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Using Tokuda’s improved linear combination operator method and variational technique, the expression
of the polaron effective mass in a parabolic quantum well is derived. Due to the spin–orbit interaction,
the effective mass ratio of polaron splits into two branches. The dependence of the effective mass ratio
on the vibration frequency, the spin–orbit coupling parameter, and the velocity is discussed by nu-
merical calculation in the presence and absence of phonon. The effective mass ratio of polaron is an
increasing function of vibration frequency. The absolute value of the spin splitting effective mass ratio
increases with the increase in the spin–orbit coupling parameter and decreases with the increase in
velocity. Due to the heavy hole characteristic of spin–orbit interaction, the spin splitting effective mass
ratio is negative. The effective mass ratio is larger in the presence of a phonon than in the absence of
a phonon, and the effective mass ratio splitting distance is independent of the phonon.
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1. Introduction

Since 1988, researchers have done extensive re-
search on spintronics and have achieved a great deal
of research results [1, 2]. Spintronics has important
research value, which can help people understand
the microscopic world and can promote the research
and development of new electronic devices. It has
become an active research area for condensed mat-
ter physics due to the potential influence on infor-
mation technology and many interesting problems
of its own. If the inversion symmetry of the crys-
tal structure is broken, the electron will experience
spin splitting. The Rashba spin–orbit splitting due
to the asymmetry of the structure inversion is domi-
nant in the narrow gap semiconductor electron spin
splitting. In the past, people always thought that
the source of the Rashba effect was caused by the
electric field at the heterojunction interface. How-
ever, theory and practice have proved that the con-
tribution of the interface electric field is very small,
and the main contribution comes from the pene-
tration of the wave function at the barrier and the
asymmetry at the interface.

In 1990, Datta et al. [3] first proposed the prin-
ciple of transistors based on controlling the spin
of electrons. Since the publication of Datta’s arti-
cle [3], many scholars around the world have car-
ried out experimental and theoretical research work
on the Rashba effect in low-dimensional quantum

systems [4–7], especially in quantum well systems.
For example, Li et al. [8] adopted the framework of
effective-mass envelope function theory and investi-
gated theoretically the Rashba spin–orbit splitting
of a hydrogenic donor impurity in GaAs/GaAlAs
quantum wells. Using Kane’s 8-band k·p theory and
the envelope function approximation, Stanley et
al. [9] derived a tight binding Hamiltonian for III–V
semiconductor quantum well structures, which ac-
curately models band structure and spin–orbit cou-
pling. By applying a potential difference in the
well, they calculated the Rashba spin–orbit splitting
in the lowest conduction band. Rashba spin–orbit
splitting in the asymmetric quantum wells with dif-
ferent growth orientations and electron densities
was explored by Jin et al. [10]. The strong Rashba
effect presented in the highly asymmetric quantum
wells provides a potential candidate for spintronic
devices. It is not difficult to find that people have
done a lot of research work on the Rashba effect in
the electronic system, and a few people have done
research on it in the field of polaron. For exam-
ple, one of the authors of the paper [11] used the
Lee–Low–Pines (LLP) variational method to study
the Rashba effect of polaron in a triangular quan-
tum well. The influence of the Rashba effect on the
ground state energy of polaron in a parabolic quan-
tum well was also studied using the same method.
The Rashba spin–orbit interaction led to the split-
ting of polaron ground state energy [12].
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In this paper, the influence of Rashba spin–orbit
interaction on the effective mass of polaron in a
parabolic quantum well is studied using the uni-
tary transformation and Tokuda’s improved linear
combination operator methods. The expression of
the effective mass of the polaron is derived theoret-
ically, and the effect of Rashba spin–orbit interac-
tion on the effective mass of the polaron is discussed
by numerical calculation.

2. Theoretical derivation

A parabolic quantum well composed of two po-
lar materials grows in the z-direction, and electron
motion is strongly restricted in the growth direction
compared to the other two directions. Under the in-
fluence of Rashba spin–orbit interaction, the Hamil-
tonian of the electron–phonon system in a parabolic
quantum well is

H =
p2‖
2m

+
p2z
2m

+ V (z) +
∑
q

}ωLO a+q aq

+
∑
q

[
Vq aq exp (iq · r) + h.c.

