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Localized States in a Periodic Potential with
Harmonic Confinement
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We analyze the one-dimensional problem of a particle placed in periodic potential with additional
harmonic trapping within tight-binding approximation. We find the eigenstates localized on the sides
of the harmonic trapping potential. We show that the existence of these states leads to the freezing of
the dipole oscillation observed in the experiment of Cataliotti et al. Science 293, 843 (2001).
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1. Introduction

The study of the ultracold clouds of bosonic
atoms placed in the periodic potentials attracted
a lot of interest. The main reason is that the param-
eters of such systems are widely tunable, allowing
for the investigation of different and fundamental
issues of quantum mechanics, ranging from quan-
tum phase transitions [1], quantum atom optics [2],
atom interferometry [3], and dynamics of Bloch os-
cillation [4].

In experiments, the atoms usually, apart from
being in a periodic potential, are trapped in har-
monic confinement. In many cases, the harmonic
confinement is asymmetric, resulting in a highly
elongated cloud, which can be treated as a quasi-
one-dimensional system. Such a system was the sub-
ject of many theoretical papers [5–9].

In this paper, we focus on the ultracold cloud of
bosonic atoms placed in the strongly elongated har-
monic cigar-shaped trap with additional periodic
potential (created by optical lattice). In such a case,
we deal with a system of a one-dimensional array of
Josephson junctions [4], in which the use of tight-
binding approximation is common.

Such a system was investigated theoretically
in [5]. There, the authors considered the motion
of Bose–Einstein condensate (BEC) placed in such
a potential, where initially the harmonic trap was
suddenly displaced by a certain distance. If the dis-
placement was small, the BEC performed periodic
oscillations around the trap center. However, for
larger displacement, the BEC remains localized on
the side of the harmonic trap. The authors of [5] call
this effect “classical dynamical superfluid–insulator
transition” and attribute it to discrete modulational
instability, occurring when the BEC center of mass
velocity is larger than a critical value.

A similar situation was seen in the experiment de-
scribed in [4]. There, a system of a one-dimensional
array of Josephson junctions was realized, and the
harmonic trap was initially suddenly displaced. If
the above happened with BEC, it performed dipole
oscillation. On the other hand, when the trapped
gas was a thermal cloud, its center of mass remained
localized on the side of the harmonic trap. The au-
thors of [4] attributed this phenomenon to the lack
of an overall macroscopic phase.

In the present paper, we investigate theoretically
the system of a one-dimensional array of Josephson
junctions. We analyze the single-particle problem
and find states localized at the borders of the har-
monic potential, which show a void of single-particle
probability in the center of the trap. We show how
the existence of such states explains the phenomena
in both of the above-mentioned papers.

In Sect. 2, we analyze the solution of the tight-
binding approximation model, showing the exis-
tence of eigenstates localized on the sides of the
harmonic trap. In Sect. 3, we use semiclassical ap-
proximation to analyze those eigenstates. In Sect. 4,
we discuss the results of the experiment described
in [4], showing that the phenomena observed in this
experiment can be attributed to the existence of lo-
calized states. We finish with a short summary of
the results.

2. Theoretical model

We begin with an analysis of a noninteracting
system placed in periodic potential with additional
harmonic confinement
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Fig. 1. Density |ψ200(j)|2 for Ω/J ' 1/5000 as the
function of well number j (given by integer num-
ber). Here, ψ200(j) is the numerical solution of (5).
As

∑
j |ψ200(j)|2 = 1, the values of |ψ200(j)|2 are

dimensionless real numbers (given on the vertical
axis). We clearly see that the presented eigenstate
density vanishes in the center of the trap — the
state is localized at the borders.

where m is the atomic mass, and ωr and ωz are
frequencies of the harmonic trapping potential in
the x–y direction and z direction, respectively. In
addition, we notice potential generated by the op-
tical lattice with a maximal value equal to V0 and
λ denoting the wavelength of the laser light pro-
ducing the lattice. We assume that the excitation
energy of the system is always smaller than 1

2~ωr,
and the system stays in the ground state for x and
y directions.

