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Detailed investigations of the properties essential for the interaction of permanent NdFeB magnets were
performed at T = 300 and 77 K. Axial and radial magnetic field distribution, attracting force, and work
are well described using a single-turn substitutional coil model. Strain resulting from the interaction
of magnets was calculated and measured for the first time. Unexpected radial strain and additional
negative change in the magnet volume were revealed in the experiment performed at T = 77 K. This
additional change in the volume was proportional to the diminishing of the magnet free energy. A similar
dependence was observed for the magnetostriction. It was concluded that any change in the magnetic
free energy Fm is accompanied by the change in the elastic free energy δFe ≈ 0.1δFm at T = 77 K. At
room temperature, δFe is much smaller than δFm.
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1. Introduction

Permanent magnets have a very wide spectrum of
applications in different fields, from aerospace and
industry to medicine and robotics [1]. In many ap-
plications, attractive or repulsive interaction of per-
manent magnets is used. Numerous theoretical and
experimental investigations of this interaction were
performed [2–4].

Of course, the interaction of permanent magnets
should result in their deformation. Two contribu-
tions may be expected: the deformation due to the
mechanical force and the magnetostriction. Until
now, no such measurements have been done.

In the present work, we have investigated the de-
formation of a cylindrical NdFeB magnet as a func-
tion of distance from an identical permanent mag-
net (Fig. 1). Besides, we have determined the elas-
tic parameters of NdFeB and measured its magne-
tostriction. Thus, it was possible to estimate the de-
formation from the mechanical force and the mag-
netostriction and compare estimations with the ex-
periment. A very large qualitative and quantitative
difference was observed, which correlates with the
work done when the distance between the magnets
is changed.

Before describing the experiment, it is necessary
to give basic formulas for the magnetic field and
force between the permanent magnets obtained in
the assumption of uniform magnetization.

The axial and the radial components of the mag-
netic field of a current J flowing in a circle with
radius a are (see §29, Problem 2 in [5])

Bz(z, r) =
µ0

4π
J

2√
(a+r)2+z2

×
[
K(k) +

a2−r2−z2

(a−r)2 + z2
E(k)

]
, (1)

Br(z, r) =
µ0

4π
J

2z

r
√

(a+ r)2 + z2

×
[
−K(k) +

a2 + r2 + z2

(a− r)2 + z2
E(k)

]
, (2)

where k2 = 4ar/[(a+r)2 + z2], and K(k) and E(k)
are complete elliptic integrals of the first kind and
the second kind, i.e.,

K(k) =

π/2∫
0

dθ√
1− k2 sin2(θ)

,

E(k) =

π/2∫
0

dθ

√
1− k2 sin2(θ).

(3)
The free energy F of a current loop in an external
magnetic field is
F = JΦ, (4)

where Φ is the magnetic flux of the external field
through the current loop.
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If J = const, then the force acting on the current
loop is (see §32 in [5])

F = J
∂Φ

∂z
. (5)

The axial magnetic field produced by a uniformly
magnetized cylindrical permanent magnet is the
same as that produced by a thin cylindrical coil and
may be found by integration of (1) over the magnet
length l

Bz(z, r) =
µ0

4π
M

∫ l

0

dy
2√

(a+r)2 + (z+y)2

×
[
K(k) +

a2−r2−(z+y)2

(a−r)2 + (z+y)2
E(k)

]
,

(6)
where M is the magnetization.

The radial component Br(z, r) is calculated by
integration of (2) over the magnet length.

The magnetic flux

Φ(z) =

∫ a

0

dr 2πrBz(z, r), (7)

and the attractive force between the magnets for
M = const is

F (z) = M
[
Φ(z)− Φ(z + l)

]
. (8)

2. Experiment

Experiments were carried out using commercial
NdFeB cylindrical magnets (l = 5 cm, 2a = 1.2 cm).

Several measuring cells with a gradually increas-
ing number of capacitor sensors were constructed.

Figure 1b shows the cell #3 equipped with five
sensors. Flat sensors C0 and C4 were used for the
axial strain measurement, and concentric sensors
C1, C2, C3 — for the radial one. The upper end
of the magnet was epoxy-glued to the 10 mm thick
fibreglass washer.

