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We investigated a three-dimensional semi-infinite spin-1/2 system bounded by a spin-1 surface using a
Monte Carlo simulation based on the Metropolis algorithm. The exchange interactions and crystal field
effects on phase diagrams, magnetizations, and susceptibilities were investigated. The phase diagrams
in three planes were presented due to the competition between specific system parameters. The system
demonstrated ordinary, extraordinary, surface, and special second-order phase transitions, as well as a
surface first-order phase transition. Furthermore, tricritical and critical end-points were discovered.
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1. Introduction

The magnetic properties of semi-infinite systems
bound in one direction by a free surface have re-
ceived increasing attention in the recent decade.
The surface effect has a major influence on mag-
netic features; the surface disrupts a system’s trans-
lation symmetry and modifies local values [1, 2].
In addition, due to their surprising physical features
and wide range of applications, semi-infinite sys-
tems have sparked a lot of interest in the statistical
physics of phase transitions [3–5].

Some critical characteristics of a semi-infinite sys-
tem have been investigated experimentally. The sur-
face ordered at a temperature above the bulk in
Gd [6] and Co/Ni (111) overlayers [7] is detected
via electron-capture spectroscopy and surface-
dedicated first-principles techniques; the transitions
are surface and extraordinary, respectively. Further-
more, spin-polarized secondary electron emission
spectroscopy and the magneto–optic Kerr effect are
utilized to demonstrate that the surface and bulk
magnetizations of a Gd ferromagnet transit at the
same critical temperature, indicating that the ordi-
nary phase transition occurs [8]. The full-potential
linearized augmented plane-wave application of cor-
related band theory, on the other hand, is employed
to increase the critical temperature at the surface
of Gd(0001) [9].

Numerous theoretical techniques have been
used to examine the magnetic characteristics
of semi-infinite systems to explain the phenom-
ena seen in experiments. Mean-field approxima-
tion (MFA) [10, 11], Monte Carlo simulation
(MCS) [12, 13], renormalization group theory
(RGT) [14, 15], effective-field theory (EFT) [16], fi-
nite cluster approximation [17], Landau theory [18],
and series expansions [19] have all been used to
investigate the spin- 12 semi-infinite Ising model.
Most of these works describe four different forms
of second-order phase transitions based on the ra-
tio R = JB/JS of bulk and surface interactions:
ordinary, extraordinary, surface, and special phase
transitions. This system also displays the tricriti-
cal, multicritical, and tetracritical points. However,
the exact solution of this system is examined and
reveals simply the presence of the ordinary second-
order phase transition [20, 21].

Later, much attention has been accorded to semi-
infinite systems with spin greater than 1

2 , such
as the semi-infinite spin-1 and spin- 32 Ising mod-
els, which have been explored using numerous ap-
proaches, including MFA [22–24] and RGT [25, 26].
Furthermore, because of their distinctive and unex-
pected characteristics compared to single-spin Ising
systems, mixed-spin Ising systems have been ef-
fectively employed to explore the magnetic char-
acteristics of ferrimagnetic materials [27]. From
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Fig. 1. Schematic representation of a three-
dimensional semi-infinite spin- 1

2
system limited by

the free surface occupied by spin-1.

a theoretical standpoint, critical behaviors of the
semi-infinite systems with mixed spins ( 12 ,

3
2 ),

( 12 ,
5
2 ), and (1, 32 ) have been widely investigated us-

ing various approaches such as MFA and MCS [28]
and RGT [29–31].

However, the study of semi-infinite systems lim-
ited by a different spin surface has attracted grow-
ing interest in the study of magnetic thin films be-
cause of their technological applications, including
contemporary data storage [32]. Spintronic systems’
technology may be readily controlled and modified
in numerous ways, allowing for a wide range of func-
tionality based on their inherent memory and in-
trinsically complex multiform behavior [33]. Thus,
spintronics has been applied to the creation of in-
formation storage and advancing sensor technology
(extremely high sensitivity, reduced size), as well
as in the field of medicine and therapy based on
magnetic resonance imaging (MRI) [34]. Studies on
hydrogen concentration measurement using ferro-
magnetic resonance (FMR) in hydrogen gas sen-
sors [35, 36] are employed in different industries,
such as chemical, energy, and automotive, and even
in residential and industrial applications to assure
safety and in the space industry. Furthermore, this
type of system has been investigated in other pa-
pers, such as [37], which investigated the spin-12
semi-infinite system bounded by a spin-1 surface in
a dynamic situation using mean-field approximation
(MFA). In addition, in [38], the authors have in-
vestigated the spin- 12 semi-infinite system restricted
by the spin- 32 surface, as well as the spin- 32 semi-
infinite system bounded by the spin-12 surface, us-
ing the renormalization group theory (RGT) and
Monte Carlo simulation (MCS).

