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In this paper, we investigate the dynamic properties of spin–orbit coupling spin-1 ferromagnetic Bose–
Einstein condensates with different trap geometry. Our results are obtained in terms of the three-
component Gross–Pitaevskii equation of mean-field theory. Two kinds of trap potential are discussed:
isotropic and anisotropic. It is shown that the spin-exchange dynamics are greatly influenced by trap
geometry. For the latter with weak spin–orbit coupling strength, we find that the three-component
oscillation accelerates and some small difference emerges between component m = 1 and m = −1. With
the increase in spin–orbit coupling strength, the three components reach almost the same population. In
addition, the kinetic energy of the system changes within a small scope for strong spin–orbit coupling, as
opposed to a constant value in an isotropic trap. The density distributions display that the stripe phase
appears with the increase in spin–orbit coupling strength. The method of generating stripe structure is
different from the ground state of ferromagnetic condensate. For isotropic trap, the spatial separation
of top and bottom spin–orbit condensates in component m = 1 and m = −1 occurs at weak spin–orbit
coupling, and square lattice appears at strong spin–orbit coupling.
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1. Introduction

The recent experimental realization of spin–orbit
coupling (SOC) for boson [1, 2] and fermion [3, 4]
ultracold quantum gases has stimulated much the-
oretical and experimental activity. The SOC is cre-
ated by the synthetic non-Abelian gauge poten-
tials, which provide a coupling between the center-
of-mass motion and the internal degrees of free-
dom. This opens up possibilities of exploring ex-
otic quantum matter characterizing magnetic and
spin–orbit effects. A variety of interesting phenom-
ena have been found in this subject, for instance,
the stripe phase and vortex necklace in the ground
states [5–9], twisted spin vortices [10], topological
superfluidity [11] in fermionic gases, expansion of
a Bose–Einstein condensate (BEC) [12] and Mott-
insulating phases in optical lattice [13], and so on.
For review properties of SOC in BEC, see [14, 15]
and references therein.

On the other hand, the issue of trap geometry
gained great attention in the field of BECs, and
its role is intensively investigated. The mechanism
of Josephson dynamics in the presence of interfer-
ence between longitudinal and transversal fragmen-
tation, produced by the geometry of the trap, is put
forward in [16]. In [17], the authors display that the

trap geometry and low temperature of the molecules
decrease inelastic loss to ensure thermal equilib-
rium. As a result, colder and denser molecules can
be prepared. In addition, the large-area 87Rb BECs
are created using a non-Gaussian optical dipole trap
by adjusting the geometry structure of the trap [18].
In particular, Prasad et al. [19] theoretically demon-
strate that the tilt angle of the stationary state body
frame concerning the rotation axis is a non-trivial
function of the trap geometry [19]. Moreover, they
further show that the initial geometry can play an
essential role in the focused scheme so that better
resolutions and peak densities can be achieved by
cylindrical BECs [20].

Very recently, phase separation has been one of
the central research topics in the field of cold atom
systems. It is extensively studied in BECs. By uti-
lizing an inhomogeneous artificial gauge field, the
condensate forms a localized vortex lattice structure
that gives rise to a non-trivial symmetry breaking in
the phase-separated regime [21]. The phase separa-
tion for a mixture of two interacting BECs under a
magnetic field is studied [22]. Ota et al. [23] find that
thermal fluctuation plays a significant role in the
miscibility condition of a two-component mixture,
favoring phase separation at a finite temperature,
even if the mixture is soluble at zero temperature.
It is reported that a two-dimensional (2D) SOC
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can introduce an unconventional spatial separation
in a trapped binary BEC with miscible interac-
tions [24]. In addition, the Rayleigh–Taylor insta-
bility in a phase-separated three-component BEC
is investigated [25].

It is quite a known fact that dynamical and
ground states are two important aspects of charac-
terizing physical nature, and the emphasis on them
is different. The advantage of the dynamical state
is that it shows the change of physical quantity in
real-time. As a consequence, the dynamic procedure
is well understood. Moreover, the ground state gives
the final results and cannot show the variation pro-
cesses. The motivation of this manuscript is to study
the spin dynamics, the dynamical evolution of the
kinetic energy, and the change in density structure.
Therefore, we opt to investigate dynamical prop-
erties instead of examining the phase diagram or
ground state. In this article, we study the spin-1
ferromagnetic BEC with 2D SOC trapped in a har-
monic trap. The effects of SOC strength and differ-
ent trap geometries are discussed.