Figure 1c shows the cell #5 equipped with six
capacitive censors. In the middle of the magnet, a
5 mm thick fibreglass washer was epoxy-glued to
mount the magnet in the measuring cell. Thus, the
force from the upper movable magnet should result
in the elongation of the top half of the fixed magnet
and in the contraction of the bottom half. Figure 2
shows a photo of the elements of this measuring cell.

As the second electrode of all sensors, a magnet
was used. Electrical contacts to the magnets were
made by soldering a thin wire at a distance of 11 mm
from the top of the magnet for cell #3 and in the
middle of the magnet for cell #5.

Measuring cell #5 (Fig. 2) was made in the fol-
lowing way. In the beginning, concentric capacitive
sensors and insulating spacers were glued into a
housing with an internal diameter of 14.5 mm and
an external diameter of 30 mm. The initial inner
diameter of concentric capacitive sensors and insu-
lating spacers was 11 mm. After that, the cell and
the fibreglass washer were connected with fastening

Fig. 1. Schematics of the experiment (a) and mea-
suring cells of the lower fixed magnet: (b) cell #3,
(c) cell #5. Dimensions are given in millimetres.

Fig. 2. Photo of elements of measuring cell #5.

screws made of non-magnetic stainless steel, and the
inner diameter of the cell was increased to 12 mm so
that the magnet entered it with little friction. Then
the cell was disassembled, the washer and magnet
were connected with a small amount of epoxy (the
washer of cell #5 consisted of two parts), and the
cell and magnet with the washer were assembled
again until the epoxy polymerized. After that, the
cell was disassembled and its inner diameter was
increased to 12.5 mm.

Measuring cell #3 was made in a similar way.
Used technology should ensure good alignment of

the magnet and concentric sensors.
The measuring cell and movable magnet with the

force sensor were inserted into a closed thin-wall
stainless steel tube filled with gaseous helium.

Strain and force were measured when the up-
per magnet was moved up from the lowest position
z = 0.2 cm to z > 9 cm with a speed of about
0.07 cm/s using the rack and pinion type of linear
actuator. Capacitance was measured by means of
the AH 2500A bridge at a frequency of 1 kHz.

Force was measured with a PS 10K sensor, usable
only at room temperature.

The Young modulus and Poisson’s ratio were ob-
tained from the results of the pulse ultrasonic mea-
surements. LiNbO3 transducers working in the lon-
gitudinal (Y + 36◦ cut, 3× 3× 0.3 mm3 plate) and
shear mode (X cut, 3 × 4 × 0.3 mm3 plate) were
used.
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Fig. 3. Axial (Bz) and radial (Br) magnetic field produced by NdFeB magnet measured at T = 300 and 77 K.
Grey lines — theoretical dependencies calculated forM = 9.73×105 A/m at T = 300 K and forM = 1.18×106

A/m at T = 77 K. Inset in (b) shows the magnetization as a function of applied magnetic field measured at
T = 77 K.

3. Results

3.1. Elastic properties

First, we checked the isotropy of the elastic prop-
erties of used NdFeB magnets. For this purpose, the
longitudinal cl and transverse ct sound velocities
were measured on the parallelepiped 2.4×2×1 cm3

magnet magnetized along the shortest dimension.
The density of this magnet was ρ = 7.405 g/cm3.

It was established that the transverse sound ve-
locity ct is independent of the direction of propaga-
tion (upper index) and the direction of polarization
(additional lower index) parallel (‖) or perpendicu-
lar (⊥) to the direction of the magnetization. Lon-
gitudinal sound velocity cl was 2% lower along the
direction of the magnetization than perpendicular
to it, see Table I. Thus, the NdFeB magnet is al-
most isotropic.

Results obtained from measurements done with
LiNbO3 transducers glued to the ends of the cylin-
drical magnets of cells #3 and #5 are given in the
lower line of Table I.

Higher values of sound velocities obtained with
cylindrical magnets correlate with their higher den-
sity ρ = 7.508 g/cm3.

Elastic constants, i.e., the Young modulus E and
Poisson’s ratio σ, were calculated from the equa-
tions (see Eq. (22.4) in [6])

cl =

√
E(1−σ)

ρ(1+σ)(1−2σ)
, ct =

√
E

2ρ(1+σ)
. (9)

TABLE I

Longitudinal and transverse sound velocities [km/s]
measured with parallelepiped (upper line) and cylin-
drical NdFeB magnets at T = 77 K.

c
‖
l c⊥l c

‖
t c⊥t‖ c⊥t⊥

6.20 6.33 3.58 3.59 3.59

#3 6.50 – 3.65 – –

#5 6.49 – 3.64 – –

TABLE IIElastic properties of NdFeB magnet.