More specifically, Kaneyoshi [39] investigated the
temperature dependences of surface and bulk mag-
netizations of a semi-infinite simple cubic mixed
spin ( 12 , 1) ferromagnetic Ising alloy with a (1, 0, 0)
surface within the framework of effective field the-
ory with correlation. They determined a critical
value of the crystal field at which the system ex-
hibits a specific type of phase diagram. We also

cite the work of Benayad and Zittartz [40], who
used RGT to investigate the effects of bilinear and
biquadratic interactions on the surface behaviors
of the three-dimensional semi-infinite mixed spin- 12
and spin-1 Ising model. They found ordinary, ex-
traordinary, surface, and special phase transitions,
as well as 26 fixed points. Recently, Sabri et al. [37]
investigated the kinetic phase transition in the semi-
infinite mixed spin (12 , 1) Ising model using the
Glauber-type stochastic dynamics method; the sys-
tem exhibits ordinary, extraordinary, surface, and
special phase transitions of second-order and tri-
critical phenomenon points.

The goal of this study is to investigate the crit-
ical behaviors of a three-dimensional semi-infinite
spin- 12 system limited by the free surface spin-1 us-
ing Monte Carlo simulation. Our research focuses
on the effects of reduced exchange interactions and
reduced crystal field on phase diagrams, sublattice
magnetizations, and susceptibilities. All phases in
the bulk and on the surface are determined, in-
cluding ordinary, extraordinary, surface, and spe-
cial phase transitions. The model and the Monte
Carlo simulation are given in Sect. 2. The effects of
the ratios RB , RBS , and DS on the phase diagrams,
magnetizations, and susceptibilities are investigated
in Sect. 3, and the findings are presented in Sect. 4.

2. Model and Monte Carlo simulation

An example of a simple cubic semi-infinite spin- 12
system limited by a spin-1 surface is schematized in
Fig. 1. Our system’s Hamiltonian is expressed as

βH = −JS
∑
〈i,j〉

SiSj − JB
∑
〈k,l〉

σkσl

−JBS

∑
〈i,k〉

Siσk −∆S

∑
i
S2
i , (1)

where S = ±1, 0 and σ = ±1/2 indicate the surface
and bulk sublattice spin variables, respectively. A
ferromagnetic interactions JS (> 0) and JB (> 0)
connect the two nearest-neighbor spins of surface
and bulk, respectively, 〈i, j〉 and 〈l, k〉. Next, JBS

(< 0) is the exchange interaction between bulk and
surface spins, and ∆S is the surface sublattice crys-
tal field.

To simulate our Hamiltonian stated above in (1),
we used Monte Carlo simulation based on the
Metropolis algorithm [41]. Periodic boundary con-
ditions are imposed in the XY plane with N = 30
spins along the x and y axes, or free boundary condi-
tions are enforced in the z direction, with L = 31 be-
ing the system length. In this simulation, we flipped
the spin once and obtained simulation data with 105

MCS, after which the first 104 steps were eliminated
to equilibrate the system. Our program computes
the physical quantities listed below

mS =
1

NS

∑NS

i=1
Si, mB =

1

NB

∑NB

k=1
σk.

(2)
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Fig. 2. Phases diagram of the system in the
(TC/JS , RB) plane evaluated for RBS = −0.3 and
DS = 1.0; SP denotes the special point.

The total susceptibility per site of the surface and
the bulk is defined by

χS = βNS

(
〈m2

S〉 − 〈mS〉2
)
,

χB = βNB

(
〈m2

B〉 − 〈mB〉2
)
, (3)

where NS = N × N and NB = N × N × (L − 1)
indicate the number of surface and bulk spins, re-
spectively, and β = (kBT )

−1, with kB representing
the Boltzmann constant and T — absolute tem-
perature. For the sake of simplicity, we set kB = 1.
The transition temperature TC is calculated in this
study using the divergence of the susceptibility
curves.

3. Results and discussions

In this section, we will discuss the effects of
the exchange interaction (JB , JBS) and single-ion
anisotropy ∆S on the magnetizations, the mag-
netic susceptibility, and the phase diagrams of the
three-dimensional semi-infinite system limited by a
free surface. In this study, for simplicity, we use
the notation RB = JB/JS , RBS = JBS/JS , and
DS = ∆S/JS , such that RB , RBS , and DS are di-
mensionless. In addition, we take JS = 1 as the unit
of the system. Some interesting results are presented
in Figs. 2–7.

