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A free-electron laser is a laser that has the same optical properties as a conventional laser, such as
emitting beams of coherent electromagnetic radiation, which can reach high powers, but uses some very
di�erent principles of operation to form the beams. The chaotic motion of electrons causes a consid-
erable decrease in the gain and e�ciency of free-electron lasers. In this paper, the Hamiltonian of the
dual-wiggler free-electron laser with and without axial guide magnetic �eld is constructed. Hamilton's
equations of motion were derived exactly for both cases. The steady-state solution is also derived and
investigated so that the initial conditions of the system are clear. The Poincaré surface-of-section maps
were plotted after solving Hamilton's equations of motion numerically, where the chaotic behavior of
the system was obvious when the axial �eld was included while the motion became regular and the
Hamiltonian is integrable in the absence of the axial guide magnetic �eld. Regular orbits are observed
clearly for large values of the axial �eld.
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1. Introduction

A free-electron laser, or FEL, is a laser that has
the same optical properties as a conventional laser,
such as emitting beams of coherent electromagnetic
radiation, which can reach high powers, but uses
some very di�erent principles of operation to form
the beams [1]. FEL uses a relativistic electron beam
as a lasing medium, which moves freely in a trans-
verse periodic magnetic �eld called a wiggler (or
undulator) [2]. Free-electron lasers have the widest
frequency range of any laser type and can be tuned
to a large extent. In recent years, a great deal of re-
search, both experimental and theoretical, has been
carried out on free-electron lasers (FELs). Experi-
mental and theoretical work has yielded many suc-
cessful results in laboratories and research centers
around the world. FEL is characterized by its spe-
cial performance, �rst of all, wide frequency tun-
ability, high frequency, high power, and wide band-
width [3]. These features are attractive for a vari-
ety of medical, industrial, and military applications.
FEL radiation is typically caused by electrons pass-
ing through a magnetic device called an �undulator�
or �wiggler,� in which the electrons are forced to
perform periodic oscillating trajectories in space [4].
The precise form of the wiggler �eld can take vari-
ous con�gurations, and FELs are constructed with

helically polarized and linearly polarized wiggler
�elds. In this paper, we used a con�guration of the
so-called dual wiggler, which has two wavelengths
and two �eld strengths [5].
The invention of optical lasers led to a revolution

in the �eld of optics and to the creation of such
�elds of research as quantum optics. The reason was
their unique statistical and coherence properties.
The emerging short-wavelength free-electron lasers
(FELs) are sources of very bright coherent extreme
ultraviolet and X-ray radiation with pulse durations
on the order of femtoseconds and are presently con-
sidered to be laser sources at these energies. FELs
are highly spatially coherent to the �rst order but,
in spite of their name, behave statistically as chaotic
sources [6].
The extension of the wavelength range of free-

electron laser is an important topic in current FEL
research. Using higher harmonics is one way to ob-
tain short wavelengths. Both theory and experi-
ments have proved the feasibility [7�10]. But all
of this work was done with planar undulator free-
electron lasers. Theoretically, it has been shown
that the dual-undulator FEL has the advantage
over the planar-polarized undulator FEL in terms
of obtaining higher harmonics. The dual undula-
tor is a new type of magnetic structure, which
has already been proposed by Varfolomeev and
Pitatelev [11].
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Fig. 1. Schematic diagram of dual wiggler.

Irregular phase-space trajectories of electrons im-
pair the quality of electron beam delivery, reducing
the performance of free-electron lasers (FELs). Pre-
vious literature has shown that irregularities in the
phase-space trajectory of electrons can be induced
in several ways, such as changing the wiggler ampli-
tude and inducing sidebands [12]. Based on a Hamil-
tonian model with a set of self-consistent di�eren-
tial equations, it was shown that the electron beam
normalized plasma frequency function not only cou-
ples the electron motion to the FEL wave, leading
to the evolution of the FEL wave�eld, but also that
even if the initial energy of the electron is equal to
the synchronous energy of the FEL waves, when the
normalized plasma frequency has a su�ciently large
value, power saturation may occur at large beam
currents, and it will also cause irregular waves of
electron phase-space trajectories that do not reach
power saturation [13].
Hamiltonian chaos has been an active area of re-