T [K] E [GPa] σ

300 224 0.244

77 254 0.270

Average results for magnets of cells #3 and #5
are given in Table II. It should be noted that values
of the Young modulus are 1.6 times higher than
obtained in [7] with a three-point bending test.

3.2. Magnetic properties

Figure 3a, b shows the dependence of the ax-
ial magnetic field on distance from the magnet.
Figure 3c, d shows the dependence of the radial
magnetic field measured at a distance of 6.2 mm
from the magnet axis (the magnet is located
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Fig. 4. Dependence of the magnetic field at the upper end (a) and at the lower end (b) of fixed magnet on
the distance between the magnets measured at T = 77 K. Black lines — experiment, grey lines — calculations
for M = const. (c) Black line — experimental dependence of the correction coefficient at the upper end of the
fixed magnet, wide grey line — approximation. (d) Correction coefficient at the lower end of the fixed magnet.

from −5 to 0 cm). These measurements were done
at room and liquid nitrogen temperatures by points
with a small 1 × 1 mm2 Hall sensor. Grey lines in
Fig. 3a, b are the fitting of the experimental points
to (6) with resulting magnetization M(300 K) =
9.73 × 105 A/m and M(77 K) = 1.18 × 106 A/m.
The same values of magnetization were used in cal-
culations of the radial magnetic field (Fig. 3c, d).

In the inset of Fig. 3b, the field dependence of
magnetization is shown. This result was obtained
at T = 77 K with a small cylindrical magnet
(∅3.9 mm, l = 4 mm) using a VSM magnetome-
ter [8]. This dependence was fitted to M(B [T ]) ≈
M(0)(1 + 0.22B + 0.2B2).

The increase in the magnetization with an applied
magnetic field results in a larger than the simple
sum value of the magnetic field between the mag-
nets at T = 77 K.

Figure 4a shows a continuous record of the mag-
netic field at the upper end of the fixed magnet
at the distance to the movable magnet made at
T = 77 K. If M = const, then there should be
B(0)/B(∞) = 2 and B(0)/B(9 cm) < 2.

Black line in Fig. 4c shows the coefficient K
by which the calculated for M = const magnetic
field should be multiplied in order to obtain the
experimental dependence B(z)/B(9 cm) shown in
Fig. 4a. Grey line in Fig. 4c is the approximation
K(z) = 0.059(z + 0.48)−1.79 (z is given in cm).

It follows from Fig. 4c that at T = 77 K, ap-
proaching magnets have up to 10% larger magneti-
zation at the near ends.

Correction for the field diminishes with distance
and may be neglected at the lower end of the fixed
magnet (Fig. 4d).

Measurements of the attractive force were made
at room temperature.

The black line in Fig. 5a shows the continuous
record of attractive force as a function of distance
between the magnets. The wide grey line was cal-
culated according to (8) for M = 9.73 × 105 A/m.
Good agreement was obtained for three orders of
magnitude change in magnetic field and attractive
force.

From the analysis of theoretical equations, it fol-
lows that the ratio of force (see (8)) to the axial field
(see (6)) should have a local minimum at z ≈ 0.6 a.
The depth of this minimum is very sensitive to the
magnetization, which allows for the best determina-
tion of its value. A comparison of the experimental
and theoretical dependencies F (z)/Bz(z) is given in
the inset in Fig. 5a.

3.3. Dilatometric measurements

To calculate the change in the magnet dimensions
from the measured capacitance of the sensors, we
used the following formulas obtained from the elec-
trostatics

δr

r
=

h

1.8

(
1

C0
− 1

C

)
, δl =

a2

3.6

(
1

C0
− 1

C

)
,

(10)
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Fig. 5. (a) Attractive force as a function of dis-
tance between NdFeB magnets measured at T =
300 K. Inset: dependence ratio of force to the axial
field on distance. Black lines — experiment, grey
lines — calculations for M = 9.73 × 105 A/m.
(b) Black line — work calculated by integration
of the experimental F (z) dependence. Grey line —
change in the free energy of the magnet calculated
for M = 9.73× 105 A/m.

where h is the width of the concentric sensor, a
— magnet radius, C0 — capacitance at the largest
distance between the magnets (h and a are in cm,
capacitance — in pF).