It is best to describe the following phases before
going to the phase diagrams:

• (SF, BF): both the surface and the bulk are
ferromagnetic.

• (SF, BP): the surface is ferromagnetic, while
the bulk is paramagnetic.

• (SP, BP): the surface is paramagnetic, as is
the bulk.

• (SF0, BF): the surface is ferromagnetic with
spin state S = 0 and the bulk is ferromag-
netic.

Fig. 3. Reduced temperature dependence of (a)
the magnetizations (mS , mB) and (b) the mag-
netic susceptibilities (χS , χB) withRBS = −0.3 and
DS = 1, and for selected values of RB (RB = 0.5,
1.0, 1.67, 2.0).

• (SF1, BF): the surface is ferromagnetic with
spin state S = 1 and the bulk is ferromag-
netic.

• (SF1, BP): the surface is ferromagnetic with
spin state S = 1 and the bulk is paramagnetic.

3.1. Effect of the reduced exchange interaction of
the bulk (RB)

Figure 2 depicts the surface and bulk critical
temperatures , TCS and TCB , as functions of RB ,
with fixed values RBS = −0.3 and DS = 1.0.
According to this figure and the values of the ra-
tios RB , the phase diagram shows four types of
second-order phase transitions: ordinary, extraor-
dinary, surface, and special. For RB < 1.67 and
increasing temperature, our system undergoes ex-
traordinary and surface second-order phase transi-
tions, separating the three phases, namely (SF, BF),
(SF, BP), and (SP, BP). However, if RB > 1.67,
the corresponding phase diagram shows an ordinary
phase transition; the system goes from (BF, SF) to
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(SP, BP). However, when RB = 1.67, the surface
and bulk of our semi-infinite system become ordered
simultaneously (TCS = TCB), resulting in a spe-
cial second-order phase transition at SP (1.88, 1.67).
Similar phase diagrams have been shown in three-
dimensional semi-infinite mixed spins ( 12 , 1) within
the RGT [40], and they have also been seen in the
investigation of the kinetic semi-infinite spin- 12 Ising
model with an oscillating field [42]. To validate these
findings, we investigated the temperature depen-
dence of magnetization and susceptibility, as shown
in Fig. 3a, b.

The surface and bulk magnetization curves (mS

and mB), as well as the surface and bulk suscepti-
bility peaks (χS and χB) vs reduced temperature
(T/JS) for chosen values of RB = 0.5, 1.0, 1.67,
2.0, with RBS = −0.3 and DS = 1.0, are shown
in Fig. 3a and Fig. 3b, respectively. At zero tem-
perature, the bulk and surface magnetizations are
−0.5 and 1.0, respectively, as illustrated in Fig. 3a.
When RB < 1.67, the bulk magnetization grows
monotonically to zero at the transition tempera-
ture TCB = 0.56 as for RB = 0.5; hence, an ex-
traordinary second-order phase transition occurs,
separating the (SF, BF) and (SF, BP) phases. The
surface magnetization gradually declines until it dis-
appears above the critical temperature TCS = 1.83
as for RB = 1.0, indicating a surface second-
order phase transition between the (SF, BP) and
(SP, BP) phases. The linear variation in temper-
ature of surface magnetization has been seen in
numerous semi-infinite crystalline magnets in ex-
periments [43]. If RB = 1.67, the surface and bulk
magnetization curves disappear continuously at a
particular critical temperature TCS = TCB = 1.88,
indicating the occurrence of a special phase tran-
sition. Above this last particular point, and as the
temperature increases, the surface and bulk magne-
tizations remain constant at the same critical tem-
perature, i.e., TCS = TCB = 2.23 as for RB = 2.0;
the transition is ordinary of second-order between
two phases — (SF, BF) and (SP, BP). Figure 3b
depicts the temperature fluctuations of the surface
and bulk susceptibilities. We see that for all RB

values chosen, the curves of surface and bulk sus-
ceptibilities show a sudden rise at surface and bulk
critical temperatures, subsequently accompanied by
a decrease. This is a singular behavior, indicating
that the system shows a second-order transition. A
similar phenomenon has been seen in [40].