search in physics and applied sciences. The classic
work of Kolmogorov, Arnold, and Moser (KAM)
shows that the generic phase space of nonintegrable
classical Hamiltonian systems, subject to small per-
turbations, contains three types of orbits: stable
periodic orbits, stable quasi-periodic orbits (KAM
tori), and chaotic orbits [14]. The stability of an
electron beam is important to improve the radia-
tion power, gain, and e�ciency, and it becomes low-
grade due to the high wiggler magnetic �eld and
self-generated �elds in a high-power free-electron
laser [15]. It is understood that chaotic behavior
results from strong dependence on initial condi-
tions [16]. If any error develops in time, the nearby
trajectories diverge exponentially, and the orbit de-
pends sensitively on the initial state. A very small
randomness in the initial state is su�cient for this
to occur. Hamiltonian with N degrees of freedom is
integrable if it has N independent constants of mo-
tion in involution, e.g., the Poisson bracket of any
two constants of them is zero. If the number of con-
stants is less than N , the motion is nonintegrable,
and part of the phase space is chaotic [17�19]. FELs
are highly spatially coherent to the �rst-order but,

in spite of their name, behave statistically as chaotic
sources. The chaotic motion of electrons causes a
considerable decrease in the gain and e�ciency of
free-electron lasers [20]. The chaotic nature of X-ray
free-electron-laser pulses is a major bottleneck that
has limited the joint temporal and spectral reso-
lution of spectroscopic measurements [21]. In this
paper, we constructed the Hamiltonian of the dual-
wiggler free-electron laser with and without the ax-
ial guide magnetic �eld, and Hamilton's equations
of motion were derived exactly for both cases. The
steady-state solution is also derived and investi-
gated so that the initial conditions of the system
are clear. The Poincaré surface-of-section maps were
plotted after solving Hamilton's equations of mo-
tion, where the chaotic behavior of the system was
obvious when the axial �eld was included while the
motion became regular and the Hamiltonian is in-
tegrable in the absence of the axial guide magnetic
�eld.

2. Theoretical formulation of the problem

2.1. Dual-wiggler �eld

In our model, blocks of permanent magnets are
joined, as shown in Fig. 1. A guiding axial constant
magnetic �eld is induced into the system to pro-
vide more con�nement to the beam. The relativistic
electron beam propagates near the axis along the z-
direction. The magnetic �eld produced by this con-
�guration, the so-called wiggler, near the axis and
the guiding �eld are [11]

B = Bw +Bg

B = B0x sin (kxz)x̂+B0y sin (kyz)ŷ +B0g ẑ,
(1)

where B0x and B0y are the wiggler magnetic
strength in the x- and y-directions, respectively;
B0g is the axial guiding �eld strength; and kx,y =
2π/λx,y where λx,y are the wiggler periods in the
x- and y-directions. The corresponding vector �elds
are

A = Aw +Ag,

A = −B0y

ky
cos (kyz)x̂+

B0x

kx
cos(kxz)ŷ +B0gxŷ.

(2)

2.2. The Hamiltonian representation

Frequently, equations of motion of a particle can
be written quite simply in Hamiltonian form, in
which the system of three second-order equations
for the coordinates qi is represented by a system of
six �rst-order equations for the three-coordinate qi
and the three momenta pi [19]
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dpi
dt

= −∂H

∂qi
, (3)

dqi
dt

=
∂H

∂pi
, (4)

which are called Hamilton's equation of motion. The
relativistic Hamiltonian is given by [16]

H =

√
m2c4 +

(
cP + eA

)2

= γmc2, (5)

where γ is the relativistic mass factor. The full form
of (5) is given accordingly as

H =

[
m2c4 +

(
cpx−

eB0y

ky
cos (kyz)

)2

+

(
cpy+

eB0x

kx
cos (kxz)+eB0gx

)2

+(cpz)
2

] 1
2

=

γmc2. (6)

The Hamiltonian is y-independent, which means
that py = const, which can be chosen to be zero
(i.e., py = 0).

Another constant of motion is the Hamiltonian
since it is time-independent, which means that H =
const = γmc2. Since no new canonical transfor-
mation is possible, the third constant of motion is
not available and the Hamiltonian is nonintegrable,
hence, chaotic orbits are possible.