To ensure the necessary temperature stability,
dilatometric measurements were done at T = 77 K.
A magnetic field was produced by a copper coil
cooled by liquid nitrogen.

Results of the magnetostriction measurements
are shown in Fig. 6. Scattering of the experimen-
tal points for the radial magnetostriction obtained
with wide sensors C1–C3 of cell #3 (Fig. 6a)
is much smaller than that obtained with nar-
row sensors C1–C4 of cell #5 (Fig. 6b). This
means that the size of inhomogeneities is smaller
than 1 cm. Perfect overlap of the results for
the axial magnetostriction obtained with sensors
C0 and C5 of cell #5 (Fig. 6d) confirms this
conclusion.

The axial magnetostriction of cell #3 is shown
in Fig. 6c. The striction measured with sensor C4 is
eight times larger than the striction measured with
sensor C0. From this ratio, it follows that the mag-
net is fixed at a distance of 5.5 mm from the top,
which seems quite reasonable. Total relative axial
magnetostriction is δl/l = (δl0 + δl4)/l.

In Fig. 6, the gradual diminishing of the slope
of the strain vs applied magnetic field dependences
is visible for Bz > 0. Obtained experimental re-
sults for the magnetostriction of cell #3 were fit-
ted to the following expressions (magnetic field is in
Tesla)
Bz < 0 :

δr

r
= 3.1×10−5Bz,

δl

l
= −4.6×10−5Bz,

(11)
Bz > 0 :

δr

r
= 1.85×10−5B0.88

z ,
δl

l
= −2.65×10−5B0.88

z .

(12)
The same values of parameters well describe mag-

netostriction measured with cell #5.
The target results are presented in Fig. 7, where

the deformations of the magnets fixed in cells #3
and #5 as a function of distance to the movable
magnet are shown.

Absolutely unexpected are negative values of the
radial strain obtained near the lower end of the mag-
net (sensor C3 of cell #3 and sensor C4 of cell #5).
Indeed, radial magnetostriction is positive (Fig. 6),
and the attractive force between the magnets should
result in a contraction of the length and an expan-
sion of the diameter.

3.4. Calculations

Data for the elastic properties, the attractive
force, and the magnetostriction allow us to evaluate
the supposed strain of the fixed magnet resulting
from the influence of the movable magnet.

Calculations of the magnetostrictive contribution
are rather simple. At first, the mean value of the
external magnetic field at a distance y from the
upper end of the fixed magnet is determined as
Bz(z+y) = Φ(z+y)/(πa2). Then, this value is mul-
tiplied by coefficient K(z+ y) (Fig. 4c). After that,
the radial δr/r and axial δl/l contributions are
found using corresponding coefficients (12) by in-
tegration over y. For example, for sensor C1 of cell
#3

δr1
r(z)

=
1.85× 10−5

0.01

0.0225∫
0.0125

dy
[
K(z+y)Bz(z+y)

]0.88
,

(13)
where 0.01 in the denominator is the width of the
concentric capacitor sensor in m.

Calculation of the attraction force contribution is
much more complicated because it requires solving a
partial differential equation with definite boundary
conditions. Even in the simple case of the gravita-
tional field, the boundary conditions could not be
satisfied in some places (§7, Problem 1 in [6]).

We have estimated strain due to the attractive
force without solving any differential equation in
the following way.
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Fig. 6. Magnetostriction measured at T = 77 K; (a, c) cell #3; (b, d) cell #5. Different symbols correspond
to different capacitive sensors. Grey lines show approximation of expressions (11) and (12).

Fig. 7. Radial δr/r and axial δl/l strain of the fixed magnet as a function of distance z from the movable
magnet measured at T = 77 K; (a, c) cell #3; (b, d) cell #5. Inset in (d) shows change in volume.

Let us consider cell #5 (Fig. 1c). The un-
movable magnet is fixed in the measuring cell
with the washer glued halfway along the magnet
length l. Force acting on the section positioned
at the distance y in the upper part of the mag-
net is F (z + y) = M [Φ(z+y)−Φ(z+y+l/2)]. The

pressure is p(z, y) = F (z+y)/(πa2), the axial strain
is δl/l(z, y) = p(z, y)/E, and the radial strain is
δr/r(z, y) = −σ δl/l(z, y).

