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In this article, we discuss the increase in Reiner–Philippoff liquid thermal energy and mass transfer
through a perpendicular plane in the presence of the magnetizing field. Characterizations regarding
mass dissipation and heat energy are improved using non-Fourier’s analysis with the existence of a
thermal source. Three kinds of nanoparticles, i.e., titanium dioxide, silicon dioxide, and aluminum
oxide, are introduced in engine lubricants to create thermal energy. Darcy–Forchheimer analysis is
adopted to examine the effects of flow and thermal energy. Furthermore, the Dufour and Soret effects
are also discussed. A developing model is converted into a system of ordinary differential equations using
similarity variables and solved using the finite element method. It is observed that the heat energy of the
fluid increased as opposed to a higher rate of time relaxation number. Moreover, the fluid concentration
declined as opposed to changes in the Schmidt number and chemical reaction parameters.
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1. Introduction

The most significant applications related to
nanofluids are of substantial interest in science and
engineering. Nanotechnology applications are per-
ceived as modern science that attracts researchers
to study models based on nanofluids, including their
various aspects. Nanofluids are defined as a com-
bination of nanoparticles, including a base fluid.
Ali et al. [1] developed a model concerning hy-
brid nanofluid in the presence of magnetic field-
inserted slip conditions involving Jeffrey material.
Ali et al. [2] investigated the enhancement of heat
energy in the occupancy of viscous dissipation, uti-
lizing a hybrid nanofluid approach. Ahmed et al. [3]
used a numerical method to determine the numeric
influences of thermal transfer in the existence of
nanoparticles with fluctuating viscosity in heated
channels. The impact of a magnetizing field on the
thermal properties of nanofluids, including chemical
reactions and viscous dissipation of heat, was inves-
tigated by Gopal et al. [4]. Moreover, Oke et al. [5]
studied thermal characteristics utilizing nanoparti-
cles in the presence of a thermal source and the iner-
tial force in water. Saleem et al. [6] studied nanopar-
ticles’ thermal properties and energy in a heated
wavy medium. Next, Elnaqeeb et al. [7] investigated
how to improve the transfer of heat using tri-hybrid
nanoparticles in three-dimensional flows with water
as the base fluid and different patterns of water.
Hou et al. [8] studied the energy characteristics of

pseudo-plastic materials with tri-hybrid nanoparti-
cles utilizing the finite element technique. They de-
veloped the idea that tri-hybrid nanoparticles gain
the most heat. Also, Wang et al. [9] utilized the fi-
nite element approach to analyze the transport of
mass and heat including tri-hybrid nanoparticles in
ethylene glycol on a streatching surface. The finite
element method (FEM) was also applied by Nazir
et al. [10] to represent hybrid nanoparticles in the
rheology of a hyperbolic tangent above a stretching
plane. Manjunatha et al. [11] have investigated the
ternary nanofluid effects on convective heat trans-
fer over a heated surface. They used the shoot-
ing method to obtain numerical findings. Adun et
al. [12] investigated energy enhancement in the pres-
ence of a mixture of three forms of nanoparticles
using thermophysical properties.

It is important to emphasize that the classic case
of Fourier’s law reveals the standard energy trans-
fer process. One notable drawback of the parabolic
heat energy equation is that the system’s answer
is observed instantly in the whole medium. In this
context, the need for non-Fourier law is clear for
complex materials and can be considered an exten-
sion of Fourier’s law based on thermal relaxation
time.

Nazir et al. [13] analyzed energy transfer effects in
the Carreau fluid utilizing Cattaneo–Christov sim-
ulation over a stretching surface. To account for the
presence of changing viscosity, they used finite el-
ements. Nazir et al. [14] utilized the non-Fourier’s
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TABLE INomenclature.