The single-particle Schrödinger equation takes
the standard form

i~ ∂tψ(r, t) =

(
− ~2

2m
∇2 + V (r)

)
ψ(r, t). (2)

If V0 is large enough, the wave function remains lo-
calized in the wells of the periodic potential, and the
movement between the neighboring wells is due to
the tunneling process. Then, the system can be de-
scribed within tight-binding approximation, where
the wave function is represented as

ψ(r, t) =
∑
j

ψ(j, t)Φ(z−jλ)φ0(x)φ0(y), (3)

where ψ(j, t) is the j-th site amplitude and Φ(z) is
the Wannier function connected with the lattice po-
tential. In the above, the function φ0 is the ground
state of the one-dimensional harmonic oscillator of
frequency ωr. Upon substituting (3) into (2), we
obtain
i~ ∂tψ(j, t) = −J

(
ψ(j+1, t) + ψ(j−1, t)− 2ψ(j, t)

)
+Ωj2ψ(j, t), (4)

where J = ~2

2m

∫
dz Φ(z)∂2

zΦ(z−λ) is the tunnel-
ing coefficient, and Ω = 1

2mω
2
zλ

2. Note that j de-
notes the well number and is given by the integer
number.

In the stationary case ψ(j, t) = e− iEnt/~ψn(j)
and upon substituting it into (4), we arrive at

Enψn(j) = −J(ψn(j + 1) + ψn(j − 1)− 2ψn(j))

+Ωj2ψn(j). (5)
From the above, we clearly see that the solution
ψn(j) depends on a dimensionless parameter Ω/J
with the energy En/J . Solving numerically the
above equation for Ω/J � 1, one finds two kinds
of states: low-lying states, which resemble the har-
monic oscillator eigenstates, and higher states, for
which single-particle probability density is localized
on the borders of the trap. In Fig. 1, we present
|ψn(j)|2 for n = 200, where ψn(j) is defined as
a solution of (5). We choose Ω/J ' 1/5000. The
horizontal axis give, the well number j — an inte-
ger number. The state is normalized to unity, i.e.,∑
j |ψ200(j)|2 = 1, and from this condition, we find

|ψ200(j)|2 is a dimensionless number.
We clearly see that the density vanishes in the

center of the trap, which indicates that the state is
localized at the borders.

3. Semiclassical analysis

To understand, in simple terms, the existence of
such a solution, we move to the semiclassical analy-
sis of (4) and (5). Equation (4) in momentum space
takes the form

i~ ∂tψ(k, t) =
[
− Ω∂2

k + 2J(1− cos(k))
]
ψ(k, t),

(6)
where

ψ(j, t) =

π∫
−π

dk e ikjψ(k, t) (7)

together with ψ(k = −π, t) = ψ(k = π, t),
∂kψ(k = −π, t) = ∂kψ(k = π, t). As written above,
j is the well number given by the dimensionless in-
teger numbers. Therefore, k is given by the dimen-
sionless real number. Due to the above mapping, k
is restricted to the range −π ≤ k ≤ π. Given the
above, we find the analog of Ehrenfest theorem for
the mean values of “position” 〈k〉 =

∫
dk k|ψ(k, t)|2

and “momentum” 〈j〉 = 〈− i∂k〉, obtaining

~
d

dt
〈k〉 = 2Ω〈j〉, ~

d

dt
〈j〉 = 〈−∂kṼ (k)〉,

(8)
where Ṽ (k) = 2J(1− cos(k)). We now assume that
the width of the wave-packet ψ(k, t) is much smaller
than unity (note that k is defined in the range
−π ≤ k ≤ π and is a real dimensionless num-
ber). This restriction means that the wave packet
in the position space ψ(j, t) (here j denotes the
well number given by integer dimensionless num-
bers) changes on the length of many wells — the
length jchange, on which ψ(j, t) changes, is much
larger than unity. The above assumption makes us
approximate 〈∂kṼ (k)〉 ' ∂〈k〉Ṽ (〈k〉). As a result,
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we obtain the classical equation of motion for the
mean values of “position” k = 〈k〉 and “momentum”
j = 〈j〉