Then, corrections for the magnetization and mag-
netic field were taken into account, and an integral
similar to (13) was calculated.
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Fig. 8. Calculated for M(77 K) = 1.18 × 106 A/m radial δr/r and axial δl/l strain of the fixed magnet as
a function of distance z from the movable magnet; (a, c) cell #3; (b, d) cell #5. Insets in panels (c) and (d)
show changes in volume.

Analogous equations determine strain in the
lower part of the magnet.

Due to neglecting the boundary conditions,
δr/r(z, y) has a jump at y = l/2. Fortu-
nately, the magnetostrictive contribution to the
radial strain is an order of magnitude larger
than the contribution of the attractive force, and
this jump does not exceed 3% of δr/r at this
position.

Using the calculated δr/r(z, y) dependence, the
mean value of radial change was determined as
δr/r(z) = l−1

∫ l
0

dy δr/r(z, y). The change in the
volume is δV/V (z) = 2 δr/r(z) + δl/l(z).

The calculated total strain and change in volume
are shown in Fig. 8. As one can see, the radial strain
δr/r is always positive, and the axial strain δl/l is
negative.

It should be pointed out that corrections for mag-
netic field and magnetization rapidly decreased with
distance and had a small (below 10%) influence on
the results of calculations.

Of course, the number of radial sensors is too
small to obtain the real shape of the magnet defor-
mation from the experimental data. Nevertheless,
we have estimated the change in the magnet vol-
ume for cell #5. At first, data δri/r (i = 1, . . . , 4)
were fitted by the third-order polynomial P (y), and
the mean value of radial change was determined as
δr/r = l−1

∫ l
0

dy P (y). The obtained change in the
volume δV/V = 2 δr/r + δl/l is shown in the inset
in Fig. 7d.

4. Discussion

As we have seen, the magnetic field and force of
a permanent magnet are perfectly described by a
thin substitutional coil with current J = lM , where
l is the magnet length, and M is its magnetization
(Figs. 3 and 5).

It is necessary to explain why corrections for the
magnetization and magnetic field obtained at T =
77 K and resulting from the dependence of mag-
netization on the magnetic field (inset in Fig. 3b)
have no effect on the attractive force measured at
T = 300 K.

NdFeB undergoes the spin-reorientation transi-
tion at TSRT = 130 K. Its magnetic properties be-
low and above TSRT are quite different. In particu-
lar, the slope of M vs B dependence at T = 77 K
is four times larger than at T = 300 K [9]. Cor-
respondingly, corrections to the magnetization and
magnetic field at room temperature are four times
smaller. The correction to the attractive force is 16
times weaker and could not be detected.

Let us discuss the thermodynamics of the prob-
lem.

The free energy of a single-turn coil itself (with-
out a source of current) is F = LJ2/2.

The self-induction L of a thin coil is (see §33,
Problem 6 in [5])

L =
µ0

4π

8πa2

l2

∫ l

0

∫ π

0

dz dθ (l−z) cos(θ)√
z2 + 4a2 sin2(θ/2)

. (14)
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Inserting a = 0.6 cm, l = 5 cm, one gets L =
2.573 nH. Thus, the free energy of each substitu-
tional coil forM = 106 A/m is 3.22 J, and the total
initial free energy is Fi = 6.44 J.

When two magnets are in contact, the length of
the substitutional coil is doubled, its inductance di-
minishes to 1.351 nH, and the final free energy is
Ff = 6.76 J.

Thus, the free energy of two substitutional coils
increases by ∆F = 0.32 J.

Exactly the same result may be obtained in an-
other way.

The free energy of two coils is F = L1J
2
1/2 +

L2J
2
2/2 + L12J1J2, where L12 is the mutual induc-

tance. In the geometry of the experiment

L12(z)=
µ0

4π

2πa2

l2

l∫
0

z+l∫
z

2π∫
0

dz1 dz2 dθ cos(θ)√
(z1−z2)2+4a2 sin2(θ/2)

,

(15)
where z is the distance between the coils. This equa-
tion is a generalization of (14).

When two coils are in contact, L12(0) = 0.13 nH
and ∆F = 0.32 J.

In the thermodynamic sense, a permanent mag-
net is equivalent to a system consisting of a coil and
a current source. A change in the free energy F̃ of
this system has the opposite sign to the change in
the free energy of a coil itself ∆F̃ = −∆F (see §32
in [5] and [10]).