Symbol Name
B0 magnetic field value
Q0 heat source
Pr Prandtl number
H heat generation parameter

ε2, ε1 very small parameters
γ fluidic number
σ electrical density
E electric field value
T temperature
θ temperature
C concentration
M magnetic number

u, v, w velocity component
ε1 very small parameter
λ time relaxation number
Sc Schmidt number
ρ density
Sr Soret number
k thermal conductivity
Fr Forchheimer parameter
Cp cpecific heat
Kc chemical reaction
ν kinematic viscosity
C∞ ambient concentration

Y,X,Z space coordinates
T∞ ambient temperature

s1, s2, s3, s4 solid nanoparticles
Tri tri-hydrid nanofluid
Re Reynolds number
Nu Nusselt number
η independent variable
Tet tetra-hybrid nanofluid
hy hybrid nanofluid
Nf nanofluid
G gravitational acceleration
KM thermal diffusion

X1, X2, X3, X4 volume fraction of nanoparticles
Γ relaxation number

law, including a chemical reaction and study of ther-
mal features in Williamson fluid by inserting hy-
brid nanoparticles. Zehra et al. [15] modeled the
energy transfer structure in the presence of non-
Fourier’s theory over a curved surface in the occur-
rence of nanoparticles. Saleem et al. [16] formulated
an energy transfer model based on non-Fourier’s ap-
proach in Maxwell liquid. Asjad et al. [17] studied
non-Newtonian fluid with hybrid nanoparticles in
a convective channel using Prabhakar’s fractional
derivative.

Fig. 1. The physical configuration of the model.

From published works, it is shown that a
2D-developed model in Reiner–Philippoff martial,
which passes through a porous perpendicular sur-
face along a heat source and chemical reaction, has
not been studied so far. Moreover, the variable mass
transfer and heat conductivity are taken into ac-
count to explore the energy and mass transport
models. Finally, the solution of the elaborated for-
mulation is obtained numerically with the help of
the finite element technique.

The structure of the paper is as follows. The lit-
erature review is covered in Sect. 1. The evolution
of the model is defined in Sect. 2. In the third part,
we discuss the finite element approach. Section 4
includes an analysis of graphical results, whereas
Sect. 5 reveals the primary outcomes and results of
the problem.

2. Mathematical analysis

Let us consider a mathematical analysis of
Reiner–Philippoff material in which three different
types of nanoparticles are suspended past a heated
vertical sheet. A non-constant magnetic field is as-
sumed in order to analyze thermal transfer and ve-
locity field characterizations. At the same time, the
chemical ratio is added to mass diffusion with the
introduction of non-Fourier’s law. Heat production
and absorption terms are taken into account us-
ing non-Fourier’s law and Darcy–Forchheirmer the-
ory [18, 19]. The nomenclature used in this paper
is provided in Table I. Variable thermal properties
of fluids are based on variable thermal conductivity.
The thermal characteristics of tri-hybrid nanomate-
rials, hybrid nanomaterials, and nanoparticles are
illustrated in Table II [20]. The physical diagram

257



N. Jabbar et al.

TABLE II

Thermal properties of titanium dioxide, silicon diox-
ide, and aluminum oxide with engine oil [20].

K

[W/(m K)]
σ

[S/m]
ρ

[kg/m3]
engine oil 0.144 0.125× 10−11 884
aluminium
oxide

32.9 5.96× 107 6310

titanium
dioxide

8.953 2.4× 106 4250

silicon
dioxide

1.4013 3.5× 106 2270

Cu 401 8933 59.5× 106

of the analyzed system is presented in Fig. 1. The
steady flow of Reiner–Philippoff martial is described
by the partial differential equations (PDEs) and is
built using boundary layer approximation, as dis-
played accordingly
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These equations ((1)–(4)) are subjected to desired
boundary conditions{
v̇1 = ax

1
3 , C = Cw, v2 = 0, T = Tw, y → 0,

C → C∞, v1 → 0, T → T∞, y →∞. (5)

Similarly, variables and concentrations that
change with temperature and thermal conductiv-
ity can be described as
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Next, the system of dimensionless ordinary differ-
ential equations (ODEs) is formulated as
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ϕ = 0. (13)

The corresponding boundary conditions are ex-
pressed as

F ′ (0) = 1, F (0) = 0, ϕ (0) = 0, θ (0) = 0,

F (∞)→ 0, ϕ (∞)→ 0, θ (∞)→ 0. (14)
Hence, we introduce the following nomenclature.