~k̇ = 2Ωj, ~j̇ = −∂kṼ (k) = −2J sin(k) (9)
with the Hamiltonian given by

~H = Ωj2 + Ṽ (k) = Ωj2 + 2J
(
1− cos(k)

)
.
(10)

We now proceed with the analysis based on the
above semiclassical Hamiltonian. We can see that
this is a Hamiltonian of a pendulum in a gravita-
tional field with kinetic energy term Ωj2 and po-
tential energy term 2K(1 − cos(k)). For k � 1, we
can approximate the potential energy term by Jk2.
As a result, we obtain a harmonic oscillator Hamil-
tonian. This happens for energies of the system
much smaller than J . For higher energies, we no-
tice increasing anharmonicity of the movement up
to a critical energy equal to 4J , which is the max-
imal potential energy of the system. For energies
higher than 4J , the absolute value of the momen-
tum is always larger than zero and bounded by
jmax =

√
E/Ω ≥ |j| ≥

√
(E − 4J)/Ω = jmin. Here,

we take energy E equal to ~H. Referring to the def-
initions of the momentum j, we see that it means
that the physical particle cannot reach the trap cen-
ter — it moves on the left or right-hand side of the
trap between the bounds ±jmax and ±jmin. The
probability distribution ρ(j) to observe the parti-
cle in a certain position takes the form

ρ(j) = C
1√(

1− E
4J + Ω

4J j
2
) (

E
4J −

Ω
4J j

2
) , (11)

where

C =

√
Ω/J

4
[
K
(
E
4J

)
+ iK

(
1− E

4J

) ] (12)

is the normalization factor. In the above, K denotes
the elliptic integral.

In Fig. 2, we plot |ψ200(j)|2, where ψ200(j) is the
solution of the eigenproblem given by (5) for Ω/J =
1/5000 together with the semiclassical probability
distribution ρ(j) given by (11) where we take energy
E equal to E200 obtained from the quantum model.
The discrete points of |ψ220(j)|2 are joined by the
meshed continuous curve to guide the eye.

We notice good agreement between the averaged
(over fringes) quantum density and its semiclassical
counterpart.

4. Large thermal cloud movement —
experiment by Cataliotti et al. [4]

Here we want to show the consequence of the ex-
istence of the above-described localized states. In
many experiments performed with ultracold clouds
trapped in harmonic potential, the so-called dipole
oscillations are investigated. Cloud is displaced by
a certain distance from the trap center. If the
harmonic trapping potential is the only external

Fig. 2. Density |ψ200(j)|2 for Ω/J ' 1/5000 as
the function of well number j. Here, we present the
same plot as in Fig. 1, but instead of points showing
the value of the density |ψ200(j)|2 for discrete val-
ues of well number j (given by integer numbers), we
show the meshed continuous curve to guide the eye.
In addition, we plot the density ρ(j) given by (11)
with energy E being equal to E200 and given by the
solution of (5). We notice good agreement between
the averaged (over fringes) quantum density and its
semiclassical counterpart.

potential, then the center of mass of the cloud un-
dergoes harmonic oscillation with a frequency equal
to the trapping frequency. It is interesting to note
what such movement looks like in the presence of
periodic potential. Looking at the semiclassical cal-
culation presented above, it is easy to find out.

We assume that the cloud is dilute enough that
we can neglect the interaction between atoms. Ad-
ditionally, we assume that the tight-binding approx-
imation can be applied. If the size of the cloud
(given in lattice sides) added to initial displacement
is smaller than jcrit defined as Ωj2

crit = 4J , then the
cloud will perform dipole oscillation with the fre-
quency 2

√
ΩJ/~. This is due to the fact that all

particles populate the eigenstates that are similar
to harmonic oscillator states.