Normalizing by dividing both sides on mc2 yields

Ĥ =

[
1 +

(
px
mc

− eB0y

kymc2
cos(kyz)

)2

+

(
eB0x

kxmc2
cos(kxz)+

eB0g

mc2
x

)2

+
( pz
mc

)2
] 1

2

=[
1+

(
p̂x−Âwy cos (kyz)

)2

+
(
Âwx cos (kxz)+Ωx

)2

+p̂2z

] 1
2

= γ. (7)

Here, Ĥ = H
mc2 , p̂x = px

mc , p̂y =
py

mc , p̂z = pz

mc ,

Âwx = eB0x

kxmc2 , Âwy =
eB0y

kymc2 , and Ω =
eB0g

mc2 .

2.3. Hamilton's equations of motion

The equations of motion of a particle can be writ-
ten from the Hamiltonian in their x, z, p̂x, and p̂z
forms as follows

dpi
dt

= −∂H

∂qi
=⇒ dp̂x

dt
= −∂Ĥ

∂x
and

dp̂z
dt

= −∂Ĥ

∂z
,

dqi
dt

=
∂H

∂pi
=⇒ dx

dt
=

∂Ĥ

∂p̂x
and

dz

dt
=

∂Ĥ

∂p̂z
,

(8)

dp̂x
dt

= −∂Ĥ
∂x =

−Ω(Âwx cos (kxz)+Ωx)

γ , (9)

dp̂z
dt

=−∂Ĥ

∂z
=
−kyÂwy sin (kyz)(p̂x−Âwy cos (kyz))

γ

+
kxÂwx sin (kxz)(Âwx cos (kxz)+Ωx)

γ
, (10)

dx

dt
=

∂Ĥ

∂p̂x
=

(p̂x−Âwy cos (kyz))

γ
, (11)

dz

dt
=

∂Ĥ

∂p̂z
=

p̂z
γ
. (12)

The �xed points, or the steady-state orbits, de-
noted by x0, z0, p̂x0, p̂z0, satisfy the steady-state
equations of motion

dp̂x
dt

=
−Ω(Âwx cos (kxz0) + Ωx0)

γ
= 0

=⇒ −Ω(Âwx cos (kxz0) + Ωx0) = 0

=⇒ x0 =
−Âwx cos (kxz0)

Ω
, (13)

dp̂z
dt

=
−kyÂwy sin (kyz0)(p̂x0 − Âwy cos (kyz0))

γ

+
kxÂwx sin (kxz0)(Âwx cos (kxz0) + Ωx0)

γ

=⇒ −kyÂwy sin (kyz0)(p̂x0 − Âwy cos (kyz0))

+kxÂwx sin (kxz0)(Âwx cos (kxz0) + Ωx0) = 0,

(14)

dx

dt
=

(p̂x0 − Âwy cos (kyz0))

γ
= 0

=⇒ (p̂x0 − Âwy cos (kyz0)) = 0

=⇒ p̂x0 = Âwy cos (kyz0), (15)

dz

dt
=

p̂z0
γ

=⇒ p̂z0 = 0. (16)

2.4. The Hamiltonian equations of motion without
axial guide magnetic �eld (Bg = 0)

The Hamiltonian can be written quite simply in
the following form

Ĥ =

[
1 +

(
p̂x−Âwy cos(kyz)

)2

+
(
p̂y+Âwx cos(kxz)

)2

+ p̂2z

] 1
2

= γ. (17)

It is clear that the Hamiltonian is time-independent,
so it is a constant of motion

Ĥ = const = C1 = γ0. (18)

And Ĥ is x-independent, so p̂x is constant,

dp̂x
dt

= −∂Ĥ

∂x
= 0 =⇒ p̂x = const = C2. (19)
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And Ĥ is y-independent, so p̂y is constant,

dp̂y
dt

= −∂Ĥ

∂y
= 0 =⇒ p̂y = const = C3. (20)

The Hamiltonian is integrable as we already have
three constants of motion.