]
+i

αR

2}3
(
p̂3−σ̂+ − p̂3+σ̂−

)
. (1)

In (1), p± = px ± ipy, σ± = σx ± σy; p and
σ are the momentum of the electron and the
Pauli operator, respectively; a+q (aq) is the cre-
ation (annihilation) operator of the bulk longitu-
dinal optical phonon with the wave vector q and
frequency ωLO; r = (ρ, z) represents the coor-
dinate vector of a single electron. The last term
in (1) represents the Hamiltonian that only con-
siders band splitting of heavy-hole states in the

spin–orbit coupling effect. The third term in (1) rep-
resents the confined potential energy of the polaron,
which is

V (z) =

 V0
(
z
d

)2
, |z| ≤ d,

V0, |z| > d,
(2)

and the quantity Vq in (1) can be expressed as

Vq = i

(
}ωLO

q

)(
}

2mωLO

)1/4(
4πα

V

)1/2

. (3)

In (2), α and V are defined as the electron–phonon
coupling strength and the crystal volume, respec-
tively. In (3), V0 and d are defined as the well depth
and the well width, respectively.

An improved linear combination operator is in-
troduced for the momentum and the coordinate of
the moving electron in the x–y plane [13]

pj =

√
m}λ
2

(
bj + b+j + p0j

)
,

rj = i

√
}

2mλ

(
bj − b+j

)
.

(4)
Here, j = x, y; λ and p0j are variational parameters,
and λ also represents the vibrational frequency of
polaron. By substituting the linear combination op-
erator into (1) and performing the second unitary
transformation on it, we take the following unitary
transformation operator

U = exp

[∑
q

(
fqa

+
q − f∗q aq

)]
. (5)

Here, fq (f∗q ) is a variational parametric function.
The unitary transformed Hamiltonian is

H ′ = H
′

0 +
p2z
2m

, (6)

where

H
′

0 =
}λ
4

∑
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+
j +bjbj

)
+

}λ
2

∑
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}λ p20
4

+
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2

∑
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(
bj+b

+
j

)
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∑
q
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(
a+q +f

∗
q

)
(aq+fq)

+
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q

{
Vq (aq + fq) exp

(
− }q2

4mλ
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exp

[
−
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}
2mλ

∑
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b+j qj
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exp
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2mλ

∑
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bjqj
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+ h.c.

}

+V0

(z
d

)2
± αR

}3

(
m}λ
2

)3/2 (
p30 − p0

)
. (7)

In (7), p20 = p20x + p20y. Let the ground state trial
wave function of the system be
|Ψ0〉 = |ϕ(z)〉

(
c χ1/2 + d χ−1/2

)
|0〉a|0〉0,

ϕ (z) =

(
2β

π

)1/4

exp
(
−βz2

)
,

(8)
where |ϕ(z)〉 is the wave function of the electron
in the z-direction, which satisfied 〈ϕ(z)|ϕ(z)〉=δ;
δ is Kronecker delta symbol; |0〉a and |0〉b are

the polaron ground state and the zero phonon
state, respectively. In order to obtain the effec-
tive mass of the polaron, the variational function
J=H

′

0−U−1(u · P‖T ) is introduced, and its mean
value in the |Ψ0〉 state is calculated as

F (λ, u, p0, fq) =
〈
ψ0

∣∣∣H ′0 − U−1 (u · P‖T )U ∣∣∣ψ0

〉
.

(9)
The Lagrange multiplier is u, which represents the
average velocity of the electron.
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Here,

P‖T = p‖ +
∑
q

aq
+aq }q‖ (10)

is the total momentum of the system in the plane,
and p‖ is the momentum operator of the electron
in the plane.

