a very laborious process

that involves trial and error to see if a given dis-
tribution can �t the experimental data. Instead of
�tting the hysteresis, �tting the derivative dM/dH
can be a more rapid method for �nding the hystere-
sis parameters.
Other functions can be considered. Unfortu-

nately, asymmetrical distribution functions have at
least 2 shape parameters, and this increases the
number of parameters to four. Even so, this is better
than the JA model with 5 parameters.
Alternative possibilities for the symmetric Gaus-

sian distribution are skewed distributions. Espe-
cially the asymmetric Laplace distribution [27]
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Fig. 8. SW isotropic hysteresis compared with the
CDF Gaussian hysteresis model. Model parameters:
s = 0.83, Ψ = 1.95, and p = 0.57.

could solve the problem of modelling hysteresis. An-
other possibility is the Weibull distribution [28].
The Gamma distribution is also an alternative [29].

The Gamma function was established by Euler
after studying the Wallis formula for π. This gave
its name to a family of integrals, i.e., the Wallis
integrals, which are solved using the Gamma func-
tion [30].

6. Conclusions

The cumulative distribution functions (CDFs)
can be used as the basis for hysteresis models. Here
it is described how, using only two additional con-
stant parameters, a sigmoidal hysteresis curve can
be constructed. The model is useful in the inter-
pretation of magnetic Barkhausen noise data. The
model also has a clear physical meaning because it
represents the distribution of the coercive �eld in-
side the sample. The model is �rst presented for a
Gaussian distribution function, but it can be easily
extended to Voigt, Lorentzian, or any other distri-
bution.

An isotropic Stoner�Wohlfarth hysteresis was
partially modelled by a three-parameter CDF Gaus-
sian hysteresis, but only in the 1st and 3rd quad-
rants. Asymmetric distributions will provide better
hysteresis adjustment, but these are 4-parameter
models.
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