New Hamilton's equations of motion are

dx

dt
=

∂Ĥ

∂p̂x
=

(p̂x − Âwy cos (kyz))

γ0
, (21)

dz

dt
=

∂Ĥ

∂p̂z
=

p̂z
γ0

, (22)

dp̂x
dt

= −∂Ĥ

∂x
= 0, (23)

dp̂z
dt

= −∂Ĥ

∂z
=

−kyÂwy sin (kyz)(p̂x−Âwy cos (kyz))

γ0

+
kxÂwx sin (kxz)(p̂y+Âwx cos (kxz))

γ0
. (24)

The �xed points, or steady-state orbits, denoted
by p̂z0 and z0, satisfy the steady-state equations of
motion and so the following calculation can be made

dx

dt
=

(p̂x0 − Âwy cos (kyz0))

γ
= 0

=⇒ (p̂x0 − Âwy cos (kyz0)) = 0

=⇒ p̂x0 = Âwy cos (kyz0) (25)(
the obtained �xed point can be simply inverted to

z0 = 1
ky

cos−1
(

p̂x0

Âwy

)
= 1

ky
cos−1

(
C2

Âwy

))
and

dz

dt
= 0 =

p̂z0
γ

=⇒ p̂z0 = 0, (26)

dp̂z
dt

= −kyÂwy sin (kyz0)(p̂x0 − Âwy cos (kyz0))

+kxÂwx sin(kxz0)(p̂y0 + Âwx cos(kxz0)) = 0.
(27)

One can write (27) simply as

−kyÂwy sin (kyz0)(C2 − Âwy cos (kyz0))

+kxÂwx sin (kxz0)(C3 + Âwx cos (kxz0)) = 0.
(28)

It worth mentioning that one can solve equations
(22) and (23) analytically. Substituting (22), i.e.,
dz/dt = p̂z/γ0, into (23) gives

dp̂z
dt

=
dp̂z
dz

dz

dt
=

p̂z
γ0

dp̂z
dz

=

−kyÂwy sin (kyz)(p̂x−p̂z)

γ0

+
kxÂwx sin (kxz)(p̂y + Âwx cos (kxz))

γ0
, (29)

therefore

p̂z dp̂z =
[
− kyÂwy sin (kyz)(p̂x−Âwy cos (kyz))

+kxÂwx sin (kxz)(p̂y+Âwx cos (kxz))
]
dz. (30)

Integrating both sides
∫
dp̂z p̂z =

∫
dz (. . . ), one

yields

p̂2z
2

= Âwyp̂x cos (kyz)− Âwxp̂y cos (kxz)

+
Â2

wyky

2
sin2(kyz) +

Â2
wxkx
2

sin2(kxz) + const,

(31)

so

p̂z = ±
[
2Âwyp̂x cos (kyz)− 2Âwxp̂y cos (kxz)

+Â2
wykysin

2(kyz) + Â2
wxkxsin

2(kxz) + const
] 1

2

.

(32)

3. Numerical simulation

The set of equations of motion derived in the pre-
vious section is solved numerically in the following
procedure. First, we consider an autonomous sys-
tem de�ned by N simultaneous di�erential equa-
tions

dy1

dt = f1 (y1, . . . , yn) ,
...
dyn

dt = fn(y1, . . . , yn). (33)

A solution can be represented by a curve or a trajec-
tory in an N -dimensional phase space. The succes-
sive intersections of the trajectory with the surface
Σ de�ned by yn − u =0, where u is a constant, are
considered. It is not possible to specify in advance
the variation of the dependent variable yn over one
integration step. This method is able to overcome

Fig. 2. Poincaré surface-of-section plots in the
z�p̂z plane at p̂r = 0, for Ĥ = 6.0, Âwx = Âwy =
1.0, λx = 2λy = 6.0, and Ω = 0.0.
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Fig. 3. The behavior of the position z as a function
of time, i.e., z(t), where Âwx = Âwy = 1.0, λx =
2λy = 6.0, and Ω = 0.0.

Fig. 4. The behavior of the momentum p̂z as a
function of time, i.e., p̂z(t), where Âwx = Âwy =
1.0, λx = 2λy = 6.0, and Ω = 0.0.

the problem by dividing the (n − 1) equations by
the last one, resulting in a new set of equations
in which t is considered a dependent variable. The
system of equations is integrated until a change in
sign is detected for yn − u = S, then one shifts to
the new system for one step, taking ∆yn = −S as
an integration step. This is what is called Hénon's
trick. This trick brings us exactly to the surface of
section.
Figure 2 shows the Poincaré surface-of-section

plots in the z�p̂z plane at p̂r = 0 for Ĥ = 6.0,
Âwx = Âwy = 1.0, λx = 2λy = 6.0, and Ω = 0.0
(no axial �eld) with di�erent initial conditions. It
is evident that these contours represent regular tra-
jectories.
Figures 3 and 4 show the smooth behavior of both

z(t) and p̂z(t) as functions of time, so the motion
and the orbits are uniform as the axial magnetic
�eld is still zero (Âwx = Âwy = 1.0, λx = 2λy = 6.0
and Ω = 0.0).