Now, we choose a different case, namely cloud,
whose size is significantly larger than jcrit. Then,
after displacement, a significant part of the cloud
particles will populate the above-described localized
states. In such a case, those particles will stay lo-
calized on the initial side of the harmonic trap. As
a result, no dipole oscillation will be observed.

Such a situation was observed experimentally
in [4]. There, an ultracold 87Rb gas was placed in
an elongated harmonic trap with additional peri-
odic potential

V (r) =
1

2
m
[
ω2
r(x2+y2) + ω2

zz
2
]

+ V0 sin2
(

2π
z

λ

)
,

(13)
where ωr = 2π×92 Hz, ωz = 2π×9 Hz, λ = 795 nm,
and V0 = 3ER, where ER = ~2k2

2m , k = 2π
λ . In

this experiment, a thermal cloud of temperature
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Fig. 3. Single-particle density ρ(zn) plotted in ar-
bitrary units as a function of position of the n-th
potential well, i.e., zn = nλ

2
, where n is the integer

number (please find a detailed description of the
plot in the main text). The horizontal axis marks
zn given in micrometers. The discrete points ρ(zn)
are connected with the continuous curve to guide
the eye.

T = 130 nK, slightly above the transition tempera-
ture, was prepared [10]. Then, the harmonic trap-
ping potential was suddenly displaced by 30 µm.
The cloud started to move, and its center of mass
was measured as a function of time. No dipole oscil-
lations were observed — the center of mass stayed
on the same side of the harmonic trap. On the other
hand, when the periodic potential was turned off
(the harmonic trap was still present), the thermal
cloud underwent dipole oscillation as expected.

Below, we show that we can attribute the lack
of dipole oscillation to the existence of the local-
ized states. We do it without using tight-binding
approximation and solve directly the stationary
Schrödinger equation(

− ~2

2m
4+ V (r)

)
ψn(r) = Enψn(r). (14)

The solution is ψn(r) = ϕnx(x)ϕny(y)ψnz(z) and
En = Enx,ny,nz = ~ωr(1 + nx + ny) + Enz. In the
above, ϕn is the eigenstate of the harmonic oscilla-
tor of frequency ωr, and ψn(z) is a solution of(

− ~2

2m
4z + Vz(z)

)
ψnz(z) = Enz ψn(z), (15)

where4z = ∂2/∂z2, Vz(z)= 1
2mω

2
zz

2+V0 sin2(2π zλ ).
The initial single-particle density reads

ρ(r) =
∑
n

nn|ψn(r)|2, (16)

where nn =
[

exp(En−µ
kBT

) − 1
]−1. The chemical

potential µ is found from normalization condition
N =

∑
n nn = 2× 105.

To obtain the density of the thermal cloud, we nu-
merically diagonalize (15). From the normalization
condition, we find exp(−µ/(kBT )) ' 1.6. Having
this, we may obtain the initial density ρ(r) given
by (16). In the system, we have lattice periodic po-
tential that gives us well-defined wells. As we shall

Fig. 4. Temporal thermal cloud mean position
evolution z(t) (in micrometers) as a function of time
(given in milliseconds).

see, we have about 200 wells occupied by atoms.
Thus, looking at the density integrated over x and
y, ρ(z) =

∫
dxdy ρ(r), we would see strong den-

sity oscillation connected with the periodic poten-
tial. The strength of the amplitude of the oscillation
is connected with the harmonic trapping in the z-
direction. To make the density plot readable, we
plot only the amplitude of density oscillation (for-
getting the oscillation part). In order to do so, we
show the values of the density ρ(zn) in the minima
of the periodic potential, i.e., zn = nλ2 , where n
is the integer number. In Fig. 3, we plot the den-
sity profile ρ(zn), connecting the point zn with the
continuous curve to make the plot readable.