The rest of the paper is organized in the following
way. In Sect. 2, we formulate the theoretical mod-
els describing the SOC spin-1 BEC, and the details
of the numerical method are given. In Sect. 3, the
effects of the SOC and anisotropic trap potential
on the dynamic properties of such a system are in-
vestigated. Finally, we present a brief conclusion in
Sect. 4.

2. Theoretical model

We consider spin-1 BECs in a harmonic trap
Vtr(r) =

1
2M(ω2

xx
2 + ω2

yy
2 + ω2

zy
2), where ωx, ωy,

and ωz are the trap frequencies along the x, y, and
z direction, respectively. The dilute BECs at zero
temperature can be described by the mean-field
Gross–Pitaevskii (GP) equation [26, 27],
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where ψm(r) (m = 1, 0,−1) is the field operator
that annihilates an atom at point r; ρm = |ψm|2 is
the density in the m-th hyperfine state; ρ =

∑
m ρm

is the total density normalized to the total num-
ber of atoms N ; M is the atomic mass; λ is SOC
strength. The coefficients c0 = 4πN~2(a0+2a2)

3M and
c2 = 4πN~2(a2−a0)

3M describe binary elastic collisions
in the channel of total spin 0 and 2 in terms of the
s-wave scattering lengths a0 and a2.

In this work, we assume a transverse harmonic
confinement. In the case of an oblate trap, the
tight confinement ωz � ωx and ωz � ωy ensures
that no excited states are available in the longi-
tudinal z direction, and thus, the dynamics oc-
cur along the transverse direction x–y plane. Fac-
torizing ψm(r) into a longitudinal and a trans-
verse function ψm(r, t) = φm(x, y)w1D(z), with
w1D(z) =

(
Mωz

π~
)1/4

e−Mωzz
2/(2~) denoting the one-

dimensional (1D) ground state of the longitudinal
oscillator. After integrating out the z coordinate,
the GP equation becomes two-dimensional for the
transverse wave functions and the dimensionless
form is
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where n = |φ1|2+|φ0|2+|φ−1|2, V (x, y) =
1
2 (γ

2
xx
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2), γj = ωj/ω (j = x, y) with ω =

min{ωx, ωy, ωz}, βn = 2
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culation, the units of length, time, energy, SOC
strength, and wave function are a0 =

√
~/Mω, ω−1,

~ω,
√
~ω/M , and a−3/2

0 , respectively.
As for the numerical calculation, it consists of

two parts. First, the ground state is generated by
the imaginary time propagation with m = 0 and
φ±1 = 0. Then, the dynamics process is created by
evolving the ground state with the initial fractions
(0.003, 0.994, 0.003) for three components in real-
time propagation. Specifically, the time evolution
is performed successively using the time-splitting
Fourier spectral method [28, 29], i.e.,

i∂tφm = HKEφm, (7)

i∂tφm = HSOCφm, (8)

i∂tφm = HSPφm, (9)
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where the kinetic energy operator HKE, spin–orbit coupling HSOC, and trap potential plus terms resulting
from spin-preserving collisions HSP are defined as
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Here, we give the expressions of HKE and HSOC in
Fourier space ĤKE and ĤSOC; µx and µy are known
as Fourier frequency. Numerically, the matrixes are
solved using the exact diagonalization method by
the Lapack library [30]. The 2D spatial step and
time step applied in the present manuscript are
0.125 and 0.001, respectively.

3. Results and discussion

In this article, we consider N = 105 spin-1 ferro-
magnetic 87Rb atoms, which have a0 = 101.8aB and
a2 = 101.4aB [31], where aB is the Bohr radius. We
consider two different trap potentials, i.e., isotropic
and anisotropic. The trap frequencies for the for-
mer and latter are ωx,y,z = 2π × (10, 10, 150) Hz
and ωx,y,z = 2π × (20, 10, 150) Hz, respectively. In
this case, the dimensionless interaction strengths
are βn = 3037.88 and βs = −14.05, and the
units of length and time are a0 = 3.41 µm and
ω−1 = 1.59× 10−2 s. The aspect ratio in the quasi-
2D regime is γx,y = (1, 1) and γx,y = (2, 1). For
the sake of simplicity of notation, we denote them
as γ1,1 and γ2,1. In addition, the dimensionless vari-
ables are shown in the rest of this paper unless men-
tioned otherwise.