3.2. Effect of the reduced exchange interaction
between the bulk and the surface (RBS)

We also examine the effect of the reduced ex-
change interaction between the bulk and the sur-
face, RBS , on the surface and bulk critical tem-
peratures, TCS and TCB . Therefore, we plotted the
phase diagram in the (TC/JS , RBS) plane for a fixed
value of RB = 0.5 and DS = 1.0 in Fig. 4. The

Fig. 4. Phases diagram of the system in the
(TC/JS , RBS) plane evaluated for RB = 0.5 and
DS = 1.0.

phase diagram shows two second-order phase transi-
tion lines for all negative RBS values, dividing three
phases. When the system transits from the (SF, BF)
phase to the (SF, BP) phase at TCB = 0.57, this is
called an extraordinary phase transition. The sur-
face phase transition line remains constant (TCS =
1.90) for RBS > −1.57 and climbs with a little slope
as RBS decreases, between (SF, BP) and (SF, BP)
phases at higher temperatures. The critical behav-
iors are qualitatively comparable to those observed
in the kinetic semi-infinite spin- 12 Ising model using
MFA [42], in a ferrimagnetic mixed-spin (12 , 1) Ising
double layer superlattice [44], and in a multilayer
system [45] using MCS.

To further understand the critical behaviors of
our semi-infinite system, i.e., the phase diagrams
presented above, we will show the temperature de-
pendences of the surface and bulk magnetizations
(mS andmB) and magnetic susceptibilities (χS and
χB) with RB = 0.5 and DS = 1.0, as well as for
chosen values of RBS (RBS = −0.1, −1.5, −3.5)
in Fig. 5a, b. According to Fig. 5a, for all negative
RBS values, the bulk magnetization has a satura-
tion value of mB = −0.5 at T = 0 K and van-
ishes beyond a critical temperature (TCB = 0.57);
the system exhibits an extraordinary second-order
phase transition. Surface magnetization mS, on the
other hand, drops continuously to zero at transition
temperature (as TCS = 1.90, 2.05 for RBS = −0.1,
−3.5, respectively) as a result of a surface phase
transition. Furthermore, the thermal variation of
the susceptibilities (χS and χB) may be used to cal-
culate the surface and bulk critical temperatures,
as shown in Fig. 5b. We can see that the surface
and bulk susceptibilities increase rapidly as temper-
ature increases, reaching their maximums at TCB

and TCS , respectively. All of these peaks repre-
sent extraordinary and surface second-order phase
transitions. A similar phase diagram has been found
in [45] using Monte Carlo simulation (MCS).
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3.3. Effect of the reduced crystal field (DS)

Finally, the phase diagram is depicted in the
(TC/JS , DS) plane for two cases: One for a fixed
value of RB = 0.3 and RBS = −0.3, and the other
for RB = 1.0 and RBS = −0.3, as shown in Figs. 6
and 7.

3.3.1. For RB = 0.3 and RBS = −0.3

The phase diagram in Fig. 6a illustrates the sur-
face and extraordinary second-order phase transi-
tions, as well as the surface first-order phase tran-
sition and tricritical point (T ∗). The surface of the
system transits from the (SF0, BF) phase to the
(SF1, BF) phase at lower temperatures and when
DS rises — this is the first-order phase transi-
tion (dashed line). In addition, the corresponding
phase diagram shows an extraordinary second-order
phase transition (red line) between the (SF, BF)
and (SF, BP) phases. Furthermore, our system

Fig. 5. Reduced temperature dependence of (a)
the magnetizations (mS , mB) and (b) the magnetic
susceptibilities (χS , χB) with RB = 0.5 and DS =
1.0, and for selected values of RBS (RBS = −0.1,
−1.5, −3.5).

Fig. 6. (a) Phases diagram of the system in the
(TC/JS , DS) plane. (b) Reduced temperature de-
pendence of the magnetizations (mS , mB) evalu-
ated for RB = 0.3 and RBS = −0.3; T ∗ denotes the
corresponding tricritical point.