Performing ∂F
∂fq

= 0 and ∂F
∂f∗q

= 0, we get,
respectively,

f∗q = − Vq
}ωLO − }u · q

exp
(
− }
4mλ

q2
)

(11)

and

fq = −
V ∗q

}ωLO − }u · q
exp

(
− }
4mλ

q2
)
. (12)

By substituting fq and f∗q into (9) and replacing
the sum with an integral, we get

F (λ, p0, u) =
}λ
4
p20 +

}λ
2

+
V0

4βd2
− α}

2

√
ωLOπλ

−αu
2m
√
π

4

(
λ

ωLO

)3/2

− u
(
m}λ
2

)1/2

p0

±αR

}3

(
m}λ
2

)3/2 (
p30 − p0

)
. (13)

Now, we ignore p30. Using the variational method,
p0 is obtained and substituted into (13). Then, we
take the variation of F with respect to λ, and the
expression of the vibration frequency of the polaron
can be obtained by taking the extreme value. The
vibration frequency λ satisfies

}
2
− α}

4

√
ωLOπ

λ
− 3

8
αu2
√
πm

√
λ

ω
3/2
LO

= 0. (14)

By solving (14), we get the polaron vibration fre-
quency λ0. From (13), the effective mass of polaron
can be expressed as

m∗ =

[
1 +

α
√
π

2

(
λ

ωLO

)3/2

±
(
−αRmλ

}2u

)]
m.

(15)
The material has anisotropy, and the effective

mass is different in all directions. However, in (15),
we calculate the mean effective mass of the polaron
rather than the effective mass along one of the crys-
tallographic axes of the lattice.

3. Numerical calculation and result
discussion

In order to investigate the influence of vibra-
tion frequency on the effective mass spin splitting
of polaron in a parabolic quantum well, the effec-
tive mass ratio of the polaron is calculated numer-
ically, and the changes in effective mass ratio with
the vibration frequency, the velocity, and the spin–
orbit coupling parameter are discussed. At the same
time, the relations among the spin splitting effective
mass ratio with the velocity and the spin–orbit cou-
pling parameter are also discussed. We take RbCl as

Fig. 1. The relational curve between the effective
mass ratio m∗/m and the vibration frequency λ
with phonon and without phonon at different spin–
orbit coupling parameters αR.

Fig. 2. The relational curve between the effective
mass ratio m∗/m and the velocity u with phonon
and without phonon at different vibration frequen-
cies λ.

an example material and perform the numerical cal-
culations. The corresponding parameters for RbCl
are m = 0.432m0, ωLO = 3.39× 1013 s−1, α = 4.2.
Here, m0 is the free electron mass. The numerical
results are shown in Figs. 1–5. In Figs. 1–4, we use a
solid line to represent the effective mass ratio of zero
spin splitting m∗0/m, a short solid line to stand for
the effective mass ratio of spin-up splitting m∗+/m,
and dotted lines to mark the effective mass ratio of
spin-down splitting m∗−/m.

When the spin–orbit coupling parameters are as-
signed values of 1.0 × 10−19 J nm3 and 2.0 ×
10−19 J nm3, respectively, Fig. 1 shows the rela-
tionship between the polaron effective mass ratio
m∗/m and the vibration frequency λ with phonon
and without phonon. In the figure, we find that the
effective mass ratio splits into two branches on the
basis of zero spin in both cases with phonon and
without phonon, and the splitting distance increases
with the increase in the polaron vibration frequency.
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Fig. 3. The relational curve between the effective
mass ratio m∗/m and the velocity u with phonon
and without phonon at different spin–orbit coupling
parameters αR.

Fig. 4. The relational curve between the effective
mass ratio m∗/m and the spin–orbit coupling pa-
rameter αR with phonon and without phonon.

This splitting is caused by the spin–orbit interaction
due to the asymmetric structure of the parabolic
quantum well. From (15), it can be seen that the
vibration frequency of polaron is directly propor-
tional to the effective mass spin splitting, which is
consistent with the conclusion from Fig. 1. We also
find from Fig. 1 that the polaron effective mass ra-
tio increases significantly with the increase in vi-
bration frequency in the presence of phonon. Since
the increase in vibration frequency leads to the en-
hancement of electron–phonon interaction, the ef-
fective mass ratio of polaron increases with the in-
crease in vibration frequency. However, the effective
mass ratio of zero spin splitting is constant when
phonons are ignored. When electron–phonon cou-
pling strength α = 0, from (15), we get the expres-
sion m∗/m = 1 for the effective mass ratio of zero
spin splitting. In the absence of phonon, one can
see that the effective mass ratio changes linearly
with the increase in vibration frequency. However,

Fig. 5. The relational curve between the spin split-
ting effective mass ratio m∗

so/m and the velocity u
at different spin–orbit coupling parameters αR.

in the presence of phonon, the effective mass ratio
changes parabolically with the increase in vibration
frequency.