Thus, the free energy of two attracted magnets
is 5% smaller than the free energy of separate mag-
nets.

It is of interest to compare the dependence of the
free energy determined by the mutual inductance
of the substitutional coils on the distance between
these coils with the work produced by converging
magnets

∫ z
∞ dz F (z).

This comparison is shown in Fig. 5b. Wide grey
line is the change in the free energy calculated as
∆F̃(z) = −L12(z)J2, where the current J = lM =
0.05× 9.73× 105 = 4.86× 104 A corresponds to the
magnetization M at room temperature. The me-
chanical work (black line) was calculated from the
experimental F (z) dependence measured at room
temperature (Fig. 5a). Because the maximum value
of the z-coordinate was not infinite (9.3 cm), the
result of integration was shifted up by 2.3 mJ.

Both dependencies coincide. This means that the
work produced by converging magnets is equal to
the decrease in their magnetic free energy F̃ .

Let us discuss the results of the dilatometric mea-
surements.

The observed strain (Fig. 7) is very different from
the calculated strain (Fig. 8). The most striking dif-
ference is the negative radial strain near the bottom
of the magnet observed in the experiment, but im-
possible according to the calculations taking into
account the mechanical force and magnetostriction
(Fig. 8). Besides, observed axial contraction is no-
ticeably larger than calculated strain.

Fig. 9. (a) Calculated (1) and measured (2)
change in the magnet volume cell #5 at T = 77 K.
(b) Difference between the experimental and cal-
culated dependencies of δV/V (black line) and the
mutual inductance (grey line). Inset: change in the
magnet free energy as a function of the change in
the volume. Black line shows the results of the mag-
netostriction measurements, and circle corresponds
to the additional contribution.

Sensors C1 and C4 of cell #5 (Fig. 1c) are placed
symmetrically near the ends of the magnet. Abso-
lute values of measured strain (Fig. 7b) have the
same order, but magnetic field produced by the
movable magnet at the top of the fixed magnet is
two orders of magnitude higher than at the bottom.

Negative radial strain near the bottom of the
magnet could not be ascribed to the possible ra-
dial shift of the magnet relative to the concentric
sensor. Indeed, in this case, the capacitance of the
sensor is given by equation (see §3, Problem 7 in [5])

C = 2πε0h

[
coth−1

(
r21+r22−x2

2r1r2

)]−1
, (16)

where r1, r2 and h are the sensor dimensions, and
x is the axes shift.

From (16) it follows that the capacitance and,
therefore, the seeming strain should increase with
the axes shift. Calculations made for sensor C4 of
cell #5 resulted in δr/r ≈ 0.65 (x/a)2.

We must conclude that an additional contribution
to the strain should exist.

Figure 9a shows a comparison of the calculated
(curve 1) and obtained from the experiment with
cell #5 (curve 2) change in the magnet volume.
In Fig. 9b, the additional contribution is plotted
and compared with the dependence of the mutual
inductance −L12 of the substitutional coils on the
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distance between the magnets. Both dependencies
almost coincide. This means that the additional
contribution to the change in the volume is pro-
portional to the change in the magnet free en-
ergy ∆F̃(z) = −L12(z)J2/2 (we consider only one
magnet). For a quantitative description of this de-
pendence, it suffices to take data for one value of
z = 0.72 cm, where δVadd/V (z) = −1 × 10−6,
L12(z) = 0.05 nH (Fig. 9b) and ∆F̃(z) = −0.087 J.

In the case of magnetostriction (Fig. 6), the
change in the volume is proportional to the cor-
responding change in the free energy ∆F̃(H) =
BMs/2, where B is the applied magnetic field and
Ms is the magnetic moment of the sample. The in-
set in Fig. 9b shows the change in the free energy as
a function of the change in the magnet volume. The
line corresponds to the magnetostriction calculated
using (11) and (12) and taking into account the de-
pendence of magnetization on magnetic field. The
obtained curve may be well-fitted by a parabola.
Zero on the y-axis corresponds to the initial free
energy of magnet F̃0 = LJ2/2 = 4.5 J. The circle
near this line shows the result obtained above for
the additional contribution.

From the inset in Fig. 9b, it follows that any
change in the magnet free energy is accompanied
by a change in the magnet volume and unexpected
experimental strain (Fig. 7) results from the ther-
modynamics.