A composite relation of copper, silicon dioxide, alu-
minum oxide, and titanium dioxide with engine oil
is called a tetra-hybrid nanofluid; a composite rela-
tion of copper, silicon dioxide, and aluminum oxide
with engine oil is termed a tri-hybrid nanofluid; a
composite relation of copper and silicon dioxide is
known as a hybrid nanofluid; and copper is called
a nanofluid (see Table II). The connections among
fluid, nanofluid, tri-hybrid nanofluid, tetra-hybrid
nanofluid, hybrid nanofluid, and base fluid are the
correlations associated with tetra-hybrid nanostruc-
tures. They are defined as

µTet =
µf

(1−X1)2.5(1−X2)
2.5

(1−X3)2.5(1−X4)2.5
,

(15)
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Fig. 2. The flowchart of the finite element method.

The value of thermal energy transfer and the
value of mass transfer are obtained, respectively, as

Nu =
−xkhy

(
∂T
∂y |y=0

)
(Tw−T∞)kf

Nu√
Re

= −khy
kf
θ
′(0),

(29)

and

Sh =
−xQt

D (C−C∞)
=

Sh√
Re

= − 1

D2
ϕ′ (0),

(30)

where Re (= Uwx/νf) is a dimensionless number,
known as a Reynolds number, and it describes flow
behavior.

3. Numerical solution

The finite element technique is used to solve a
set of dimensionless, non-linear ordinary differential
equations (ODEs) defined in Sect. 2. The procedure
regarding computation is discussed below.

Step 1: A system of ordinary differential equa-
tions (ODEs) is expressed in terms of residuals, and
weighted integral residuals are used to construct
weak forms.

Step 2: The element’s stiffness matrixes are ob-
tained using the Galerkin approach. Due to the
non-linearity of the present problem, variable nodal
values are associated with the matrix related to
global stiffness. Additionally, non-linear algebraic
equations are converted into linear equations using
Picard’s technique.

Step 3: Under the computational tolerance of an
iterative simulation, the system of algebraic equa-
tions is completed.

Step 4: The results of the calculations are dis-
played in tables and graphs.

259



N. Jabbar et al.

TABLE III

Comparison of results with published work [21], when
X1 = X2 = X3 = X4 = 0, M = 0.

γ
Sajid et al. [21]

(shooting approach)
Present work

(finite element method)
0.1 0.130909 0.132903690243

0.2 0.109284 0.109033421081

0.3 0.085161 0.109032201540

TABLE IV
Velocity, temperature, and concentration profiles vs
number of finite elements.

No. of
elements

F ′
(
ηmax

2

)
θ
(
ηmax

2

)
ϕ
(
ηmax

2

)
30 0.03739643693 0.007435435051 0.009773428084

60 0.03652941667 0.003617569756 0.004548750392

90 0.03623026090 0.002433140864 0.002959697248

120 0.03607872439 0.001849791306 0.002192563678

150 0.03598713063 0.001500248584 0.001740935198

180 0.03592576537 0.001266406353 0.001443441685

210 0.03588178671 0.001098466029 0.001232702583

240 0.03584874587 0.0009717300891 0.001075606893

270 0.03582297916 0.0008725175218 0.0009539964889

300 0.03580234563 0.0007926265239 0.0008570696942

Step 5: The finite element approach for a mod-
eled problem is achieved using the indigenous Maple
code. A mesh-free analysis is conducted for the com-
putational domain [0, 8], which is mentioned in
Table III.

Step 6: This phase has to do with solving alge-
braic problems. Various different numbers of ele-
ments simulate and carry out the solution of al-
gebraic equations. Table III describes the valida-
tion of numerical results compared to the published
study [21]. Table IV presents a mesh-free study for
300 elements. Moreover, Table IV describes conver-
gence analysis. The flow chart of required FEM is
shown in Fig. 2.