shows a surface second-order phase transition that
divides two phases, i.e., (SF, BP) and (SP, BP).
By raising the temperature, our system displays the
tricritical point T ∗ with coordinates (−1.97, 0.57),
where the surface first-order phase transition line
changes to a surface second-order one. To verify
the nature (continuous or discontinuous) of the
phase transition seen in Fig. 6a, we plot the sur-
face and bulk magnetization curves (mS and mB)
vs temperature in Fig. 6b for the chosen value
of DS (DS = −4, −3, −2.31, −2.10, −1.75, −1,
0). For all values of DS , the bulk magnetizations
are mB = −0.5 at zero temperature and grow
to the same critical temperature (TCB = 0.34);
the bulk of the system undergoes an extraordi-
nary second-order phase transition. Meanwhile, for
DS < −0.57 as for DS = −3.0 and −2.31, the
surface magnetization discontinuously passes from
saturation to zero at Tt = 0.07 and 0.345, respec-
tively; the surface of the system exhibits a surface
first-order phase transition between (mS = 1.0,
mB = 1/2) and (mS = 0.0, mB = 1/2) phases.
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Fig. 7. (a) Phases diagram of the system in the
(TC/JS , DS) plane. (b) Reduced temperature de-
pendence of the magnetizations (mS ,mB) evalu-
ated for RB = 1 and RBS = −0.3; SP and E denote
the corresponding special and critical end-points,
respectively.

However, when DS > −0.57, the magnetization mS

diminishes continuously to the critical temperature
TCS = 1.16 as for DS = −1.75. Hence, a second-
order surface phase transition occurs. Several three-
dimensional semi-infinite systems using various
theories, such as MFA and RGT, show similar
results [24, 25, 37, 42].

3.3.2. For RB = 1.0 and RBS = −0.3

As a final point, we show in Fig. 7a the critical
behaviors TC/JS as a function of DS for RBS =
−0.3 and RB = 1.0. The phase transitions shown
in this figure are the first-order and second-order
phase transitions. The free surface undergoes a first-
order transition between two ordered phases, i.e.,
(SF0, BF) and (SF1, BF), at lower temperatures.
This transition line terminates at the critical end-
point E with coordinates (−2.11, 0.66), and smooth
continuity occurs between these phases after this
E point. The system displays an extraordinary

second-order phase transition at critical tempera-
ture TCB = 1.12 for all values of DS ; the transition
is from the (SF, BF) phase to the (SP, BP) phase.
The bulk and surface of our semi-infinite system
are ordered at the same critical temperature TCB =
TCS at the special point located at SP (−2.0, 1.12);
the special second-order phase transition occurs.
Our system shows the surface second-order phase
transition above this particular point, which divides
two phases, namely (SF, BP) and (SP, BP). To con-
firm these phase transitions, we studied the tem-
perature variation of the surface and bulk mag-
netizations for various values of DS (DS = −3.5,
−2.35, −2.15, −2.0, 0.0, 1.0) with RBS = −0.3 and
RB = 1.0 in Fig. 7b. This figure clearly shows that
when T/JS grows, the bulk magnetizations contin-
uously fall to zero at the same critical temperature
for all specified values ofDS . The bulk of the system
exhibits extraordinary phase transition, whereas the
surface of the system exhibits a first-order phase
transition for all values of DS < −2.11, since the
surface magnetization exhibits a discontinuous leap
from (mS = 1, mB = 1/2) phase to (mS = 0,
mB = 1/2) at Tt = 0.31 as for DS = −2.35. When
DS = −2.0, the bulk and surface are ordered con-
currently at TCB = TCS = 1.12. When DS > −2.0,
the (SF, BP)–(SP, BP) transition is a second-order
surface phase transition. Similar findings have been
obtained in numerous semi-infinite systems stud-
ied within the framework of the EFT and the clus-
ter variation approximation [46–48]. Also, this type
of phase diagram has been found using RGT and
MCS [38]. However, no intuitively specific phase
transitions have been detected. This is the case
when the critical bulk temperature is higher than
the surface temperature, independent of the bulk–
surface interaction ratio values, indicating that all
bulk phase transitions are remarkable. The critical
temperature of the bulk is always lower than that
of the surface when the transition is of the second
order. These findings are more reliable due to the
Monte Carlo simulation (MCS).

4. Conclusions

In this study, we investigated, within the Monte
Carlo simulation, the effects of the reduced pa-
rameters RB , RBS , and DS on the critical be-
havior of a ferromagnetic three-dimensional semi-
infinite spin-12 system limited by a ferromagnetic
spin-1 surface. Phase diagrams were plotted in
three different planes after determining the ther-
mal variations of magnetizations and suscepti-
bilities. In the (TC/JS , RB) plane and accord-
ing to the values of ratios RB , our semi-infinite
system exhibits ordinary, extraordinary, surface,
and special second-order phase transitions, while
in the plane (TC/JS , RBS), the system presents
only extraordinary and surface second-order transi-
tions. The third (TC/JS , DS) plane illustrates many
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interesting results, such as the extraordinary and
special phase transitions, the surface second- and
first-order phase transitions, and the tricritical and
critical end-points.
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