There is no simple correspondence between the
free energy of the magnet and its elastic free energy.

As it is well known, as temperature decreases
from T > TC with the transition to the ferro-
magnetic state, a spontaneous magnetostriction is
observed. For Nd2Fe14B from experimental results
shown in Fig. 3 of work [11], we have estimated
spontaneous strains at T = 77 K along and perpen-
dicular to the magnetic moment as λ‖ ≈ 2.5× 10−3

and λ⊥ ≈ 5.5× 10−3.
The corresponding density of elastic free energy

may be calculated from the general expression

Fe = µ
(
ε2x+ε2y+ε2z

)
+ 1

2λ
(
εx+εy+εz

)2
, (17)

where εi are the strains, and µ and λ are the Lamè
coefficients (see Eq. (4.1) in [6]).

As we have seen, the elastic properties of NdFeB
are almost isotropic, hence the Lamè coefficients
may be obtained using equations

µ =
E

2(1+σ)
, λ =

σE

(1+σ)(1−2σ)
, (18)

where E is Young’s modulus and σ is Poisson’s ratio
(see §5 in [6]).

Using experimental data for E and σ given
in Table II, we obtained µ = 100 GPa, λ =
117 GPa, and also the estimated elastic energy
Fe ≈ 17.4 J/cm3. This value is 22 times larger
than the density of the magnetic free energy Fm =
F̃/V ≈ 0.8 J/cm3.

An opposite relation was obtained from the re-
sults of the magnetostriction measurements.

TABLE III

Results of calculations δFe and δFm from the magne-
tostriction measurements of NdFeB magnet.

Bz

[T]
δr/r

(×106)

δl/l

(×106)

δV/V

(×106)

δFe

[J/cm3]
δFm

[J/cm3]
−0.2 −6.2 9.2 −3.2 −0.014 −0.113

0.2 4.5 −6.4 2.6 0.011 0.124

Change in the elastic free energy was calculated
using equation

δFe = 2µ
[
2λ⊥

(
δr/r

)
+ λ‖

(
δl/l

)]
+λ
(
2λ⊥ + λ‖

) [
2
(
δr/r

)
+
(
δl/l

)]
, (19)

which follows from (17). Change in the magnetic
free energy δFm = ∆F̃/V .

The results of the calculations are summarised in
Table III.

From Table III, it follows that in the case of the
magnetostriction, the change in the elastic free en-
ergy is 8÷ 11 times smaller than the change in the
magnetic free energy.

Let us consider the additional negative change
in the fixed magnet volume resulting from the
interaction with the movable magnet. The cor-
responding change in the elastic free energy
may be roughly estimated under the assumption
δr/r = δl/l = 1

3δVadd/V . Taking from the above
δVadd/V (z = 0.72 cm) = −1× 10−6 and using
(19), we have obtained δFe = −2.48× 10−3 J/cm3.
This value is 6.3 times smaller than
δFm = ∆F̃/V = −1.55× 10−2 J/cm3. This result
is in a rough agreement with the magnetostriction
data.

Thus, any change in the magnetic free energy Fm
is accompanied by the change in the elastic free
energy δFe ≈ 0.1δFm at T = 77 K (i.e., below
the spin-reorientation transition). At room temper-
ature, δFe should be much smaller than δFm be-
cause, within the experimental precision, the work
produced by converging magnets is equal to the de-
crease in their magnetic free energy, see Fig. 6.

Our observations are in agreement with the ideas
of a very old work [12], in which the need to take
into account the mutual influence of magnetic and
elastic properties was pointed out.

5. Conclusions

In the present work, the essential physical prop-
erties of permanent magnets — magnetic field dis-
tribution, magnetization, elastic properties, magne-
tostriction — were investigated. The results of these
investigations were used to predict the strain of the
NdFeB magnet as a function of the distance between
two attracting magnets.
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The attractive force measured at T = 300 K and
calculated work are in agreement with the theoreti-
cal description in which magnets are substituted by
single-layer coils.

The deformation of the magnet fixed in the cell
equipped with several capacitor sensors was mea-
sured at T = 77 K. Unexpected negative strain at
the bottom end of the magnet was observed and
ascribed to the additional contribution.

The additional contribution to the change in the
magnet volume was proportional to the change in
the magnet free energy. The same proportionality
takes place in the case of the magnetostriction.

The relation between the magnetic free energy
and the elastic free energy was discussed.
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