We first investigate the populations of spin com-
ponents for different SOC strengths and aspect ra-
tios. Figure 1a shows the coherent oscillation for
SOC strength λ = 0.6 and aspect ratio γ1,1. The ini-
tially empty components m = ±1 to develop, and
the m = ±1 components display nearly the same
dynamical behavior. As SOC strength is increased
to λ = 0.8 in Fig. 1b, the m = ±1 and m = 0 com-
ponents gradually increase and decrease and then
reach a steady value. In this process, the m = ±1
components still have the same dynamical behav-
ior. Note that similar oscillation is also seen in [32],
where the spin dynamics of antiferromagnetic atoms

23Na condensate is studied. This fact reflects that
such oscillation mode can exist independent of the
magnetic phase (ferromagnetic βs < 0 or antifer-
romagnetic βs > 0) just by the use of a relatively
strong SOC strength. As for the side of aspect ra-
tio γ2,1 in Fig. 1c, it is obvious that the oscillation
speeds up. The peak of populations Nm/N appears
alternately for components m = 0 and m = ±1.
Moreover, it is worth mentioning that m = ±1
components present some small differences. When
the SOC strength is gradually increased to λ = 0.8
in Fig. 1d, the fluctuation of spin components be-
comes small. As a result, the three components
reach roughly equal populations.

The amount of kinetic energy is an important
physical quantity for the dynamics process as it
reflects the thermalization degree of the system.
A stable spatial configuration is obtained when
the kinetic energy achieves a steady value. In the
work [33], the change in kinetic energy in spin-1
dipolar ferromagnetic 87Rb condensate is shown at
different trap geometries [33]. Here, we consider this
issue for different SOC strengths. Figure 2a displays
the kinetic energy in quasi-2D trap potential γ1,1 as
a function of time at λ = 0.5, 0.6, 0.7, 0.8, which is
represented by the black, red, blue, and green lines,
respectively. It is clear that the variation of kinetic
energy is very small for weak SOC λ = 0.5, 0.6.
As SOC strength is increased to λ = 0.7, the ki-
netic energy increases with non-periodic oscillation
and gradually becomes stable. As SOC is further
increased to λ = 0.8, the kinetic energy abruptly
increases and then reaches a constant value. For
the aspect ratio γ2,1, the weak SOC λ = 0.5, 0.6
presents almost the same dynamic behavior as the
case of γ1,1, and the kinetic energy remains almost
unchanged. Nevertheless, the thermalization time is
greatly reduced at λ = 0.7. As a consequence, the
kinetic energy quickly tends to level off after a short
time oscillation, whereas the oscillation sustains for
some time at λ = 0.8, and it is easy to see that
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Fig. 1. Populations of spin components Nm/N as a function of time t. The black, red, and blue lines represent
m = 1, 0,−1 components, respectively, with (a) λ = 0.6, γ1,1, (b) λ = 0.8, γ1,1, (c) λ = 0.6, γ2,1, (d) λ = 0.8,
γ2,1. Simulation parameters: c0 = 3037.88, c2 = −14.05.

the degree of oscillation is very small. This point is
different from the trap potential γ1,1. Moreover, we
verify that a stable spatial structure can be obtained
in this case.

To get a more intuitive insight into the influence
of the aspect ratio, we investigate the density pro-
files for three different components. Figure 3 shows
the time evolution of the density profile at different
SOC strengths. At t = 300 (first column), densi-
ties indicate that the m = 0 component is located
on the central part, the m = 1 component occupies
the top half, and the m = −1 component occupies
the bottom half of the condensates. These occupa-
tions remain almost unchanged on a time scale such
as t = 1200 (second column). The density structure
for components m = 1 and m = −1 is complemen-
tary. Namely, the component m = 1 is located in
the minimum density of component m = −1 and
vice versa. We note that the spatial separation of
top and bottom spin–orbit condensates is also ob-
served in [34], where the ground state density con-
figurations of pseudospin-1/2 SOC BECs are stud-
ied. With the increase in SOC strength, the square
lattice is shown (third column), and this pattern is
nearly the same at a finite time (fourth column).
However, for antiferromagnetic condensate, unlike
in the ferromagnetic case, the ground state density
structure is a stripe pattern [5]. In addition, we also
see that the complementarity exists for components
m = 1 and m = −1.