Fig. 5. 3D plot of the surface of section of p̂z vs z
and t.

Fig. 6. 3D plot of the surface of section of p̂z vs
z and t with three �xed values of the Hamiltonian
(the black, the blue, and the red).

In Fig. 5, a 3D plot of the surface of section of p̂z
vs z and t is shown. It is evident that these contours
represent regular trajectories.
Another result regarding the change in the mo-

mentum and space with time is shown in Fig. 6 with
three values of the Hamiltonian (the black, the blue,
and the red); again, the contours represent regular
trajectories. The axial �eld is zero.
The e�ect of the strength of the axial guide mag-

netic �eld is examined by plotting the Poincaré
surface-of-section maps generated by numerically
integrating the equations of motion expressed by
(8)�(12). This analysis demonstrated the chaotic
motion and regular motion under certain values of
the axial �eld. Figures 7 and 8 show chaotic elec-
tron trajectories for Ω = 2.0 and Ω = 4.0, where
it is clear that the axial �eld exhibits irregular or-
bit motion. Meanwhile, the large value of the axial
�eld results in nonchaotic motion, as shown in Fig. 9
(Ω = 60.0).

358



Nonintegrable Hamiltonian and Chaotic Electron Motion. . .

Fig. 7. Poincaré surface-of-section plots in the
z�p̂z plane at p̂r = 0, for Ĥ = 6.0, Âwx = Âwy =
1.0, λx = 2λy = 6.0, and Ω = 2.0.

Fig. 8. Poincaré surface-of-section plots in the
z�p̂z plane at p̂r = 0, for Ĥ = 6.0, Âwx = Âwy =
1.0, λx = 2λy = 6.0, and Ω = 4.0.

4. Conclusions

Poincaré surface-of-section maps have been gen-
erated by numerically integrating the equations
of motion expressed in (8)�(12). This analysis
demonstrated the chaotic motion. As we have al-
ready noted, the dual-wiggler �eld induces chaos
once the axial guide �eld is included. The motion
described by (8)�(12) occurs in three-dimensional
phase space (zp̂xp̂z). Figure 2 shows the Poincaré
surface-of-section plots in the z�p̂z plane at p̂r = 0,
for Ĥ = 6.0, Âwx = Âwy = 1.0, λx = 2λy = 6.0, and
Ω = 0.0 (no axial �eld) with di�erent initial con-
ditions. It is evident that these contours represent
regular trajectories with di�erent initial conditions,
while the e�ects of the self-�eld are neglected and
the axial guide magnetic �eld is not included. To
examine the e�ect of the axial guide magnetic �eld
on the system, we plotted the Poincaré surface-of-
section maps generated by numerically integrating
the equations of motion expressed by (8)�(12). This
analysis demonstrated the chaotic motion and reg-
ular motion under certain values of the axial �eld.

Fig. 9. Poincaré surface-of-section plots in the
z�p̂z plane at p̂r = 0, for Ĥ = 6.0, Âwx = Âwy =
1.0, λx = 2λy = 6.0, and Ω = 60.0.

Figures 7 and 8 show chaotic electron trajectories
for Ω = 2.0 and Ω = 4.0, where it is clear that
the axial �eld exhibits irregular orbit motion. Mean-
while, the large value of the axial �eld results in non-
chaotic motion, as shown in Fig. 9 (Ω = 60.0). The
presented results show that dual-undulator systems
provide strong chaotic orbits under certain values of
the guiding �eld. As a result, the system of the dual-
wiggler free-electron laser without an axial guide
magnetic �eld is integrable, and the contours repre-
sent regular trajectories (regular orbits are observed
clearly for large values of the axial �eld), while the
system becomes chaotic and the motion is irregular
for certain values of the guiding �eld. The extension
of the free-electron laser's wavelength range is an
important issue in the FEL research �eld at present.
Utilizing the higher harmonics is one of the ways
to obtain a short wavelength, however, it should be
operating under certain conditions to avoid harmful
chaotic e�ects. We have demonstrated theoretically
that a dual-undulator FEL has one more advantage
than a plane-polarized undulator FEL, as it pro-
duces regular orbits once the axial �eld is excluded.
For future work, it would be useful if the e�ect of
self-�elds was examined.
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