4. Results and analysis

Reiner–Philippoff martial in the view of the ver-
tical plane influences the development of a two-
dimensional model. Energy transfer and transporta-
tion of mass species are carried out in the pres-
ence of non-Fourier’s law, which is combined with
chemical reaction parameters and thermal sources,
considering tetra-hybrid nanoparticles. The con-
centration and energy equations are inserted into
the mass diffusion and thermal conductivity vari-
ables. Numerical studies of the present model have
been performed with the finite element method.
Below, we present graphical descriptions of flow,
thermal energy, and concentration versus different
parameters.

4.1. A study of the motion of fluid

Figures 3–6 display velocity curves against a heat
source, fluid, and magnetic parameters. The analy-
sis of the effects of tri-hybrid nanoparticles, tetra-
hybrid nanofluids, and nanofluids on the velocity
field is carried out versus the fundamental param-
eters and shown in Figs. 3–6. It is observed that
dash-dotted lines depict tri-hybrid nanoparticle be-
havior, while dotted curves represent the position
of tetra-hybrid nanoparticles. The impact of H on
velocity curve has been predicted.

Figure 4 has been created to visually represent
the characteristics of the heat-generating compo-
nent in the fluidic motion. It has been found that
increasing the number of heat sources leads to in-
creased fluid mobility. Physically, the outer heat
source is applied to the surface’s wall to control
the distribution of heat energy into particles. The

Fig. 3. The influence of H on the velocity v.

Fig. 4. The influence of Fr on the velocity v.
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Fig. 5. The influence of M on the velocity v.

Fig. 6. The influence of γ on the velocity v.

phenomenon of heat generation is observed when
the heat source parameter exhibits positive val-
ues, whereas heat absorption occurs when the heat
source parameter exhibits negative values. The ef-
fect of this on fluid motion is predicted in Fig. 5. The
momentum boundary layers depend on the fluctua-
tions of Fr. It is stated that fluidic particles experi-
ence resistance due to a retardation motion that is
formed in motion concerning particles. Momentum
boundary layers decline when increasing the values
of Fr. A large number of pores are precisely placed
on the surface. As a result, a rise in Fr reduces the
velocity field. It is observed that the motion of fluid
for tetra-hybrid nanofluid is greater than the mo-
tion of fluid for the case of tri-hybrid nanoparti-
cles. Moreover, Fig. 5 shows how magnetic param-
eters change velocity curves, specifically for a mix-
ture of three different kinds of nanoparticles. It is
seen that the magnetic parameter is a key factor

Fig. 7. The influence of Ht on the thermal energy
curve.

in reducing the velocity of fluidic particles. Because
Lorentz’s force, which is supposed to be negative,
is applied in the moment equation, this opposing
force creates resistance in fluidic particles. Because
Lorentz’s force, which is supposed to be negative,
is applied in the moment equation, this opposing
force creates resistance in fluidic particles. Figure 6
is plotted to determine the effect on the velocity
field. This dimensionless parameter is described as
a result of the Reiner–Philippoff liquid’s presence
in the momentum equation. It is noticed that the
motion of the fluid declines when γ is increased. Fur-
thermore, thickness based on momentum boundary
layers is declined using a higher impact of γ. This
graph indicates that the fluidic motion of tetra-
hybrid nanoparticles is much more heightened than
the fluidic motion of tri-hybrid nanoparticles.

4.2. A study of fluidic temperature

The results in Figs. 7–9 show the impact of fluidic
temperature as opposed to changes in the variable
thermal conductivity number and heat source pa-
rameter. It is mentioned that tetra-hybrid nanoflu-
ids are depicted using dotted lines, but tri-hybrid
nanofluids are analyzed using dash–dotted lines.
Figure 7 has been created to illustrate the rela-
tionship between heat source parameters and flu-
idic temperature. The fluidic temperature increases
when an external heat source is applied to the wall.
In general, positive values of the heat source param-
eter are indicative of heat production, whereas neg-
ative values indicate heat absorption. Thus, thermal
layer thickness is increased over heat source param-
eter values.