The spatial density configurations corresponding
to the aspect ratio γ2,1 are shown in Fig. 4. It is
observed that the density distribution for λ = 0.6
(first column) is similar to the case of γ1,1 in Fig. 3
(first column). As time proceeds, the density dis-
tributions for m = ±1 component reverse (second
column). Component m = 1 occupies the bottom
half, while component m = −1 is on the top half
of the condensates. When the SOC strength is in-
creased to λ = 0.8, to our surprise, one can see that
the stripe phase appears (third column). As men-
tioned earlier, the stripe phase is a key feature of
the ground state of antiferromagnetic condensate.
Furthermore, the stripe phase persists for a longer
time (fourth column). Therefore, we deduce that the
aspect ratio tends to create a stripe phase in the
ferromagnetic condensate. It is worth mentioning
that such a mechanism is not demonstrated in spin-
1 condensate of 87Rb. We stress that the relatively
strong SOC strength is necessary for the generation
of the stripe phase, and the complementarity still
holds.

Finally, we give the experimental feasibility of the
above analysis. In the ultracold quantum gas ex-
periment, the ferromagnetic spinor BECs are pre-
pared in rubidium vapor [35]. In this case, the in-
teratomic interactions can be approximated by a
short-range two-body potential, where the s-wave
scattering length is the only relevant parameter.
The SOC originates from the laser-assisted coupling
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Fig. 2. Dynamical evolution of the kinetic energy
Ekin with respect to time t with (a) γ1,1, (b) γ2,1.
The black, red, blue, and green lines represent the
SOC strength λ = 0.5, 0.6, 0.7, 0.8, respectively.
Simulation parameters: c0 = 3037.88, c2 = −14.05.

Fig. 3. Sequence of images of the density for the
SOC spin-1 87Rb atoms with isotropic trap γ1,1 for
(a) t = 300, λ = 0.6, (b) t = 1200, λ = 0.6, (c)
t = 300, λ = 0.8, (d) t = 1200, λ = 0.8. From top
to bottom, the rows represent n1, n0, and n−1. The
area of view in the panels is 5a0 × 5a0. Simulation
parameters: c0 = 3037.88, c2 = −14.05.

Fig. 4. Sequence of images of the density for the
SOC spin-1 87Rb atoms with anisotropic trap γ2,1
for (a) t = 300, λ = 0.6, (b) t = 1200, λ = 0.6, (c)
t = 300, λ = 0.8, (d) t = 1200, λ = 0.8. From top
to bottom, the rows represent n1, n0, and n−1. The
area of view in the panels is 5a0 × 5a0. Simulation
parameters: c0 = 3037.88, c2 = −14.05.

between the atomic center-of-mass motion and the
internal degrees of freedom, and it is realized in 2D
form [36] and becomes a tunable resource [37]. As
for the density structure, it can be directly observed
by measuring the absorption image after free ex-
pansion [38]. In addition, the aspect ratio is eas-
ily adjusted by manipulating the trap frequency.
It has been shown that the trap geometry issue
has been widely discussed in recent years [39, 40].
We point out that the discussions above are con-
fined to isotropy SOC strength. Anisotropic SOC
strength plays a significant role in the formation of
density distribution. We state that only a zero mag-
netic field is considered in the current manuscript,
and it is estimated that the non-zero magnetic field
has a great effect on the dynamics evolution pro-
cess. Moreover, we note that much attention has
been paid to mass imbalance in Bose and Fermi
systems [41, 42], which generate rich physical phe-
nomena. Some open questions can be explored in
the future.

4. Conclusions

In conclusion, we have studied the dynamic prop-
erties of SOC spin-1 ferromagnetic BECs with dif-
ferent trap geometries. We found that the spin dy-
namics are seriously affected by the aspect ratio.
Compared with the case of isotropic trap γ1,1, for
weak SOC strength, the populations in anisotropic
trap γ2,1 show that the three-component oscilla-
tion speeds up and some small difference occurs
between component m = 1 and m = −1. With
the increase in SOC strength, the three components
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reach roughly equal populations. In addition, for the
considered maximum SOC strength, the kinetic en-
ergy of the system changes within a narrow range,
as opposed to a constant value for the isotropic trap.
The density structures show that for the anisotropic
trap, the stripe phase emerges with the increase in
SOC strength. This mechanism for the creation of
a stripe pattern is different from the ground state
of ferromagnetic condensate. For isotropic trap, the
spatial separation of top and bottom spin–orbit con-
densates in component m = 1 and m = −1 occurs
at weak SOC, and square lattice appears at strong
SOC strength.
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