When the vibration frequencies are taken as
λ = 2× 1013 Hz and λ = 4× 1013 Hz, respectively,
the result in Fig. 2 shows the relations between the
effective mass ratio m∗/m and the velocity u of the
polaron with phonon and without phonon. Figure 3
displays the relationship between the effective mass
ratio m∗/m and the velocity u of the polaron with
phonon and without phonon, considered for fixed
αR = 0.2×10−19 J nm3 and αR = 0.5×10−19 J nm3.
From Figs. 2 and 3, it is found that the two branches
of the polaron effective mass ratio show the oppo-
site trend with the increase in the velocity. That
is to say, the spin-up effective mass ratio is a de-
creasing function of velocity, while the spin-down
effective mass ratio is an increasing function of ve-
locity. This is because the velocity in (15) is in-
versely proportional to the effective mass of spin
splitting. When u < 1.0 × 104 m/s, the splitting
distance increases rapidly as the velocity decreases.
When u > 1.0× 104 m/s, as the velocity increases,
the splitting distance slowly decreases and tends to
zero. It can be seen that the larger the vibration fre-
quency, the more significant the effective mass ratio
splitting is. The conclusion is consistent with Fig. 1.

Figure 4 describes the relational curve between
the effective mass ratio m∗/m and the Rashba
spin–orbit parameter αR with phonon and without
phonon. The figure shows that the effective mass
ratio of zero spin–orbit interaction does not change
with the increase in the Rashba spin–orbit param-
eter. However, the splitting distance increases with
the increase in the Rashba spin–orbit parameter.
Since the spin–orbit coupling parameter is linearly
related to the spin splitting effective mass ratio,
the larger the spin–orbit coupling parameter is, the
larger the splitting distance will be. This conclusion
is consistent with Figs. 1 and 3. Figures 1–4 have
a common feature that the effective mass ratio is
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larger in the presence of a phonon than in the ab-
sence of a phonon, and the effective mass ratio split-
ting distance is independent of the phonon. Because
the phonon field around the electron interacts with
the electron to form a polaron, the mass of the po-
laron is greater than that of the electron.

Figure 5 shows the relationship between the spin
splitting effective mass ratio m∗so/m and the ve-
locity u when the spin–orbit coupling parameter
takes different values. Figure 5 shows that the ab-
solute value of the spin splitting effective mass ra-
tio is an increasing function of the spin–orbit cou-
pling parameter but a decreasing function of ve-
locity. This indicates that the spin–orbit coupling
parameter has a positive effect on the spin split-
ting effective mass ratio, while the velocity has a
negative effect on the spin splitting effective mass
ratio. When u < 1 × 104 m/s, the absolute value
of the spin splitting effective mass ratio increases
sharply with the decrease in the velocity. Outside
this range, the spin splitting effective mass ratio
changes slowly with the change in the velocity. At
the range of 1.5× 104 < u < 3× 104 m/s, different
spin–orbit coupling parameters have a great influ-
ence on the spin splitting effective mass ratio. An
important phenomenon is found in Fig. 5, where the
spin splitting effective mass ratio is negative. It is
caused by the heavy hole characteristic of spin–orbit
splitting.

4. Conclusions

The influence of vibration frequency on the effec-
tive mass spin splitting of polaron in a parabolic
quantum well is studied theoretically. Under the in-
fluence of the Rashba effect, the effective mass of
the polaron splits into two branches on the basis of
zero spin. The effective mass ratio increases with the
increase in vibration frequency. The effective mass
ratio splitting distance increases with the increase in
vibration frequency and spin–orbit coupling param-
eter, and decreases with the increase in velocity. We
obtain an interesting conclusion that the spin split-
ting effective mass ratio is negative. This is because
spin–orbit coupled splitting only takes into account
the splitting of the heavy-hole band, so the spin
splitting effective mass ratio is negative. The effec-
tive mass ratio is larger in the presence of a phonon
than in the absence of a phonon, and the effective
mass ratio splitting distance is independent of the
phonon.
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