The character of ε1 on thermal layers is illus-
trated in Fig. 8. It is noticed that the appearance
of ε1 is created due to the involvement of variable
thermal conductivity numbers. The current study
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Fig. 8. The influence of ε1 on the thermal energy
curve.

Fig. 9. The influence of λ1 on the thermal energy
curve.

considers the thermal conductivity in terms of the
thermal energy. In mathematical terms, thermal
conductivity depends on temperature, while ε1 de-
pends on the temperature difference. Thus, increas-
ing ε1 increases temperature difference. Further-
more, the fluidic temperature in the case of ternary
tri-hybrid nanoparticles is observed to be higher
than the fluidic temperature in the case of tri-hybrid
nanoparticles.

Figure 9 shows the influence of thermal energy
versus the behavior of the time relaxation number.
It has been analyzed that the involvement of the
time relaxation parameter is introduced as a conse-
quence of the presence of the time relaxation num-
ber. Moreover, non-Fourier methods are employed
to analyze concentration and energy equations. The
capability of fluid temperature is improved by em-
ploying a relaxation time parameter.

4.3. An investigation of fluidic concentration

Figures 10, 11 and 12, are created to determine
the characterization concentration of fluid against
the effect of Sc, Kc, and time relaxation parame-
ters by inserting a tetra-hybrid nanofluid. The dot-
ted lines depict the characteristics of a tetra-hybrid
nanofluid, while dash-dotted lines depict those of
a tri-hybrid nanofluid. The effect of Sc on flu-
idic concentration when tri-hybrid and tetra-hybrid
nanofluids are present is shown in Fig. 10. Physi-
cally, it is the ratio of momentum and mass diffusion
diffusivities. As a result, an inversely proportional
relationship occurs versus the effect of the Schmidt
number. So, an increase in Sc results in an increase
in mass diffusivity.

Fig. 10. The influence of Sc on the concentration
curves.

Fig. 11. The influence of ε2 on the concentration
profile.
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Fig. 12. The influence of Kc on the concentration
curves.

Moreover, mass diffusion for tetra-hybrid
nanofluid is more elevated than the quantity of
mass diffusion in the case of hybrid nanostruc-
tures. The connection between mass diffusion and
the variable mass diffusion number is depicted
in Fig. 11. It can be seen that the effect of
variable mass diffusion causes the rise of mass
diffusion. Furthermore, variable mass diffusion is
also temperature-dependent. Thus, mass diffusion
declines when ε2 is increased. Figure 12 shows the
effect of a chemical reaction’s parameter on mass
diffusion. When the chemical reaction parameter
is either positive or negative, two distinct types of
reactions occur. In both circumstances, a higher
Kc results in less mass diffusion.

5. Conclusions

A two-dimensional model based on non-Fourier’s
law implements fluidic features such as velocity,
thermal energy, and concentration. Tetra-hybrid
nanofluids introduce both temperature-dependent
mass diffusion and temperature-dependent thermal
conductivity. Thermal sources and chemical reac-
tions are also taken into account. A finite ele-
ment approach is used to obtain the numerical
solution. The main observations are summarized
below.

• Fluidic motion is boosted versus numerical
values for the argument heat source param-
eter, but fluidic motion slows down against
more significant numbers for the magnetic pa-
rameter and the Forchheimer parameter.

• The thermal energy of the fluid is increased as
opposed to a higher rate of heat source num-
ber, variable thermal conductivity parameter,
and time relaxation number.

• The concentration of fluid declines as opposed
to the change in chemical reaction parameters
and Schmidt number.

• The fluidic temperature of the tetra-hybrid
nanofluid case exhibits higher values com-
pared to the fluidic temperature of the tri-
hybrid nanofluid case. This trend is also ob-
served in the fluidic temperature and fluidic
concentration analyses.
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