At the beginning of the evolution, the potential
is suddenly displaced by z0 = 30 µm. For simplicity
of the calculation, we displace the thermal cloud so
that the single-particle density takes the form

ρ(r, t = 0) =
∑
n

nn|ψn(r − z0ez)|2. (17)

As the potential is harmonic and the displacement
is along z-axis, ϕnx and ϕny do not change during
the time evolution while the evolution of ψnz(z, t)
is given by the Schrödinger equation

i~ ∂tψnz(z, t) =

(
− ~2

2m
4z + Vz(z)

)
ψnz(z, t),

(18)
with the initial condition ψnz(z, 0) = ψnz(z − z0).
To simplify the analysis, we integrate the particle
density along x- and y-directions, obtaining

ρ(z, t) =
∑
nz

nnz
∣∣ψnz(z, t)∣∣2 (19)

where nnz =
∑
nx,ny nnx,ny,nz. The mean position

is given by

z(t) =
∑
nz

nnz

∫
dz z|ψnz(z, t)|2. (20)

We now evolve all ψnz(z, t) using (18) and numer-
ically calculate z(t). The result is shown in Fig. 4.
We notice a lack of oscillation, which is in agreement
with the experimental results presented in [4].

Now we would like to refer the above results to
the one given by the tight-binding approximation
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Fig. 5. Energy spectrum En,k given by the solu-
tion of (21). The energy is given in the units of
~ωz/2. On the horizontal axis we have the wavevec-
tor k in arbitrary units — the plot is only to show
the large energy gap between the first and second
energy bands.

model. To do this, we first find the energy spectrum
of purely periodic problem solving the Schrödinger
equation[
− ~2

2m

d2

dz2
+V0 sin2

(
2π
z

λ

)]
ψn,k(z) = En,k ψn,k(z).

(21)
It is known that the energy spectrum of the periodic
potential has a band structure. Above, n denotes
the band number, whereas k gives the wavevector
in the given band. In Fig. 5, we plot En,k, which is
the numerical solution of the above equation in the
units of 1

2~ωz. On the horizontal axis we have the
wavevector k in arbitrary units — the plot is only to
show the large energy gap between the first and sec-
ond energy bands. It is known that the tight-binding
approximation uses only the first band. Therefore,
it is reasonable to use this approximation only if the
crucial physics refers to the first band; the excited
bands can be neglected.

In Fig. 5, we clearly notice the first band with
a large gap roughly equal to ∆E = 1500~ωz

2 . If we
define zb through equation 1

2mω
2
zz

2
b = ∆E, we find

zb ' 196 µm. Now, if most of the atoms of the
cloud are located in region −zb < z < zb, the tight-
binding approximation can be used to correctly de-
scribe the system. Looking at Fig. 3, we find that
the extent of the thermal cloud is roughly equal to
200 µm. It means that even after displacement by
30 µm, it is reasonable to use tight-binding approx-
imation as an approximate description of the sys-
tem. When using the tight-binding approximation
results described previously, we find that a large
fraction of particles populate the localized states.
The particles in these states will not perform pe-
riodic motion. Only the small fraction of particles
that populate the harmonic oscillator states under-
goes periodic motion. The sum of both these mo-
tions explains the overall lack of periodic motion
seen in Fig. 4.

5. Conclusions

In this paper, we have studied the system of
noninteracting atoms placed in periodic potential
with additional harmonic trapping, using tight-
binding approximation. Within numerical analysis,
we found eigenstates localized on the sides of the
harmonic trap. We explained the properties of these
states using semiclassical approximation. Further
on, we analyzed the results of the experiment de-
scribed in [4], in which the large thermal cloud
placed in periodic potential with additional har-
monic trapping was suddenly displaced from the
trap center. The measured center of mass of the
cloud showed a lack of periodic motion, present for
small condensate cloud. Using the noninteracting
atoms model, we observed the same phenomena.
Furthermore, we showed that the lack of periodic
motion can be attributed to the existence of the
localized states mentioned above.
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